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Color-hyperfine splitting in heavy-quarkonium I' states from perturbative QCD
with a running coupling strength
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We obtain an expression for the color-hyperfine interaction in heavy quarkonium in perturbative QCD
including terms up to one loop, but going beyond one loop by letting the strong-interaction coupling
constant a, run. The resulting expression cannot be written analytically in position space, but we make

approximations which enable us to obtain approximate upper and lower bounds on the P-wave color-
hyperfine splittings in charmonium and bottomonium.

PACS number(s): 12.38.Bx, 12.40.Qq

Recently, there has been renewed theoretical interest in
the masses of the 'P states in charmonium and botto-
monium [1—3]. Calculations [1—9] find that a given 'P
state in heavy quarkonium lies very close to the center of
gravity of the corresponding P states. However,
different theoretical methods yield opposite values for the
sign of the splitting. In this paper we modify a one-loop
perturbative QCD calculation of Gupta et al. [4] and
Pantaleone et al. [5] by letting the coupling constant u,
run. Because certain terms in the expression for the
color-hyperfine splitting vanish in P states if a, is fixed,
we find that our results are sensitive to whether we let a,
run. We let M3 be the mass of the center of gravity of
the P states, M, be the mass of the 'P state, and
EMp =M3 —M&. We call EMpz the contribution to b,Mp
arising from the color-hyperfine interaction. This is the
only contribution we calculate in this paper.

There is a simple reason why the procedures of keeping
a, fixed and letting it run can lead to quite different re-
sults for the P-wave hyperfine splitting. Whereas in S
states the lowest-order (one-gluon-exchange) contribution
is dominant and leads to the S state lying higher than
the 'S state, in states with orbital angular momentum I
different from zero the one-gluon-exchange contribution
(with fixed a, ) vanishes. Therefore, in P states with a,
fixed, the one-loop contribution is dominant and its sign
is such [4,5] as to make the mass M& be larger than M3,
i.e., EMp& (0. However, if a, runs, the one-gluon-
exchange contribution does not vanish in P states, and so
the sign of EMpz is not obvious.

In this paper, we reexamine what one-loop perturba-
tive QCD says about the P-wave color-hyperfine splitting,
concentrating on the effect of the running coupling con-
stant. We find that if a, is allowed to run, the one-
gluon-exchange contribution acts to lower the singlet P
state with respect to the center of gravity of the corre-
sponding triplet states; i.e., at the tree level with running
coupling constant, we obtain AMpg &0. The splitting is
very small, however, and so might be reversed at the
one-loop level.

Because our one-loop expression with running u, is

where (P~ Y~P ) denotes the expectation value of Y with
respect to the unperturbed P-wave function.

In the Fermi-Breit (FB) approximation [10], Y(r) is

given by

YFs(r) =(32rr/9)a, fi(r)/m (3)

where a, is the strong-interaction coupling strength and
we are restricting ourselves to a quark and antiquark
which both have the same mass m. Equation (3) follows
from the fact that the one-gluon-exchange diagram with
a fixed a, gives rise to a static Coulomb potential. (By
the static potential we mean the potential in the limit of

complicated, we consider two approximations to EMpg,
one of which overestimates this quantity and the other of
which underestimates it. By so doing, we find approxi-
mate upper and lower limits on EMpi„which, in the case
of charmonium, differ by about 8 MeV, and, in the case
of bottomoniurn, differ by about 2 MeV. Our upper and
lower limits also differ in sign.

According to QCD perturbation theory, the spin-
dependent interactions in heavy quarkonium consist of a
spin-spin or color-hyperfine interaction, a tensor interac-
tion, and a spin-orbit interaction. If we treat the spin-
dependent interactions in heavy quarkonium as small
perturbations, then the effects of the tensor and spin-orbit
interactions cancel when taking the center of gravity P
of the P2, P„and Po states ( —,

' P2+ —,
' P, + —,

' Po). In
this approximation, and if coupled-channel and other
small effects are neglected, the splitting of the P from the
'P levels is a measure of the color-hyperfine splitting
b Mp~.

In QCD perturbation theory the color-hyperfine in-

teraction H& can be written

Hs = Y(r)S| S2,

where S& and Sz are the spins of the quark and antiquark
and Y ( r ) depends on the quark masses as well as the
quark-antiquark separation r. Then EMph is given by
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V(r)= —4a, /(3r) . (5)

If in Eq. (5) a, is a constant, then Eq. (4) reduces to Eq.
(3)~ However, if a, is allowed to run as a function of r,
then the potential is not of Coulomb form, and Eq. (4) ap-
plies.

Now we know from experiment that the S-wave split-
ting b Mz is greater than zero, and therefore it follows in
the GFB approximation that

&SiV2viS) &0 .

The inequality (6) is a consequence of the stronger condi-
tion

V V(r) &0 for all r, (7)

but of course, it is not necessary that (7) be true in order
for (6) to hold. However, if (7) holds, then it follows in
the GFB approximation that hM~& )0. Later, we shall
explicitly show that the inequality (7) is true for a class of
asymptotically free running couplings.

Eichten and Feinberg [13],Grornes [14],and Dine [15]
have gone beyond the GFB approximation in QCD.
Whereas, in the GFB approximation Y(r) is directly
given in terms of derivatives of V(r) by Eq. (4), in the for-
mulation of Eichten, Feinberg, Dine, and Gromes, addi-
tional functions of r, not given in terms of V(r), enter
into the expression for Y(r). Gupta and Radford [16],
Gupta et al. [4], and Pantaleone et ol. [5] have comput-
ed these additional terms in QCD perturbation theory at
the one-loop level with fixed a, ~

Let us call y(Q) the Fourier transform of Y(r). The
expression of Gupta et al. [4] and Pantaleone et al. [5]
for y (Q} is

y(Q)=
32+a, 4a, ll 2

V— +21n2 —71n9m' 3m' m

infinitely heavy quarks. ) We see from Eqs. (2) and (3) that
( Y„B(r)) vanishes in P states, owing to the fact that the
wave function of a P state vanishes at the origin. There-
fore, according to the FB approximation, hM~& is zero.

If, for any reason, the static quark-antiquark potential
is not of Coulomb form, the FB expression can be gen-
eralized [11,12] to the form

Youp(r}=(2/3tn )7 V(r) (4)

where V(r) is that part of the quark-antiquark static po-
tential which transforms as the time component of a
four-vector. Although expression (4) is usually just called
the Fermi-Breit approximation, we call it the generalized
Fermi-Breit (GFB} approximation. In this paper we as-
sume that V(r) can be calculated in perturbative QCD,
i.e., that the confining potential transforms like a Lorentz
scalar.

In the one-gluon-exchange approximation, V(r) is
given by

a, Q2V=1— (33 —2n ) ln +g
12m f 2 (9)

where nf is the effective number of quark flavors and g is
a constant which depends on the renormalization
scheme. In the modified minimal-subtraction (MS )

scheme [17] used by Pantaleone et al. , $=10nf/3 3—1

(g= —21 for three flavors), whereas in the renormaliza-
tion scheme used by Gupta et al. , /=+18.

It can be deduced from Eq. (8) that for fixed a, (p) the
lowest-order term (the term linear in a, ) vanishes in P
states (this is the FB approximation}. Furthermore, the
sum of the a, terms, which arise from QCD in one-loop
diagrams, is negative in the calculations of 6upta et aI.
[4] and Pantaleone et al. [5]. Therefore, these authors
find that hM~z is negative. The magnitude of the split-
ting turns out to be a few MeV in charmonium and 1

MeV or less in bottomonium [4-6]. Igi and Ono [9],who
also calculate to order one loop, obtain the same result
(see the erratum to their paper) ~

The starting point of our calculation is Eq. (8). How-
ever, rather than let a, be fixed at some value a, (p), we
let (at least) one power of a, run as a function of Q. Dine
[15]also let one power of a, run, but his expression omit-
ted some terms contained in Eq. (8). Also, he did not put
his result in a form which enabled him to compare with
experiment.

Once we let a, run, we have to change the factor 9 of
Eq. (9) to avoid double counting. The term
a, (33 2nf )

—ln(Q /jp )/12m. in 7 is the second-order
term in the expansion of a, (Q}, so we omit it. Also, it
turns out that our qualitative results are not sensitive to
the renormalization-scheme-dependent quantity g. We
remark here that we use the MS scheme, in which g is
negative, so that it gives a small posi ti ve contribution to
AMpg ~ Thus, in Eq. (8) we simply use

P= 1 —a, (Q)g/12m .

Then Eq. (8) becomes

321ra, (Q) 3a, (Q) Q2
y(Q)= 1+ 71n 2—

9m 8~ m

(10)

6(153—19nf ) lnP
a, (Q) =

(33 2nf )l3 — (33—2nf )2p

where

(12)

2—2 ln2 ——g9

It is straightforward to find Y(r) numerically by taking
the Fourier transform ofy (r) as given in Eq. (11),provid-
ed we choose an expression for a, (Q) which does not
diverge at small Q. One possibility is to use the following
approximation for the running coupling constant:

@=in[(Q /A )+K] (13)

where Q is the magnitude of the three-momentum and a,
is evaluated at a scale p. Here 7 is given by

and ~ is a parameter satisfying ~) 1. %e introduce the
parameter K so that a, is finite for all Q . If Q »KA,
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a, (Q)V(r)= — f '
exp(iQ r)dg .

3~ Q

We can define a, (r) by the equation

(14)

then our expression for cx, reduces to the usual second-
order result [17].

In the one-gluon approximation with running cou-
pling, the potential V (r) is given by

a, (p) —1
2(33—2nf ) a, (m)

3a, (p) 8+ —+ln2+ ~
4m. 9 9

Theny(Q) becomes

(20)

4a, (r) = V(r),
3r

(1S)

32~a, (Q)
y(Q)= (1—x) .

9m
(21)

where V(r) is given by (14). Using the a, (Q) of Eq. (12)
with a variety of reasonable values of ~ in the range
1.3 ~ a & 3.0, we have obtained the Fourier transform (14)
numerically. We find that a, (r) satisfies the following
properties for all r relevant to our problem, i.e., for all r
for which the charmonium and bottomonium wave func-
tions have appreciable support:

a, (r) )0, a,'(r) )0, a,"(r)(0, (16)

where the prime denotes the derivative with respect to r.
We can easily see that (7) holds wherever the third of the
conditions in (16) holds, which is to say, for all relevant
values of r.

We now consider two approximation methods which
enable us to write the splitting in terms of modified GFB
formulas. By so doing, we obtain expressions which en-
able us to obtain approximate bounds on AMpg.

It is convenient to use the identity

Y&(r)=(2/3m )(1 x)V V(r—)= YGFB(r)(1 —x), (22)

where Y, (r) is the value of Y(r) using our approximation
(1). In this approximation, we have reduced the interac-
tion to the form of the GFB interaction except that it is
multiplied by the constant 1 —x.

Because (7) holds, the sign of ( Y, (r) ) is the same as
the sign of 1 —x. In the S state, we must have x & 1, or
the sign of the S-wave color-hyperfine splitting will

disagree with experiment. If the value of the scale p is
not too different in S and P states, then this approxima-
tion leads us to the conclusion that

Note that x is a constant which depends on the quark
mass m and the scale factor p. Because p is appreciably
less than m [S], x is positive. Now we can take the
Fourier transform ofy (Q), obtaining

2 2 2

ln = ln —ln
m A A

(17)
6M)t~ ( 1 x)EMpg (GFB))0 (23)

m
ln

A

12m. 1

33—2nf a, (rn)

Then Eq. (11)becomes

32ma, (Q) 63 a, (Q)
y(Q)= 1+ 1—

9m 2(33—2nf ) a, (m)

where A is the QCD scale parameter. Equation (11),with
the identity (17), is the starting point for both of our ap-
proximation methods.

(1) In our first method, we begin by approximating
ln(Q /A ) and ln(Q /m ) by the lowest-order expres-
sions

ln Q 12m. 1

33—Znf a, (Q)

If x lies in the range 0&x &1, then AM, p& is positive,
but smaller in magnitude than the value obtained in the
GFB approximation.

We now discuss the scale p, which in general is
different in P and S states. The reason is that a P-state
wave function is more spread out in r space than an S-
state wave function, and so in Q space the P wave func--
tion has its main support nearer the origin. Therefore, in
our approximation of replacing a, (Q) by a, (p), the ap-
propriate value of p is smaller in the P state than in the S
state. This has the effect of making x larger in the P state
than in the S state. Therefore, if we use a value of x ap-
propriate to the S state, we overestimate the value of
AMpp ~ In this way we can get an upper limit on AMpp
from Eq. (23).

(2) In our second method, we begin by approximating
a, (Q) within the square brackets in Eq. (11) by a, (p).
We then make use of Eqs. (18) and (20) and rearrange
terms to obtain

3a( ) 8—+ln2+ ~
4~ 9

"
9

(19) 32na, (Q)

9m 2(33—2nf )
y( )= 1 —x—

For a reasonable choice of a, (Q) we are unable to take
the Fourier transform of y (Q) analytically. However, let
us make the approximation of replacing a, (Q) appearing
within the square brackets in Eq. (19) by a, (p), and
define x to be

112ma, (p)+
(33—2n/)m

(24)

Taking the Fourier transform and using Eq. (4), we get
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Y~(r) = YG»(r) 1 —x— 63
2(33—2nf )

112mu, (p)+ ' 5(r),
(33—2nf )m

(25}

We see that Eq. (28) is quite different from Eq. (24).
Making use of our previous observation that x )0, we
see that in our second approximation the sign of AM+& is
negative, just as the one-loop calculations with both
powers of a, fixed. If we had not made the approxima-
tions of this second method, the 5 function in Eq. (25)
would have been smeared out, and we would have ob-
tained an additional positive contribution to AMpp.
Therefore, we believe that our second method underesti-
mates the value of AM&I, .

We next consider in more detail the question of the ap-
propriate values of p. Here we are guided by the work of
Pantaleone et al. [5],who have used experimental data to
estimate values of p for the S-wave color-hyperfine in-
teraction in charmonium and for the P-wave tensor in-
teraction in both charmonium and bottomonium. To ob-
tain an upper limit, we should use the S-wave values of p
in Eq. (23), while to obtain a lower limit, we should use
the P-wave values in Eq. (26).

Pantaleone et al. [5] estimate that the value of p
relevant to the S-wave color-hyperfine interaction in
charmonium is in the range 0.77 &p (1.25 GeV, depend-
ing on the potential and on their prescription. For botto-
monium, unfortunately, the S-wave color-hyperfine split-
ting is not known, so the value of p is not given in this
case. The values of p in P states can be given for the ten-
sor interaction. Pantaleone et al. [5] estimate that the
values of p are in the range 0.52 (p (0.68 GeV for char-
monium and in the range 1.2(IM &1.5 GeV for botto-
monium. Using the mean values of these estimates, we
obtain p=1.0 GeV and p=0. 6 GeV, respectively, for the
upper and lower limits in charmonium. For bottomoni-
um, we use the mean value p=1.35 GeV for the lower
limit, and make the reasonable guess @=2 GeV (a little
larger than the P-state values found by Pantaleone et al. )
for the upper limit.

We use the MS scheme to obtain a, (p) for the various
values of p. Using m, =1.65 GeV, mb=5. 0 GeV, and
nf =3 for p m„nf =4 for p) m„we can calculate x.
We obtain for charmonium

x (p = 1.0)=0.30,

and for bottomonium

x (p=0.6}=1.14, (27)

x (p=1.35)=0.61, x (@=2.0)=0.39 . (28)

where Yz(r) is the value of Y(r) using our approximation
(2). The last term in Eq. (25), although positive, does not
contribute to EMzz& because the expectation value of a 5
function vanishes in P states. We then obtain the follow-
ing expression for EM2pp.

EM2pi, = 1 —x — EM~I, (GFB) . (26)
63

2 33—2nf

In each case we use the smaller value of x in Eq. (23) to
get an upper limit on the splitting, and the larger value of
x in Eq. (26) to get a lower limit. This is a conservative
approach in that it leads to a larger difference between
the upper and lower limits than using the same values of
p in Eqs. (23) and (26).

In order to make use of Eqs. (23) and (26), we need an
estimate of b,M~&(GFB). This quantity has been calcu-
lated in Ref. [1] for the 1P state in charmonium and the
1P and 2P states in bottomonium. The result in char-
monium is b,M&s (GFB)=4. 1 MeV. In the bottomonium
1P and 2P states the results are bM&h(GFB) =1.7 MeV,
bM~h(GFB)=1. 2 MeV, respectively. Although the cal-
culation in Ref. [1] is model dependent, the results are
useful for giving us reasonable estimates. We obtain

—5.4 MeV& AM~I, (1 cc) &2.9 MeV,

—1.3 MeV & bM&z(1 bb) & 1.0 MeV,

—0.9 MeV & b,M~&(2 bb) &0.7 MeV .

(29)
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These limits are not really firm because they depend on
our taking "reasonable" values of p as well as model-
dependent values of 6M~I, (GFB). We also do not know
the effect of the two-loop terms we have omitted. Never-
theless, because we have been so conservative in the for-
mulas used for estimating our limits, we believe that the
values of hM~& for charmonium and bottomonium are
likely to lie in the intervals given in Eq. (29).

We emphasize that we have addressed the question of
the splitting arising from the QCD color-hyperfine in-
teraction. There are other contributions to AM& which
we have omitted. For example, if we do not treat the ten-
sor and spin-orbit forces as small perturbations, their
effects do not cancel out of the center of mass of the P
levels. As another example, the coupling of a level to de-
cay channels not only gives the level a width, but also in
general changes the energy. As a third example, if the
confining part of the potential does not transform as a
Lorentz scalar, as we have implicitly assumed [18], but
contains a part that transforms like the time component
of a four-vector, the vector part will contribute to AM~.
Because of the possible existence of these and perhaps
still other contributions to hM~, it would be rash to say
that the major contribution is from the color-hyperfine
interaction when the splitting arising from that interac-
tion is so small.

Very recently, we learned of a preliminary measure-
ment of the mass of the 'P, state of charmonium in E760
at Fermilab [19],which yields b,M~ = —1 MeV. This re-
sult lies well within the limits given in Eq. (29).
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