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The efects of current quark masses on chiral-symmetry breaking in QCD at finite temperature are ex-

amined using a mean-field approximation. The current quark mass plays a role analogous to that of an

external magnetic field in the ferromagnetic transition, as it explicitly violates the chiral symmetry whose
restoration characterizes the phase transition. For small enough masses, the order parameter, related to
the quark condensate, maintains the features of the massless case up to the critical temperature, and then
it approaches a constant value depending on the current mass term itself. The consequences on the be-

havior of the pion mass and decay constant are also studied. Our calculations are done with a variation-
al composite operator approach. We also discuss the critical exponents (in temperature, mass, and for
susceptibility) that follow in general from assuming the possible validity of a Landau mean-field theory.

PACS number(s): 12.38.Aw, 05.70.Jk, 11.30.Rd, 12.38.Mh

I. INTRODUCTION

Strongly interacting matter is expected to exhibit
deconfinement and chiral-symmetry restoration at high
temperatures and/or densities. This seems to be true at
least in two limiting situations: namely, for a pure gauge
theory (deconfinement), from lattice simulations, and
from model calculations with massless quarks.

We shall refer here to previous attempts based on phe-
nomenological chir al models, indicating the possible
phase structure in temperature [1].

However, in the realistic case of quarks with finite
current masses, chiral symmetry is already broken explic-
itly and therefore the phase transition suppressed, as hap-
pens in a ferromagnetic case in the presence of an exter-
nal magnetic field. We have thus to better specify to
what extent one can still speak of phase transition.

In this paper we extend the analysis performed in a
QCD model [1] considered in the chiral limit to the case
of massive quarks. First we analyze in a general way the
consequences which arise if we postulate the validity of a
mean-field approach in QCD. In particular, we summa-
rize the derivation of various critical exponents describ-
ing how quantities such as the chiral condensate ap-
proach the critical point. In the context of a previously
proposed specific approximation to QCD [2], we check
that the conditions for the validity of the mean-field ap-
proach are satisfied. Specifically we verify the absence of

infrared divergences in the coefficients of the expansion
of the effective potential around the critical point. This
model calculation will allow us to get definite values for
the coefficients of the expansion of the effective potential.

In the framework of the model we study the extrema of
the effective potential with respect to a dimensionless
field (order parameter) simply related to the quark-
antiquark condensate. We find that the order parameter
as a function of T shows the same main features as in the
massless case up to the critical point, then it approaches
a constant value depending on the current quark mass.

We also study the gap in the value of the quark-
antiquark condensate between the region of low tempera-
tures and the region of high temperatures for increasing
masses. It is evident that the phenomenon of dynamical
chiral-symmetry breaking concerns only light quarks, be-
cause for the heavy ones the dynamically generated mass
is much smaller than the current mass (see, for instance
the discussion in Ref. [3]).

Finally we examine how a current mass influences the
properties of the light mesons, such as decay constant
and mass.

II. MEAN-FIELD EFFECTIVE POTENTIAL

In previous work [1] we have shown how the mecha-
nism of dynamical chiral-symmetry breaking, in massless
QCD, and its restoration at some finite temperature, can
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be described by an effective potential approach. In par-
ticular we found that, in such a massless case, the order
parameter of the theory (essentially the quark-antiquark
condensate) and some other related physical quantities
[such as f (T)] show the typical behavior coming from a
Landau mean-field theory near the critical point for a
second-order phase transition [4].

It is therefore interesting to consider a more realistic
model in which a mass term is present, which breaks ex-
plicitly the original chiral symmetry of the Lagrangian,
and to look for the behavior of various physical parame-
ters around the critical point. As expected, also in this
case our model is equivalent to a mean-field theory. In
this section we will summarize the general results con-
cerning the critical exponents that can be derived in such
a framework. For simplicity we will for the moment con-
sider the case of a single Qavor. The discussion can be
easily extended to the more general case.

With massive quarks the situation is very similar to
that of a ferromagnetic system in presence of a small
external magnetic field %. The correspondence is

(Pf) z ~At(T) ma~& (2.1)

where (p1()r is the quark-antiquark condensate, JK is
the magnetization, and mp is the current quark mass.

Let us assume that there exists an effective potential
describing the broken phase of QCD at T =0, and let us
extend this approach to TAO. The efFective potential
will be a function of the order parameter

and of the explicit symmetry-breaking term m p.
Let us suppose that our effective potential admits a

mean-field expansion a. la Landau. This means that the
effective potential, for small values of mo, is such that [5]
(i) it can be expanded in powers of y around y=O, (ii) the
coefficients of the expansion are regular functions of the
temperature for T close to T„ the temperature at which
the coefficient of y vanishes, and (iii) the coefficient of y
in the expansion is positive.

However as discussed in Ref. [5] the mean-field ap-
proximation is valid only if we can safely take the limit
T~ T, in the coefficients of the expansion of the effective
potential.

As a rule, for D &4 (D =dimension of space-time) one
obtains the universal predictions of the mean-Seld theory;
however, for D &4 the infrared divergences which affect
the coefFicients of the expansion show that the predictions
of the mean-field theory cannot be correct in general.

Because we are interested in the case D =4, we have to
be very careful in this kind of approximation. The hy-
pothesis that the eff'ective potential for QCD can be ex-
panded a la Landau near the critical point will be safe
only if the coefficients of the expansion are not plagued
by infrared divergences.

For the time being let us assume that we can safely ex-
pand a la Landau the effective potential. We will verify a
posteriori that in our model all the hypothesis for the ex-
pansion are fulfilled. For our purposes, it will be enough
to keep the first order in mp and the fourth order in g in

+a4(T}y +b, (T)moy

+b3(T)may + (2.2)

The critical exponents are defined as follows. The P ex-
ponent by the behavior of the order parameter at mp=0
and T~T, :

'13

y( T)-
T.

The 5 exponent by the behavior of the order parameter at
T = T, and mp~0:

The y exponent by looking at the derivative of the order
parameter with respect to the mass (magnetic susceptibil-
ity) at ma=0 and T~ T, :

By( T) T
8772p mo =p T

The critical exponents can be easily obtained from the
effective potential (2.2). For instance, the critical temper-
ature is determined by the vanishing of the coefficient
az(T} at mo=O,

a2(T, )=0, (2.3)

and, since our system is in a broken phase for T & T„we
have

a2(T) ~0, T~ T,

and, furthermore,

a4(T)&0, T=T, .

(2.4)

(2.5)

By expanding a2(T) around the critical temperature

(aT)=A(T, ) 1—T
c

(2.6)

we can determine the minimum in the T~ T, limit by us-

ing Eq. (2.2) for the effective potential. We get (for
m0=0)

y(T}=

1/2

a(T) 1—T
X c Tc

0, T~T, ,

T~ T„

with

(Ta,r)=—
—A(T, )

2a4(T, )
(2.8)

which leads to P= 1/2.
Again, from the extremum condition,

the expansion of the effective potential around y=0
( T = T, ) and mo =0. We then get

1 (y mo T) I 0 7. 7 =ao( T)+a2( T)y
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2az(T)y+4a4(T)y +b&(T)mo+3b3(T)mop =0 (2.9)

and, for T =T„we find, at the leading order in mo,

b, (T, }
y(T, )= — ', ', m,'" (2.10)

T ) T, (2.12)

which gives for the susceptibility the critical exponent

y = 1. Also, the susceptibility is discontinuous at T = T,
with a prescribed ratio of 2 between the coefficients of the
term in temperature after and before the critical tempera-
ture.

Notice that the critical exponents derived from the
mean-field approximation satisfy the Widom law
}'=P(~—1) [6].

The previous results are rather general as they rely on
the assumption that the coefficients of the mean-field ex-
pansion are free of infrared divergences. This infrared
safety depends obviously on the model. We will see in
the next section that in our model the coefficients are
finite in the limit T~T„and thus the previous discus-
sion applies indeed to our effective potential. For the
coefficients a2 and a4 this has been already observed in
Ref. [4].

III. THE EFFECTIVE POTENTIAL

To explicitly evaluate the effective potential we refer to
the study performed in the massless quark case [1] (trying
to stress the differences due to the presence of the mass
term) and to Ref. [2], where all the details of the model in
the massive case and at zero temperature can be found.

Calculations are carried out in the imaginary-time for-
malism, with Euclidean metrics. Here are the main steps.
One starts from the QCD Lagrangian with a mass term
for the quarks and considers the effective action for com-
posite operators as a functional of the fermion self-
energy. We stress that this approach, developed from a
method of Cornwall, Jackiw, and Tomboulis [7], is based
on a variational method and not on a perturbative ap-
proximation. Following Ref. [2] the zero temperature Eu-
clidean effective action for a QCD-like gauge theory is

T

512
I [S]= —I [S]+Tr S2 5S

6I 2—Trln So '+

(3.1)

giving 5= 3 for the critical exponent.
Finally, by evaluating the derivative with respect to

mo, at mo=0, of Eq. (2.9), and in the limit T~T„we
get

Bg(T) bt(T, ) T
Bmo m, =o 8a4(T, )ar(T, }

T & T, (2.11)

and

B~(T) bi( T, ) T
Bmo mo=o 4aq(T, )a (T, )

where S and So are the full and the free quark propaga-
tor, respectively. So is given by

So(p }= (iP —m ) (3.2)

where m is the quark mass matrix. I 2 is given by the
two-particle-irreducible vacuum diagrams, and X is the
dynamical variable of the theory defined by the equation

5I 2X=-
5S

(3.3)

At the minimum of the action, X is nothing but the fer-
mion self-energy.

Here we will neglect the mixing between different
flavors originating, for instance, by terms such as the 't
Hooft fermion determinant [8). It follows that only the
flavor-diagonal elements of the fermion self-energy can be
different from zero at the minimum [2]. With vanishing
off-diagonal terms, the effective potential decomposes
into the sum of nf contributions (nf =number of flavors),
one for each flavor. Therefore, to study the minima of
the effective potential, it is formally sufficient to consider
a single contribution. Of course, the choice of a given
flavor number is reflected in the particular parameters as-
sumed. In the present paper, as in Ref. [2], we will take
nf =3 and a number of color N=3. The values of the
parameters will be specified later on.

In QCD the operator product expansion suggests
(neglecting logarithmic corrections) to take for X a
momentum behavior as 1/p for large p . We have
chosen as a variational ansatz [1]

M
&( )=p X (3.4)

where M =280 MeV (see Ref. [1]) is a mass scale and y
(order parameter) is a dimensionless field. The effective
potential, defined as V(y)=I'(y)/0, with fl the space-
time volume, will be minimized with respect to g. The
value of y at the minimum, g(T), is related to the chiral
condensate, renormalized at the scale M (see later), by

3M

g T

In Eq. (3.5) we have taken the QCD coupling g ( T) as [1]

(3.5)

g (T) 1 1

2H c(T} co+(n.zlb) ln(1+AT /M )
(3.6)

V= Q V(y;, a;),
4

(3.7}

where a, =m; /M and

where b =24m /(11N —2nf ), co =0.554 (see Ref. [1]),
and g is a parameter which has to be determined phe-
nomenologically. By comparing our model in the low-T
regime with the results of Ref. [9], we have found
/=0 44(nf 1)/n. &, which gives g= 1 fo—r nf =3.

In Eq. (3.1) we have evaluated I ~ at the two-loop level.
The final expression of our effective potential is
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c(T) 2 1
V(y, a)= X ——f dy

3 2 0

T

y
1 1+Xy +2&Xy

y 1 —y+ay
—8 g f "dy y In(1+e ™~y+'"

}+ariz(T)

(3.8)

with P= 1/T and a=mo/M. The right-hand side (RHS)
of Eq. (3.8) is composed of five terms: the first one comes
from I z, whereas the second is the contribution of the
one-loop term at T =0, which is ultraviolet divergent for
aAO and it is regularized by the third term. The fourth
term is the part explicitly dependent on T of the one-loop
term, with zk satisfying

x +(2+a )x +(1+2a +2ag)x+(a+y)
3= g (x+zk) .

k=1

The last term

z(T) =2c(T) f dt—P(T}t
1 t +P—(T)ti

(3.9)

(3.10)

lim
V =1-.-o Wmo(qq)o} .,„

which is equivalent to the Adler-Dashen formula

(3.11)

is a finite counterterm added in order to satisfy the renor-
malization condition discussed below. In Eq. (3.10) y is
the minimum of the effective potential in the case a=0,
evaluated by neglecting the fourth term in Eq. (3.8). Let
us comment about this point.

At TAO the effective potential does not acquire any ex-
tra divergence with respect to the T =0 case. The theory
at T =0 is renormalized by requiring that the derivative
of the effective potential with respect to the chiral-
symmetry-breaking term, evaluated at the minimum, in
the small mass limit satisfies, for each flavor, the condi-
tion [2]

neglected a constant (dependent on T) coming from the
normalization of the one-loop term, which has a thermo-
dynamical meaning, but it is irrelevant for the study of
the symmetry breaking. In fact, we remind that the
effective potential at the minimum is minus the pressure.

IV. BEHAVIOR OF THE ORDER PARAMETER
FOR TAO

The behavior of the condensate for TAO can be stud-
ied by searching for the absolute minimum of the
effective potential given in (3.8) at various temperatures.
By taking the chiral limit a~0, one recovers the situa-
tion studied in Ref. [1],where the effective potential is a
function of g and there are two symmetrical absolute
minima at T =0, which smoothly approach the origin for
increasing temperatures. The result is that the conden-
sate vanishes without discontinuities and there is a
second-order phase transition.

For aAO, the effective potential is no longer symmetri-
caL In this case one finds a relative minimum (for y & 0)
which decreases and disappears for growing temperature,
whereas the absolute one (for y(0) approaches continu-
ously a finite value depending on a. This result is not
surprising since the symmetry is explicitly broken from
the beginning by the mass term, and so no phase transi-
tion is expected (of course, the situation could be different
when considering the possible running of the current
mass with temperature).

As already said, our numerical analysis will be per-
formed for nf =N =3, and we have that, for
(=1, T, = 103 MeV (see Ref. [1]). In Fig. 1 we show the

m f = —2mo(gg)o . (3.12} (Q lP&T/(Q ~o
Therefore for TAO we have to use a renormalization con-
dition which reduces to (3.11) in the limit T~O; that is,
it should (in the limit) reproduce the Adler-Dashen rela-
tion.

However, this last equality holds only in the soft pion
limit, which means temperatures well below the critical
temperature, where the pion mass is expected to increase
(see later). As a consequence of these considerations we
can neglect the fourth term in the potential, since it goes
to zero exponentially when T~O. Therefore we write
the generalization of the normalization condition (3.11}at
TWO as
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(3.13)

where V is the effective potential (3.7) with the fourth
term [see Eq. (3.8)] omitted.

Finally, in writing the effective potential (3.8), one has

T (MeV)

FIG. 1. Fermion condensate vs temperature for m„=8 MeV,
md=11 MeV, and m, =181.5 MeV {from lowest to highest
curves, respectively}, normalized to (ff)0- —(197 MeV}', the
value at T=O and ma=0. The dashed line is the normalized
condensate in the massless limit.
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y(T) = —a a/aq[a V/aa]
B V/By a=y=o

+O(a') . (4.1)

behavior of the condensate (normalized to its value at
T=O and mp=O) vs the temperature, for mp=aM =8,
11 and 181.5 MeV, which are the values for the masses of
the up, down, and strange quarks, respectively, obtained
by a fit at T =0 in SU(3) [2]. It is evident from this figure
that as the mass increases, the gap in the quark conden-
sate, when crossing the critical temperature, decreases
and tends to vanish for suSciently high mo. This can be
seen by plotting versus mo the difference between the
values of the condensate at T=O and at T=180 MeV
(when it starts to stabilize), normalized to its value at
T =0 (see Fig. 2).

We can comment on the result qualitatively as follows.
When the current mass is zero (chiral limit), the conden-
sate (and thus the fermion mass) is entirely dynamical.
For small masses the T =0 value of the condensate is not
very much affected by the current mass insertion,
whereas above the critical temperature it is entirely due
to the presence of the mass term, since in this regime it is
zero in the massless case. Thus we can roughly say that
the region of low temperatures is dominated by the
phenomenon of dynamical symmetry breaking, and the
high-temperature regime by the explicit symmetry break-
ing.

In this sense the jump of the condensate that we have
plotted in Fig. 2 determines, although only qualitatively,
to what extent we can retain the notion of phase transi-
tion if a mass term is inserted in the model. For small
masses the condensate behaves almost as in the chiral
limit: (PP)r steeply decreases at the critical tempera-
ture and then it takes a value proportional to the current
mass. Thus, for a «1, we can still speak of critical phe-
nomena since the changes in the thermodynamical prop-
erties of the system will be rather abrupt around T, due
to this steep jump of the condensate. The same does not
happen for a-1, since in this case the relative variation
of the condensate between the low-T and the high-T re-
gions is small.

Similar conclusions have been proposed by other au-
thors [3], who at the same time stress that X- I/p for
high momenta can be chose only if the fermion mass is
not too large. However in our case we take at most a-1.

Finally, we can evaluate analytically the minimum for
T~ 00, and for a~O, by observing that for T )T, the
chiral-symmetry solution is y=O, and therefore we can
expand around this point. From Eq. (3.8), at the leading
order in a, one finds that the minimum, for a «1 and
T& T„is

1.0

0.9

0.8

0.7

0.6

05

0.4

02

0.1

0.0
0 50 150 250 300

By expanding this expression for high temperatures with
standard techniques (see, for instance, Ref. [10]) it turns
out that the asymptotic value of the absolute minimum is

g( T~ oo ) = — a+O(a ) .13
3

V. PION DECAY CONSTANT AND MASS AT TAO

We want to make some comments about the inhuence
of the mass term on the behavior of the pion mass and
decay constant at finite temperature, and to compare it
with the study performed in the chiral case [4].

To evaluate f (T) we will consider the matrix element
of the zero component of the axial-vector current be-
tween the vacuum and the one-pion state:

&Ol Jp'l~'(q) &p=if.(T)m.(T)&" . (5.1)

The evaluation of this matrix element has been done in
Ref. [4], for the massless case. The only difference is in
the quark propagator, which in the massive case is given
by

S '(p) =iP —X(p) —mp, (5.2)

where, for the sake of simplicity, we have assumed that
the up and down quarks are degenerate in mass and
mp=(m„+md)/2=9. 5 MeV.

In the limit q ~0 we find

mo (MeV)

FIG. 2. Jump of the fermion condensate from the
low-T to the high-T regions, relative to the T=O value, for
increasing masses. Here P =1—($1()(mo, T=180 MeV)/
( gf) (mo, T =0).

f (T)=12 g ( —)"f (2m. )

X(p) [X(p)+mp] —2pp
2 BX(p)

Bp

[p +(X(p)+mp) ]

inPpo
e (5.3)

To explicitly evaluate f„(T) it is convenient to separate in (5.3) the n =0 contribution f ( T) and write
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f'„(T)=f'„(T)+f'„(T),
where

(5.4)

dzk 1 —2y —3zk 1f (T)= M y(T) g (1—z )f dyy
Qy +zk 1+ exp(PM+y +zk)

1+ M ay g ~(1—zk) I dyy
dy A =, dg o Qy +zk 1+ exp(PM+y +zk )

(5.5)

where zk are given by Eq. (3.9), and the expression must
be evaluated at the absolute minimum y=g(T) of the
effective potential.

In Fig. 3 we plot f„(T) as a function of T. It shows
the same behavior as the condensate and the discussion
we have done with regard to (fP) r can be also applied
to f (T).

In order to evaluate the pion mass m (T) we have to
extend the previous discussion on the effective potential
by including a pseudoscalar field m, the chiral partner of
g. A complete discussion on this aspect can be found in
Ref. [2]. As a consequence the effective potential is
modified only through the substitution

x' x'+~'
To compute the mass of the pseudoscalar meson one

has to take the second derivative with respect to the field

m, evaluated at the minimum. The actual value of the
mass will be obtained by multiplying the second deriva-
tive by the appropriate factor a that relates the physical

()~V 1 ()~P'

Byz,„a~ Bm.z;„ f BH

But at the minimum one has

a'V 1 aV

min + + min

and therefore

2y Bv
2af„x (5.6)

which is nothing but the Goldstone theorem. Finally, in
our case we get, for m „,

pseudoscalar field y to m according to y =an. . This fac-
tor can be obtained in terms of the decay constant f
through standard arguments of current algebra. One gets

m 2—
fr 2X dyf'. 2~' o (1—y)+y(~+Xy)' ' 1 —y+P(T)y'

M k, B(ay) o
(5.7)

and again the expression must be evaluated at y =g( T).
In Fig. 4 we plot the pion mass vs temperature for a

quark mass mo=9. 5 MeV (solid line), compared to the
curves obtained for mo = 1 MeV and mo = 5 MeV (dashed
lines). The value of m„(T) is dominated by the current
quark mass for temperatures below the critical value,
whereas it becomes independent of mo at the critical tern-

perature or above it. This should be expected, because,
for T= T„ the pion becomes an ordinary resonance and
its mass is dominated by AQCD and not by mo. This is a
clear signal that the pion loses its Goldstone nature once
the approximate chiral symmetry is restored.

This tendency of the pion mass to grow and to become
independent of the quark mass when T~T, can be also
seen, for instance, by the Adler-Dashen relation (3.12).
This formula allows us, for small masses, to evaluate the
pion mass by taking the values for the fermion conden-
sate and for the pion decay constant in the chiral limit,

f„(T) (Me V)
100

90

70

60

50

.30

20

10

0
0 20 40 j20 140

T (MeV)

FIG. 3. Plot of f vs temperature in the massless limit

(dashed line) and for a mass mo =(m„+md )/2=9. 5 MeV (solid

line).
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m„(T) (MeV)
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relevant for the evaluation of the critical behaviors
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a (T}-A(T,) 1—,A(T, )= —0.3
T

502

a4(T )=0.0033 b, (T )=1.25
(6.2)
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By using Eqs. (2.7), (3.5), and (3.6}we find, for mp =0, [4]

(6.3)

where

T (MeV)

FIG. 4. ion mP 0

mass vs temperature for
= m +m )/2=9. 5 MeV (solid line), compared to the cases

o smaf mailer masses (dashed lines) m0=1 an e, r
e

' '
n entoftheto higher curve. eThe pion mass becomes indepen h

T =103quark mass aroun d the critical temperature (here
MeV).

ar(T, )a (T, )=
c,y,

'2
9 Tc

cp+ —ln 1+
8

(6.4)

with a defined in Eq. (2.8), and where Xo=-= —4.06 is the
value of the order parameter a

x
at T=m =0. One then

gets

a ( T ) = —7.28, a&( T, ) =2.2 5.
C

(6.5)

k that the critical exponents whic
describe the behavior of (gP) and f„around T, are ot
0.5 [4], the pion mass diverges as (1—T/T, 'i~. F r-T/T —'". Fur-

re for T) T, for small quark masses, both the
ro ortionalcondensate and the pion decay constant are propor

'

to the quark mass and so the pion mass is in ependent of
the quark mass at a temperature slig y a
ever we are certainly not able to say what happens at

nce the ion mass
starts to grow up the soft pion theorerns are no longer
applicable.

Analogously, from Eq. (2.10),
' 1/3

Finally from Eqs. (2.11) and (2.12)

b~(T, )=1.41 .

d~(T, ) 1—

(6.6)

VI. BEHAVIOR FOR T—+ T, AND SMALL MASSES

In the small mass limit and around the critical point
we can expand V [Eq. (3.7)] in terms of a and X, as was
done in Eq. (2.2):

l'(X ~ T}la 0 T T =a2(T}X'+a4(T}X'+bl(T}~X

amo (gf)pp

where

T )T, , (6.8)

+b3(T)aX + (6.1)

We have explicitly checked that the coefficients are free
of infrared divergences and therefore the assumptions
about the existence of a mean-field theory within our
model are satisfied. It should be noticed that this is not
quite trivial, because y is proportional to the mass gap
parameter, and, therefore, in the limit X—+0( T~ T, ),
and mp~O, the fermions become massless and infrared
divergences could show up. Howevver as we have shown
in Ref. [4] for the chiral case, it is just the thermal aver-
a e which gives rise oh' h

'
to the cancellation of the infrared

divergences which are present in thehe T =m =0 case for
g~O. This is indeed consistent with recent analysis
showing that the generalization of the Kinoshita- ee-
Nauemberg theorem holds at finite temperature in QCD
up to the two-loop level [11].

We can now give the numerical values for the
coefiicients appeanng m Eqs. (6.1) and ( .~ ~

) nd (2.6) which are

dp(T, )=0.28 . (6.9)

The same analysis can be repeated or (Tm ).
From Eq. (5.3) we can see that

= iX(T, mp)iG(T, X(T,mp), mp),
(T,mp)

fo
(6.10)

a (T, )=3.13, T(T, (6.11)

where fo-—91 MeV is the pion decay constant m the
chiral limit. One can c ec1' ' . 0 heck that G ( T ) is free of infrarede
divergences in the limit y~O and mp~ ~ h

~ ~ ~0. It follows that
the behavior of f ( T, m p ) around T, and for m p ~0 ls
the same as for the condensate (see also e .Ref. 4 )
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with

aI(T, )=l~r(T, )IG(T, ) .

Again we find

(6.12)

f (T„mo) mo
=bg(T, )

0

1/3

b~(T, ) = 1.96 (6.13)

and

f (Tmo)
Bmo fo mo=o

T & T„(6.14)
' —1

2 T
e

where

dg(T, )=0.38 . (6.16)

Thus, in addition to verifying that in our model the hy-
potheses for the validity of a mean-field expansion are
satisfied, we have also explicitly evaluated the coefficients
of the scaling laws.

VII. OUTLOOK AND CONCLUSIONS

We have studied the role of quark masses in finite tem-
perature QCD. Quark masses explicitly break chiral

symmetry and thus they affect the notion of chiral res-
toration at high temperatures. Their role is similar to
that of an external magnetic field in a ferromagnetic
phase transition.

On the assumption of validity of a Landau mean-field
theory near the chiral transition one can discuss the criti-
cal coefficien governing the behavior of the quark con-
densate at the transition point: an exponent P for the T
behavior in the massless case; an exponent 5 for the be-
havior for small quark mass at the critical point; and an
exponent y for the derivative of the order parameter with
respect to the quark mass (an equivalent of the magnetic
susceptibility of the ferromagnetic case).

The mean-field expansion in the manner of Landau is
known to be marginally valid for four space-time dimen-
sions. We verify that it is valid in the composite-operator
method that we quantitatively employ, for which we veri-
fy in particular the absence of infrared divergences (in-
frared safety) which would destroy a basic assumption for
the Landau expansion.

The composite operator method we use is the same we
have previously applied to the massless case. It is a varia-
tional approach, and it is quite distinct from perturbation
theory. As it satisfies the assumptions for a mean-field
expansion it automatically leads to the classical critical
exponents.

We have also discussed the temperature dependence of
the pion decay constant. Its critical exponents are the
same as for the quark condensate.

Our discussion and model are appropriate to study the
chiral transition. On the other hand, it must be stressed
that the overall physical picture might be changed in a
more complete description of QCD, including, for in-
stance, additional gluonic effects, and we do not know
whether, in that case, a mean-field theory would still
remain as a valid approximation around the critical
point. We recall that for full QCD one does not know a
definite set of order parameters, or even better, a single
order parameter, to describe its phase behaviors. For an
infinite quark mass the thermally averaged Polyakov loop
is appropriate to the description of the deconfinement
transition. However in the presence of quarks of finite
(rather than infinite) mass it loses part of its significance.
For vanishing quark masses, the quark bilinears are cer-
tainly the appropriate order parameters to describe the
chiral transition from the broken to the chiral restored
phase. The underlying symmetry, chiral symmetry, is
well defined in the massless limit. For full QCD, with
quarks of different finite masses, no obvious symmetry or
set of symmetries suggests itself to formulate the problem
of phase transitions in the conventional way, of different
phases related to different symmetries. The prevailing
opinion of a unique phase transition is still not explicitly
demonstrated and in any case studies with a number of
would-be order parameters are inevitable, and one may
expect that such different order parameters affect each
other in their variations. The study of the general
features of a multiorder parameter approach to phase
transitions constitutes by itself an interesting thermo-
dynamical problem.

As we have said, chiral symmetry is already broken in
the Lagrangian when there are quark masses. What we
can retain, in this case, of the notion of phase transition,
may be quantitatively described by the relative variation
of the quark condensate in passing through the original
(i.e., of the massless case) critical region. We find that
such an "effectiv" order parameter decreases with the
quark mass, at first linearly for small masses. Numerical-

ly, it clearly appears that only for the order parameters
related to u and d one can continue to usefully speak of
an approximate phase transition, whereas such a notion
becomes less evident for the s quark. The temperature
evolution for the ehiral s order parameter is quite smooth
on large intervals of T. The presence of the massive s

quark will of course indirectly affect the behavior of the u

and d condensates through a number of mechanisms, one
being via the fermionic ('t Hooft) determinant in flavor

SU(3), electively arising from the anomaly. The oc-
currence of the determinant will produce a mixing among
flavors and the effective potential will not decompose into
independent flavor contributions.

Chiral symmetry being already broken from quark
masses, we can still, for small masses at least, choose as a
possible mark of the region where the condensate has a
rapid variation that particular temperature at which the
condensate value is one-half of its value at zero tempera-
ture. For a small quark mass such a temperature may al-
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ready be looked at as a kind of vestige of the chiral criti-
cal temperature for massless quarks. Of course, such a
temperature will no more exist for a sufficiently large
quark mass, as the condensate, beyond a certain mass,
will always remain larger than one-half of its T =0 value
(at least this happens in our model, where such a mass
comes out to be around 80 MeV). We find that the surro-
gate critical temperature we have just defined in the pres-
ence of a massive quark increases linearly when the quark
mass increases (from about 100 MeV for zero quark mass
to about 110MeV for a quark mass of 30 MeV).

An increase of the critical temperature with the quark
mass is intuitively expected, as in the massive case one
expects that the melting of the condensate requires larger
temperatures. Gerber and Leutwyler [12] suggest a simi-
lar result, although, as they say, the critical temperature
is beyond the range of validity of their formulas, which
are based on the first terms of a low-temperature expan-
sion. The critical temperatures they give, based on pro-
jecting such a low-T calculation, are rather larger than
ours.

The approach of Gerber and Leutwyler is appropriate
to the low-T region and we can try to compare our results
with theirs in such a limit. For the massless case the
comparison has already been done, and in fact it was used
to fix the value of our parameter g. To compare in the
presence of small quark masses, always at low tempera-
ture, it is enough to look at the variation of the pion de-
cay constant with a pion mass, in the zero temperature
limit. We both find a correction linear in the quark mass.
Since one fits the experimental pion decay constant f at
the physical pion mass, the mass variation finally depends
on the value of f in the massless case, which is for us is
about 91 MeV and for them a few MeV smaller. There
are however rather large uncertainties, coming from
fitting the pion-pion scattering data, in the numerical es-
timate of their fourth-order chiral expansion, bringing in
the correction of f„an admitted uncertainty of 20%.

We therefore consider that, even quantitatively, the
agreement is satisfactory, given the experimental data
and the fact that our model is not supposed to be as
rigorous in the low-T region as the chiral expansion.

We have also calculated the temperature-dependent
pion mass. Below the critical temperature such a mass is
controlled by the current quark mass. Near and above
the critical temperature, for some temperature interval
where one may like to consider the pion as a remnant de-
gree of freedom, the pion mass becomes independent of
the quark mass. This shows that the pion becomes in
that region an ordinary resonance and loses its Goldstone
character.

Another interesting point on which we may comment
is the mechanism of chiral symmetry restoration. The y
field appearing in our model is essentially the 0. field, as
in a linear sigma model, by suitable normalization. Our
effective potential around the critical temperature, after
introducing the pion field through a substitution of the
type y ~y +tr (see Sec. V), is that of a linear tr model,
with an additional explicit symmetry-breaking term pro-
portional to the y field and to the quark mass. The
coefficient of the quadratic term changes sign, from nega-
tive to positive, when moving through the critical tem-
perature, corresponding to chiral-symmetry restoration
(apart from the explicit symmetry-breaking term). The
pion and the tr are then degenerate in mass (apart the ex-
plicit symmetry breaking). It therefore appears that for a
limited range of temperatures slightly beyond the critical
temperature, our model is equivalent to a nonspontane-
ously broken linear 0. model, thus suggesting almost de-
generate pions and 0. as physical degrees of freedom.
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