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Systematics of Q (Q ) systems with a chromomagnetic interaction
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Within the framework of a simple model including chromomagnetic interactions only, the energies of
diquonia Q {Q ) with orbital angular momentum 1.=0 are calculated and compared to the threshold
energies. The results are given as functions of mass ratios and all possible diquonia built with u, d, s, c, b

quarks and spins S=0,1,2 are studied. A number of new systems which could be bound under strong in-

teractions are proposed.

PACS number(s): 12.40.Qq, 11.30.Hv

I. INTRODUCTION

Today quantum chromodynamics (QCD) is recognized
as the correct theory for strong interactions; it relies on
the color interaction between quarks and gluons. The
number of possible color configurations increases dramat-
ically with the number of interacting quarks in a given
system. However, the experimental situation forces QCD
to be implemented with the physical principle that ob-
servable hadrons must be color singlets. The immediate
consequence [with a SU(3), gauge group] is the triality
rule: any observable hadron must be composed in such a
way that the number of quarks minus the number of anti-
quarks is a multiple of 3. This principle allows one to
reduce greatly the number of color configurations.
Indeed, the simplest systems, mesons (qq) or baryons (q ),
need only one color wave function. These hadrons are
bound by gluon exchange. For more complicated objects
the binding due to strong interactions can come either
from meson exchange or from gluon exchange. The first
category contains the wide and rich variety of atomic nu-
clei and received a lot of attention, although it is based on
less microscopic grounds, for more than fifty years. The
second category contains particles of type q q" bound by
gluons, with the restriction m —n =3B,B being the
baryon number. The total set of such systems bears the
generic name of "multiquarks" and has been also
qualified as "exotic" in the past. The mere existence of
these multiquarks is already very important because it is
the clue of the reliability of QCD. They are not forbid-
den by QCD and thus they must exist either as bound
states or as typical resonances in some definite channels.
If they are not seen experimentally, QCD has to be ques-
tioned or, at least, some mechanism must be invoked to
explain their absence.

Among the possible rnultiquarks, the diquonia q q
with B=0 are the simplest samples. Since their introduc-
tion by Jaffe [1],a lot of work has been devoted to their
study. Even for such simple objects an exact treatment
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based on QCD is not feasible, and one has to rely upon
some approximation. Most of the derived models are
called "QCD" inspired. " Some of them are very crude,
using only special constant matrix elements [2—5]. More
refined methods have also been used more recently: rela-
tivistic strings [6], QCD sum rules [7], bag models [8,9],
potential models [10-16], the simplified Bethe-Salpeter
formalism [17].

In addition to the problem of the spectrum, the decay
of the diquonia is also an interesting question. One can
imagine essentially two difFerent decays. The first one
proceeds through a rearrangement of the quark wave
function and a subsequent decay into two mesons. If
there is a great probability that the wave function of the
composite particle q q is of the type
diquark+antidiquark with a large angular momentum
between these two clusters, one expects that the decay
into two mesons is highly disfavored [18-20]. On the
other hand, there exists the possibility of decaying into a
baryon-antibaryon pair [1,5,21-23]. The point is that di-
quonia with a structure predominantly formed with
diquark-antidiquark pairs in a color sextet (the so-called
mock diquonia) cannot accommodate a baryon-
antibaryon decay. The above arguments explain why a
real possibility exists for bound (or at least narrow-width)
diquonia.

On the experimental side some candidates have been
proposed. The earliest ones are the mesons ao(980) and
fo(975) whose decays are hardly compatible with a qq
structure. Jaffe [1] suggested that they may be four-
quark states, and this hypothesis was claimed again [12].
Many candidates have been observed in baryon-
antibaryon scattering and got the name of "baryonia. "
Narrow structures were present in pp and pd at about
1930 MeV and with widths of order 10 MeV [24].
Broader enhancements have also been detected near 2190
and 2400 MeV (I =80—250 MeV). pop resonances have
also been observed in pn annihilation [25] and in y-y re-
actions [26]: these resonances have been named Xo(1480)
and X2(1650). All these particles are made of ordinary
quarks. Some candidates containing strange quarks have
also been proposed: the resonance g(2. 2) observed in a
Mark III experiment [27] has been interpreted as s (s )
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diquonium [28]. But perhaps the most well-known sys-
tem is the so-called U(3. 1) resonance [29], which ap-
peared as a multiplet of three states U+(seen in the chan-
nel Apm+v. r+)=3115 MeV, I &80 MeV;
U (APm+vr+m )=3095 MeV, I &30 MeV;
U (Ajm+vr )= 3105 MeV, I &30 MeV. The most
plausible explanation would be an I=—', sq(q ) state
[17,30). The missing partner U was not seen in the
previous experiment. An exhaustive catalogue of di-
quonia is given in Ref. [24]. Up to now, the experimental
situation is not clear and no diquonium has been assigned
unambiguously.

From the theoretical point of view, practically al1 stud-
ies have been devoted to diquonia composed of identical
quarks, or with only two different quark flavors. The
conclusions resulting from these works are that (i) no di-
quonia containing identical quarks are expected to be
bound and (ii) possibilities of bound systems exist for very
disymmetric cases [q Q with m&/m ) 10 (see Refs.
[9,14])]. However, the number of studied samples is rath-
er restrictive as compared to the huge number of possible
systems allowed by the whole set of flavors. The above
arguments open the door for new potential candidates.
As far as I know the only study of diquonia with three
different flavors can be found in Ref. [3). The authors
showed, using a very crude model, that the possibility of
stable multiquarks of type (cst7d ) or (cus u) is not exclud-
ed. In addition to the possibility of diquonia systems be-
ing bound by gluon exchanges, there was in the past a
great debate on whether some of them could have a
molecular structure, and hence be loosely bound. The
pioneers in this field were Weinstein and Isgur [12,31],
who considered the fo(975) and the ao(980) particles as
KE molecules. This conclusion was contradicted by
Morgan and Pennington [32], who analyzed the DM2 and
Mark III experiments in a model-independent manner to
prove that their molecular structure is strongly dis-
favored. Recently Tornqvist [33] proposed that some di-
quonia could be bound by meson clouds, just like the
deuteron; he called these new objects "deusons" and
raised arguments to incorporate the f, (1420),
f2(1525),fo(1587), and fz(1720) resonances within such
a scheme. Whatever the structure may be, Freund and
Rosner [34] showed that the density of meson and baryon
states must be nearly the same for high energy, and this
fact imposes the existence of a great number of diquonia
states.

In this paper I make an exhaustive study of a11 di-
quonia with a total orbital angular momentum L =0.
The energies of these states are calculated within the
framework of a chromomagnetic Hamiltonian and com-
pared to the corresponding energies of the two meson
thresholds. Of course, this model is rather schematic,
and no claim is made that it gives precise quantitative re-
sults. This program is ambitious in the sense that a sys-
tematics is performed over all flavor configurations —a
work that has never been done —but it must be con-
sidered as a first qualitative step towards more refined fu-
ture calculations. Thus my aim is twofold. First, I want
to investigate, among the great number of new proposed
diquonia, whether some of them have a good chance of

being bound by strong interactions, an indication that is
already obtainable from this simple model. Second, my
conclusions can be used as a guiding basis for more ela-
borate calculations, and, as a consequence, the predictive
power of a chromomagnetic interaction can be checked
on a large scale and in full detail by more sophisticated
models.

The paper is organized as follows. In the next section,
the chromomagnetic Hamiltonian is described and dis-
cussed. In Sec. III, the energies of the mesons and the
thresholds are presented, while Sec. IV is devoted to the
calculation of diquonia energies. The corresponding nu-
merical results and conclusions are gathered in the last
section.

II. THE MODEL HAMILTONIAN

(A, ;A, )(o.;cr))

m,-m-
(2.1)

in which the spatial degrees of freedom are neglected,
their dynamical effects being included in the constant
term a. Of course this is a very crude approximation to
reality. First, neglecting the kinetic energy and the cen-
tral potential terms is not always justified; a qualitative
argument is to say that their effect is smooth both in

Extensive calculations on a lattice have shown that the
interacting potential between two quarks or between a
quark and an antiquark, due to gluon exchange, contains
a Coulombic short-range part and a linear long-range
part. This central interaction is to a large extent flavor
independent. Moreover, the relativistic corrections give
rise to the so-called hyperfine interaction proportional to
a, 5(r; )(A, ;A, )(0;0 )Im;I (the A, are the Gell-Mann
matrices acting on color degrees of freedom and the 0. are
the Pauli matrices acting on spin degrees of freedom).
Such a term is of prime importance for explaining the
short-range repulsion in the nucleon-nucleon interaction
[35]. Nowadays, every one agrees that the previous po-
tentials are crucial ingredients for any phenomenological
treatment of hadron spectroscopy. Spin-orbit and tensor
forces exist as well, but their effects seem to be of minor
importance. The hyperfine interaction is the only one
which is flavor dependent; when studying diquonia of
different flavors it has the major role in the spectroscopic
description of these systems, while the effects of the cen-
tral interaction depend on the masses through the size of
the wave function (coming itself from the kinetic-energy
operator) and have a smooth behavior. In its ground
state, a system has a strong tendency to develop a spatial
wave function with the highest symmetry. The predom-
inant part describes a configuration where all pairs are in
relative S ~aves. The consequence is that the ground
state has a total orbital angular momentum L =0, and
that the corresponding wave function is practically sym-
metric.

The essence of the chromomagnetic model is to retain
only the hyperfine potential with the further restriction
that (6(r,j ) ) on the spatial wave functions is constant for
every quark pair and for all systems. As a result, we are
left with a Hamiltonian of the type
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H= —Af gx;x, (A,;AJ)(o;o)) . (2.2)

The choice of the reference mass depends on which sys-
tem is under study; in practice it is fixed in a way that
minimizes the number of free parameters x, . It is also
helpful to arrange the constituent quarks in order to im-

pose the relations 0&x &1, given the fact that quarks
q(u or d), s, c,b are listed by increasing mass.

complex systems and in their thresholds so that their
influence in the binding is attenuated. Second, there is no
reason why (5(r;.)) should be a universal constant; in
fact bag models indicate that an increase of the
confinement volume of the quarks in the diquonium rela-
tive to that of the meson leads to a reduction of the corre-
sponding spatial hyperfine matrix element and would sug-
gest that a(q (q )) &a(qq).

In the following I maintain the assumption of a con-
stant a, keeping in mind nevertheless that the resulting
binding energies are probably overestimated. However,
the ultimate goal is not to provide quantitative results,
but to get an overall qualitative impression of what could
be the most serious candidates for bound diquonia. Thus,
I am more interested in some order in a hierarchy of
states than in the exact energy values within this hierar-
chy. My hope is that a model Hamiltonian such as the
one proposed in (2.1) is enough to work out this plan.
Even though it seems quite simple or naive, it includes
nevertheless most of the necessary ingredients for grasp-
ing an idea of the interesting candidates. Indeed, it was
extensively used at one time, and the corresponding cal-
culations bore the name of color chemistry [36]. It was
applied to diquonia made of ordinary quarks by Mo and
Hogaasen [19]. Within this framework systematic studies
of Qq systems [37] and dibaryon systems [38] were car-
ried out recently. In these studies more elaborate treat-
ments were done for some of the most interesting candi-
dates, and the conclusion was that, although the chromo-
dynamic binding is always overestimated, a Hamiltonian
such as (2.1) is able to predict in a correct way the general
trends of the state hierarchy. Curiously, the same kind of
exhaustive work has not been completed for diquonia sys-
tems, and the aim of this paper is precisely to fill this gap
and to provide a good starting point for further sophisti-
cated calculations. It will be useful in the following to in-
troduce some reference mass mf and to scale the eigenen-
ergies in units Af =a/mf. The results will depend on
the dimensionless parameters x; =mf /m; since the origi-
nal Hamiltonian (2.1) now becomes

~I, I21 I I+I2—, ~S, S2~ S S+S—2. (3.1)

the 3 (3) SU(3), irreducible representation. The coupling
3 X 3 gives rise to a singlet 1 and an octet 8 representa-
tion. Only the singlet is allowed for observable mesons;
the contribution of the color part k,-A, - is then ——", . Con-

cerning the spin part there are two possibilities: one with
S=O (pseudoscalar mesons) whose contribution is —3,
and one with S =1 (vector mesons) whose contribution is
+1.

The flavor dependence comes from the x;x~ contribu-
tion in (2.2). In order to unify the notations, I will denote
by q the ordinary quark (u or d), which is a member of an
isospin t =—,

' doublet, and by Q; other heavy-flavor quarks
with isospin t =0, (Q; =s, c,b) Th.e index i will be omit-
ted both in Q; and in x; if no confusion arises.

Three types of mesons can be imagined.
(i) The ordinary mesons qq. In addition to the spin

value S it is interesting to introduce also the isospin I,
which can take here two values, I=0 (isoscalar) and I=1
(isovector). The original Hamiltonian being invariant un-
der isospin, the isoscalar and isovector mesons lie at the
same energy. The corresponding mesons can be classified
through the (I,S) values: q(0, 0),m(1, 0),co(0, 1),p(1, 1).
In this case the reference mass is obviously m„and the
resulting energies in units A =a/m„are pure numbers.

(ii) The mixed mesons qQ (or Qq because of charge con-
jugation). Here the isospin is always I= ,', and one en--

counters pseudoscalar E and vector K' mesons. Here
again the reference mass is mf =m„and the energies are
functions of x =m„/m&. Since m& )m„one always has
0«x «1.

(iii) The exotic mesons Q& Q2 (or Q2Q& ). The isospin is
I =0, and the S =0, 1 members are denoted by D&z, D &2,

respectively. By convention the reference mass is chosen
as mf =m„since Q, Qz and QzQ& are degenerate it is al-

ways possible to impose m, m 2 so that
0&xz=m, /mz 1. The chromomagnetic energies for
the mesons are listed in Table I.

The thresholds T are easily computed by combining a
meson M& with a meson M2, T=M, —M2. The thresh-
old energy E„is simply the sum of the meson energies,
ET =E, +E2. The total Hamiltonian is still invariant un-
der isospin and spin so that the total isospin I and the to-
tal spin S are good quantum numbers. They are restrict-
ed by the usual coupling rules

III. MESONS AND THRESHOLDS

Since we are interested only in the decay of diquonia
into two mesons, the first step is to compute the meson
energies to be put in the corresponding thresholds. As al-
ready stated we forget about the spatial wave functions
and keep only color, flavor, and spin degrees of freedom.
Since the mesons are made of a quark and an antiquark,
the Pauli principle never applies.

The color function of a quark (an antiquark) belongs to

Meson I co ~ p E D D &*2

I 0 0 1 1 —'
2

0 0
S 0 1 0 1 0 1 0 1

E / Af —16 '3 —16 '3 —16x 16x /3 —16x2 16xz /3

TABLE I. Chromomagnetic energies (in units of Af =a/mf
as explained in the text) for the various possible mesons. I is the
isospin and S the spin of the meson. For K mesons x =m, ™&
aIld for D$2 mesons X7™$/m2.

Qi(Q2)
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IV. THE DIQUONIA

A. The various Savor types

The diquonium is composed of two quarks and two an-
tiquarks. The quarks and/or the antiquarks may be iden-
tical so that the Pauli principle becomes effective. In that
case it is very useful to adopt a coupling scheme which
makes it easy to deal with; this is clearly achieved
through a diquark-antiquark basis. I and S, being good
quantum numbers, can be chosen to classify the states;
however, because of the presence of one or more heavy
quarks, several flavor configurations can lead to the same
set of (I,S) numbers. Lastly, for a given configuration,
one can build several color, isospin, and spin functions so
that there may exist several basis states. An exhaustive
study of diquonia needs to consider all the corresponding
possibilities. The number of basis states is reduced by the
Pauli principle whenever it applies. Another source of
simplification comes from the charge-conjugation opera-
tor; the diquonium Q, Q2 (Q3Q4) and its charge-
conjugate partner Q3Q4 (Qi Qz) have the same energy; it
is enough to consider only one. The G parity might have
been used as well but it makes sense only for ordinary
quarks; since our program is much more ambitious, the
necessity of introducing G parity is not fundamental and
I will not consider it in the following.

The set of all the diquonia covered in this paper is

presented in Table II. Several remarks are in order. I
have gathered the various diquonia by their flavor
configuration with a decreasing number of ordinary
quarks q (or antiquarks q). The charge-conjugate
partners are written explicitly. The cases with two identi-
cal quarks (or antiquarks) are treated separately since, be-
cause of the Pauli principle, they give rise to a different
number of basis states. For each flavor configuration, the
possible I and S values are reported, as they are good
quantum numbers. The fourth column N, gives the num-
ber of basis states for a given set (flavor, I,S). In practice
it gives the dimension of the Hamiltonian matrix to be di-
agonalized, and hence the number of different eigenvalue
states. These states depend on the mass ratios
x; =mf /m;. For applications, I have considered three
types of heavy-flavor quarks Q;, namely, s, c, or b, for
which a good estimate of the corresponding x; can be ob-
tained. The number of resulting physical diquonia that
can be computed for each case is denoted by Nd in the
fifth column.

In summary our study deals with X, =120 eigenvalues
corresponding to Nd =584 different physical diquonia.
These (N„Nz)values can be grouped by I or S value with
the following numbering: I=2 (4,4); I= , (6, 18); I—=1

(30,110); I=—,
' (30,198); I=O (50,254); S=2 (21,100);

S= 1 (57,284); S=0 (42,200).
If we are interested only in the ground state of the sys-

TABLE II. Systematics of all diquonia studied in this paper. They are classified by their Gavor type:

q is the ordinary quark (u or d) and Q, Q; any heavy-flavor quark (s, c,b) Iand .S are the total isospin
and spin, and N, the number of allowed states for this peculiar configuration. Nd is the number of pos-
sible physical diquonia when limiting ourselves to only three heavy Savors.

Flavor I S N, Flavor I S Ns Flavor I S Ns

q'(q ) 2 2

2 1

2 0

1 1

1 1

2 2

e'(Q )

Q'(q )

1 2

1

1 0

eQ| i Qz)
Q2'(eQ| )

6

2

1

0

9
27

18

1 2

1 1

1 0

0 2

0 1

0 0

eQ|(Qz Q3)
6 2%3

QzQ3(eQi )

2

1

0

18

54

36

0 2
0 1

0 0

2
e'(Ql Q2)

4 1%2
2

QiQ~(e )

1 2
1 1

1 0

Qi'(Qz)
9
6

0 2
0 1

0 0

6
6

12

e'(eQ)
eQ(e )

2

1

0
2

1

0

3

9
6
6

eQi(fQ»
12

0 2

0 1

0 0

1 2

1 1

1 0
0 2
0 1

0 0

3

Ql (Q2Q3)
6 2%3

Q2Q3(QI)
12

36 Q|Qz(Q&Q&)
24
12
36
24

0 2

0 1

0 0

0 2

0 1

0 0

9
27

18

2 12

6 36
4 24
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tern [Q, Qz(QzQ~)]rs our study covers 210 diquonia
with the following repartition: I=2 (3};I= ,' (—9);I= 1

(39);I= ,' (6—3};I=0 (96); S=2 (69); S= 1 (72); S=0 (69).
The top quark t has not been included in our applica-

tions because its mass is largely undetermined, but it is
implicitly contained in our figures where the mass ratios
x; are plotted as continuous parameters; a good estimate
will be provided by taking x, =mf /m, =0. The number

Nd of corresponding diquonia is greatly increased in that
case.

B. Color functions

Each quark (antiquark) belongs to the fundamental 3
(3}SU(3), irreducible representation. Coupling the color
degrees of freedom of two quarks to give a diquark (an-
tidiquark) gives rise to a sextet 6 (6) and a triplet 3 (3).
The 6 (6} representation is symmetric under particle ex-
change while the 3 (3) representation is antisymmetric.
Now we have to couple the diquark to the antidiquark to
build a singlet-color function corresponding to an observ-
able multiquark. It is well known that there are two pos-
sibilities: the first one leads to the so-called "true" di-
quonium with the color wave function IC, )=[33]„'the
other one is the "mock" diquonium with color wave
function

I Cz ) = [66]&. In the old time of baryonia phe-
nomenology the true and mock systems were considered
as diFerent entities with distinct properties. In fact there
exists a color coupling between them and an actual di-
quonium does not have a pure true or mock structure.
Every serious calculation nowadays takes care of this
couPling. The calculation of O, (i,j ) =A, , Ar on these
states is standard and is not given here.

spin 1:

IS3 ) = [(12)0(34)i ]i,
Is, ) = [(12),(34),], ,

IS5 ) = [(12),(34),]),.
spin 2:

IS6) =[(12)i(34)i]z .

(4.2b)

(4.2c)

The matrix elements of the spin operator
O, (i,j )=o,ar between these basis functions are calculat-
ed by usual Racah techniques.

D. Total wave functions

The total Hilbert space is the tensor product of the
Hilbert spaces corresponding to color, spin, and Qavor
degrees of freedom. The basis states are the tensor prod-
uct of the basis states of each space factor. The color and
spin basis states have been studied in the previous subsec-
tions. Concerning the Qavor degrees of freedom, it is use-
ful to introduce isospin functions in the same way as the
spin functions,

I r &
=

I [(~& rz )r, (~3r4)r, ]r (4.3)

( Tk I Of (l,J ) I Tr )—x x 5k I .

The basis functions for a given system are

(4.4)

The isospin t; of the elementary quarks are t„=td =
—,
' and

t, =t, = tb =0. The flavor operator Of is simply the mass
operator in (2.2): Of (i,j ) =x,x I Onc. e the flavor
configuration is fixed, the values of x; are perfectly deter-
mined and one has

C. Spin functions Ia„.&=Ic, &ls, &IT. & . (4.5)

IS; ) = [(12)s (34)s ]s . (4.1)

The spins of the quarks couple to SIz, the spins of the
antiquarks to S34 The total spin S results from the cou-
pling of S&2 and S34 The only possibilities are S=0,1,2
and the spin wave functions of the system are

The permutation properties of ICk ), ISr ), and I T ) are

easily calculated, and the same holds for Ia); in the case
of identical particles, one retains in (4.5) only the basis
states which satisfy the Pauli principle. The number N,
of basis states Ia) for each configuration is explicitly
given in Table II. The physical eigenvectors

More explicitly we define the following vectors:
spin 0: Iqr„)= gd" Ia) (4.6)

IS) ) = [(12)0(34)0]0,

Is, &
= [(12),(34),], ;

(4.2a)

are determined through the diagonalization of the Hamil-
tonian matrix (a'IHIa). The total Hamiltonian is given
by (2.2), and we explained previously how to calculate the
necessary matrix elements. The result is

&a„, , IHIa„, )=—Af x,x,5,( CIO, (ij ) I C, „)(S,, IO, (i,J') IS, ) (4.7}

k, l, m, k', I', m'

The eigenvalues E,(x„xz,x3,x4) are the chromomagnet-
ic energies of the system. They must be compared with
the threshold energies ET(x„xz,x3,x„}.The threshold
energy is defined as the minimum energy for all decay
channels compatible with the selection rules (3.1). If the
difference E, Ez = —B, (B„is the bind—ing energy} is
negative, the state I'0, ) in (4.6) is expected to be bound

I

by strong interactions, at least by the decay into two
meson s.

V. RESULTS

A. Choice of the parameters

The free parameters of the problem are the quark
masses m; and the strength constant a. En fact, as al-
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ready explained, it is advantageous to choose a reference
mass mf as the mass of the lightest quark of the system.
The scaling energy Af =a/mf is used as energy unit.
The matrix elements (4.7) are then calculated analytically
in terms of the dimensionless parameters x, =mf/m, ,
where 0&x; ~ 1. The eigenenergies E„,the threshold en-
ergies, E~, and the binding energies B, are functions of
the x, parameters.

If the system is composed of identical Aavor particles
the results are pure numbers. If one deals with two
flavors 1 and 2, we have only one parameter x =m, /mz
and the data can be presented as a function of x. In that
case, all the states can be included in the same figure; a
number of results correspond to this situation. On the
other hand, if the studied diquonium requires three
Aavors, we have at our disposal two parameters x

&
and xz

and the data are plotted as biparametric surfaces. Al-
though the study has been done for all the states, it is
difficult to display on the same figure the surfaces corre-
sponding to all levels with given quantum numbers. In
order to restrict the amount of information, I decided to
present the corresponding results only for the ground
state. Since I am especially interested by bound candi-
dates, only the ground state is really relevant for the con-
clusion. Lastly, there is the case of four flavors, and the
unique samples qs(cb), qc(sb), and qb(s c). One needs
three parameters x, , and this situation is very difficult to
represent as a continuous function of the parameters. I
choose to make some definite guess for the x, and give
the corresponding data.

My aim is to provide a qualitative feature of what
could be the real physical situation. To this end, and in
order to delimit the interesting domains where stability
can exist, I present the results, whenever I can, as func-
tions of the mass ratios. However, to get a more quanti-
tative feeling, I also made calculations for systems which
correspond to the actual quarks. In order to do this, the
quark masses are necessary: the set m =m„=m& =330
MeV, m, =550 MeV, m, = 1650 MeV, and mb =4715
MeV seems to me a good estimate. The x values follow
from this choice. To determine the coupling constant a
in (2.2), or alternatively the energy unit A =a/m, one
can, for instance, fit the energy difference

N=8A —
(
——8A)=16A =290 MeV. This leads to

A =18 MeV. The meson system can be used as well by
computing the vector-scalar energy difference
—", A —( —16A)=~ A. The problem is that the experi-
mental values are very different for the isovector
members p —m. =630 MeV versus the isoscalar members
co —g=230 MeV. A good compromise is to take the
centroid —,'(3X630+230)=530 MeV, leading to A =25
MeV. Thus, my definite choice is A =20 MeV. %'e see
in passing that A (q ) ( A (q ) and probably
A (q ) ( A (q ). For simplicity I maintain a constant
value for A in both diquonia and mesons appearing in
thresholds to that the numerical bindings are probably
overestimated.

B. Qualitative results

In this section, the previous program is carried out for
all diquonia in terms of the continuous parameters x . I

find it convenient to present the results with the order al-
ready given in Table II.

2. q~(qg)

The reference mass is still mq and the energy unit
3 =a/m . The results are plotted in Fig. 1 as a function
of the mass ratio x =m~/m&. All states with I= ,' are-
gathered on the right-hand side of the figure. The S=2
level lies at threshold, and there is a possibility of binding
for a S= 1 state with x & 0.84; these values do not corre-
spond to any physical situation so that no bound state ex-
ists for isospin —,'. On the left-hand side of the figure, I
have reported the diquonia with I=

—,'. A S=0 state is al-

ways bound whatever the mass ratio, and the binding is
greater for a lighter Q quark. There is also a bound state
with S=1, the importance of the binding energy being
nearly independent of the heavy Aavor.

3. q (Q ) diquonia

The parameters are the same as previously, and the
corresponding results are presented in Fig. 2 for both the

TABLE III. Energies relative to threshold energies for all di-

quonia formed with ordinary quarks. A negative value of
E—E& is the signature of a bound state.

Thresholds

pp
'lT-P

0
32
3

-"(25+&241)
4(25 —&241)

p-p ~-p
Yl-P s CO-'lT, 7T-P

64 643'3
32
3

8 8
3' 3

-(25+&241)
—(25 —&241)

CO-S,P-P
7J-Ctl~ 'IT-P

0,0
32
3

16

—,(25+&241)
-', (25 —v'241)
-(7+&241)
—(7—&241)

1. q (q ) diquonia

The reference mass is obviously the ordinary quark
mass m and the energy unit is A =a/m . The results
are pure numbers; they are summarized in Table III.
Since the Hamiltonian is invariant under isospin symme-
try, some data are common to several isospin values. The
most bound system corresponds to I=O, S=O with a
binding B =~4(U'241 —7)=11.36. The states with S=1,
I=0, 1 are also found below thresholds.
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uu(uQ) I=1/2

5 5 a I I ~ I I I I ~ ~ I ~ ~ ~ I ~ ~ ~

uu(dQ) I=3/2

5 5 ~ I ~ I ~ ~ ~ I ~ ~ ~ I ~ ~ ~ I ~ ~ ~

45— 45—

35-
35—

~ 25—
I-

LLJ

15—
ILL
«25-

UJ

-5-
S=2

S 2

-15 ~ ~ ~
/

~ ~ ~
/

~ ~ ~
/

~ ~ ~
/

~ ~ ~
-5 I

~ ~ ~
I

~ ~ I I
~ ~ I ~ ~ ~

0 0.2 0.4 0.6 0.8
m /m

U

0.2 0.4 0.6
m /m

U

0.8

FIG. 1. The chromomagnetic energies for the q (qg) systems are plotted relative to their lowest threshold as a function of the

mass ratio m„/m&. All energies are expressed in units of A =a /m„. The left-hand side corresponds to the lowest isospin value, the

right-hand side to the highest one. The states with spin 0 are represented by solid lines, those with spin 1 by dashed-dotted lines, and

those with spin 2 by dotted lines. A bound state appears with a negative value.

I=1 and I=O levels. No bound states appear in the
isospin-1 channel, while one I=O,S=1 state is always
bound, the binding being greater for a heavier Q quark.
This result confirms the conclusions of Refs. [9,14].

4. q (Q, gz) diquonia

The reference mass is the ordinary quark mass

m&=m~ with the scaled energy unit A =a/m~. We deal
now with a two parameter (x, =m~/m„x2=m~/m2)
surface. The I=0 and 1 members are drawn, respective-
ly, in Figs. 3(a) and 3(b). In the I=1 sector no bound

state exists, except for S=1 in a small domain with
x&,xz-—1. It corresponds to unrealistic values for the
heavy-quark masses. In the I=O sector all the multi-
quarks are bound. In general the bigger is the disym-
metry between the ordinary and the heavy quarks, the
more important is the stability. We are even in a position
for which the first excited S= 1 state of q (cb ) is also
bound.

5. qgq(qgq) diquonia

The parameters are chosen as in the previous study. In
this case, the I=0 and I= 1 levels are degenerate and are

25
ud{QQ) I=O

~ ~ I ~ ~ ~ I ~ ~

uu(QQ) I=1

6 0 ~ ~ I I I I I I ~ I I a I ~ I ~ E I

20-

15
S=1

50—

40—

10

I-
LLj

LLj
5

20—

10—

-10
0.2

~ ~
/

~ T ~ f ~ ~

0.4 0.6
m /m

U

0.8
0 e ~

~
e ~ ~

~
~ ~ ~

~
~ ~ ~

~
~

0 0.2 0.4 0.6 0.8
m /m

U

FIG. 2. Same as Fig. 1 for the q (Q ) system.
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u 01(Q102) I=1/2

S=2

s=o

S=1

7. qQ, (Q~Qq) diquonia

In this case all the particles can support different Qavor
and the qualitative curves are not easy to draw. We post-
pone the corresponding study for the next section. Here
we present the results when one of the antiquarks has the
same Qavor as the heavy quark, namely, the results for
the qQ& (Q, Q2) systems. The parameters are the same as
previously, and the results are displayed in Fig. 6. The
S =2 sector shows weak binding. The S=1 sector has a
more pronounced binding, the most stable diquonium be-
ing qs(sb) In .the S=0 sector the binding seems more
important, but only for nonrealistic values of the x pa-
rameters. The most stable state corresponds to the
qs(s c) system.

S. Q, ~(Q~ ) diquonia

-7
-1

FIG. 6. Same as Fig. 5 for qQ, (Q, Q2) systems.

Because of charge conjugation properties it is always
possible to choose the Q, quark as the lightest one; the

m, mass it then taken as the reference mass and the ener-
gies are plotted as functions of x =m, im2. The corre-
sponding curves are shown in Fig. 7. All the states are
unbounded and consequently rather uninteresting.

Q q 0 $ (Q2Q3)

60

Q Q, (Q Q) I=0
~ ~ I I I I I I I ~ I I I I I I I I I

S=2

50—

40— S=1

30—
UJ

20—
S=O

10—
1 2 5

10
7.5

0
S=2

I ~ I t ~ ~ ~ I ~ ~ I ( ~ ~ ~ ( ~ I I

0.2

FIG. 7. Same as Fig.
parameter is x =m&/m2
A, =a /m].

0.4 0.6 0.8
m /m

I for Q& (Qz) systems; the mass ratio
and the energies are given in units of

FIG. 8. Same as Fig. 3 for Q, (Q2Q, ) systems. On the left-
hand side, the lightest particle is Q, and the mass ratio parame-
ters are x& =m&/m2 and x2=m&/m3. On the right-hand side,
the lightest particle is Q2 and the mass ratio parameters are
x

&

=m2/m &
and x2 =m2/m 3. In any case the reference mass is

the lightest one.
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9. Qq (gqgq) diquonia

It is always possible to make the convention that Qz is
the lightest of the antiquarks (remember that here
QQWQ3). In this particular case there are two different

Qq Q2(Q1Q3) I=O

(aj
S=1

possibilities to consider: (a) the quark Q& is the lightest
particle (m, & m~); (b) the antiquark Q2 is the lightest
particle (mz &m, ). In either case, the reference mass is
chosen as the lightest mass [mf =m, in (a), m&

=m z in

(b)] and the energy surfaces are drawn as functions of the
ratio between other particles and the reference mass. The
results are presented in Fig. 8. The left-hand-side figures
correspond to case (a), the right-hand-side ones to case
(b). We see that there are few possibilities for binding,
and, when it occurs, it is very weak.

0-2.5

—7.
-1

S=2

S=O

Q1Q 2(Q2Q 3) l=O

S=1

10. Q, gz(Q&Q~) diquonia

We are in a situation where Q, WQ2 and Q3&Q4 (oth-
erwise we fall into the category of Sec. V B9), but it is im-
possible that the four particles are different since we have
only three types of heavy quarks. It is always possible to
take Q, as the lightest particle, and my choice is

mf =m, . The first mass ratio parameter is x, =m, /m i.
Let Q3 be the lightest antiquark; the other parameter is
x2 =m, /m4. One antiquark must be identical to a
quark. We have two configurations.

(a) Q3 =Q„and the system is Q, Q2(Q~Q4), or by rela-
beling Q, Q2(Q, Q3). This is the case treated in Fig. 9(a).

(b) Q3 =Qz, and the system is Q, Q2(Q2Q4), or by rela-
beling Q, Q2(Q2Q, ). This is the case treated in Fig. 9(b).

This situation where Q~ is identical to one of the
quarks is either impossible (because of mass constraint) or
can be traced back to one of the previous samples by
charge conjugation.

We see from the figure that there exist plenty of possi-
ble stable diquonia, particularly in S=O sector. Howev-
er, remember that the energy unit is

3, =aim, =(m~/m, ) 3, which is substantially weaker
than the usual 3 unit.

C. Quantitative results

S=O

FIG. 9. Same as Fig. 3 for Q, Q, (Q, Q4) systems. The refer-

ence mass is always I, and the mass ratio parameters are

xl =ml/m2 and x3=nz&/m3. In Fig. 9(a) the lightest anti-

quark has the same mass as the lightest quark Q, , while in Fig.
9(b) it has the same mass as the heaviest quark Q2.

To get a more quantitative picture in the energy hierar-
chy of all the multiquarks, I have applied the chro-
momagnetic formulas with the set of parameters dis-
cussed at the beginning of the section, A =20 MeV,
rn =330 MeV, m, =550 MeV, m, = 1650 MeV,
mb=4715 MeV. The 584 multiquarks have been com-
puted. In fact, most of them (at least every ground state)
are contained implicitly in the figures. Among them, 110
correspond to stable diquonia. This is quite a lot, but 62
of them have a binding energy less than 10 MeV. Any-
way, there still remain 15 systems bound by more than
100 MeV. I summarized them in Table IV by order of
decreasing binding. The thresholds (with the usual
nomenclature) are given as indications, although the mul-
tiquark states lie below them. It is quite astonishing that
the most bound state is composed of identical quarks,
since previous studies seem to forbid such a
configuration. The answer to this paradox is the special
situation of the pion among the mesons. The pion is
anomalously bound as compared to other mesons (com-
pare rr pto ri-ro). The -chromomagnetic interaction does
not reproduce correctly this feature. More quantitative-
ly, using the above parameters, we find m =m„=340
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qie2(@e4)

ud(ud )

ud(d s)
Qd(b b)
ud(dc)
ud(c c)
ud(d b)
us(d s)
us(u s)
ud(cb)
ud(s c3

Qd(d b)

ud(ud)
ud(~c
ud{cb)
ud(sb)

0
1

2

0
1

0
1

2

1

0
0
0
1

2

0
1

2

0
0

B (MeV)

227
182

147
136
129
122

116
116
115
115
111
107
106
106
105

Thresh olds

m-D

D-D
v-B

7T-P

n-D
D-B
E-B

MeV and m =m =767 MeV. Thus, the chromomag-
netic interaction is quite good for co and p, and still ac-
ceptable for g, but it completely fails for the m. , which is
200 MeV higher than it should be. The consequence is

TABLE IV. All diquonia bound by more than 100 MeV ob-
tained within the chromomagnetic model and the set of parame-
ters discussed in the text.

that the thresholds calculated with the chromomagnetic
interaction must be lower by 200 MeV for each m. appear-
ing in them. Considering Table IV, this means that we
must remove from the list of bound states all the systems
decaying by a+anything. Half of the potential candi-
dates disappear after this operation.

After our long and exhaustive calculations, the most
interesting stable diquonia predicted by the chromomag-
netic interactions are ud(b b ), ud(c c ), ud(cb ),
ud(sb), ud(s s), ud(s c) with I=0,S=1; us(u s),
ud(cb), ud(sb), ud(s c) with I=O, S=O; and us(b b)
with I=

—,', S=1. All these systems are bound by some

100 MeV or so, but, as already explained, the calculated
binding energy is probably overestimated. It will be high-

ly instructive to compare these conclusions to more
refined computations on the same subject. Will the same
configurations persist when changing the potential and
the method, and how important will the modifications on
the binding energies be'? These are open and interesting
questions. We have undertaken such a program and this
work is in progress.
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