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The dominance of helicity-conserving amplitudes in gauge theory is shown to imply universal
ratios for the charge, magnetic, and quadrupole form factors of spin-one bound states: Gc (Q ):
GM(Q ):Gq(Q ) = (1 —sr'): 2: —1. These ratios hold at large spacelike or timelike momentum
transfer in the case of composite systems such as the p or deuteron in @CD with corrections of order
Aqoo/Q and AqoD/M~, s. They are also the ratios predicted for the electromagnetic couplings of
the W+ for all Q in the standard model at the tree level. In the case of the deuteron, the leading-
twist perturbative /CD predictions are valid at Q = ~q ] && Agony, but do not require the
kinematical ratio g = Q /4M' to be large. These results provide new all-angle predictions for the
leading power behavior of the tensor polarization T2o(Q, H) and the invariant ratio B(Q )/A(Q )
We also use a generalization of the Drell-Hearn-Gerasimov sum rule to show that the magnetic
and quadrupole moments of any composite spin-one system take on the canonical values p = e/M
and Q = —e/M in the strong binding limit of the zero bound-state radius or infinite excitation
energy. This allows new empirica1 constraints on the possible internal structure of the Z and TV+

vector bosons. Simple gauge-invariant and Lorentz-covariant models and null zone theory are used
to illustrate these results. Complications that arise when the Breit frame is used for form-factor
analyses are also pointed out.

PACS number(s): 13.40.Fn, 12.38.Bx, 12.50.Fk, 14.80.Er

I. INTRODUCTION

The low-energy theorem [1] for the forward Compton
amplitude at threshold, and the helicity selection rules [2]
of perturbative quantum chromodynamics (/CD) for ex-
clusive scattering amplitudes at high-momentum trans-
fer, indicate that many properties of a system bound by
a gauge theory are universal and are the same as those of
a corresponding elementary particle of the same spin and
charge. In this paper, we shall explore this universality
for the case of spin-one bound states in /CD, including
both the p meson and the deuteron. In particular, we
shall focus on the behavior of the electromagnetic form
factors of composite spin-one systems at large momen-
tum transfer, and on the fundamental constraints on the
magnetic and quadrupole moments of hadronic and nu-
clear states imposed by Compton-scattering sum rules.

In order to motivate the notion of universality, we
first discuss the application of the Drell-Hearn-Gerasimov
(DHG) sum rule [3—5] to the anomalous magnetic mo-
ment of a spin-one state. We then show how one can use
Tung's [6] extension of this analysis to obtain a new sum
rule for the anomalous quadrupole moment of a general
spin-one system. Together these sum rules show that in
the limit of zero radius or large excitation energies, the
magnetic moment pq and quadrupole moment Qq ap-
proach canonical values:

e e
M' M2'

where e is the total charge and M is the mass of the spin-

one system. These are the same values obtained [7] for
the intermediate vector bosons W+ in the tree approxi-
mation to the standard model. It should be emphasized
that the sum rule constraints on Qq and ter do not rely
on perturbation theory, but only on the existence of un-
subtracted dispersion relations for the relevant helicity-
fiip Compton amplitudes. The deviation of the observed
magnetic and quadrupole moments from the canonical
values thus define the "anomalous" moments of a gen-
eral spin-one system: p, —= p~ —

M and Q, —:Qq + M, ,

dynamical contributions which must be strictly due to
internal structure.

Various theoretical and experimental constraints have
already been suggested for the magnetic and quadrupole
moments of the W. The electromagnetic couplings of the
intermediate vector boson are constrained by renormaliz-
ability and tree-level unitarity [8] to be those of the stan-
dard model. Experiments that have or will place bounds
on nonstandard couplings include measurements of g —2
for the muon [9],pp ~ WpX [10], the decay p ~ ep [11],
heavy-ion collisions [12], and e+e annihilation processes
[»l.

The definition of the three parity-conserving and time-
reversal-invariant electromagnetic form factors of a spin-
one object is well known [14]. We will discuss the implica-
tions of perturbative @CD and helicity selection rules for
these form factors at high momentum-transfer in terms
of the ratio B/A of Rosenbluth form factors [15] and the
tensor polarization [16] Tzp. A general derivation of the
form factors of the deuteron in a light-front formulation
has also been given by Chung et aL [17]. Our emphasis
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in this paper will be on the predictions of perturbative
/CD for the large momentum-transfer behavior and un-
derstanding the scale for their validity. Our analysis will
be carried out using the standard light-cone frame (LCF)
(~+ =e'+v'):

( M2
p = (p+, p, pi) =

I
p+ 'P+' ) ' (1.2)

A(q2) + B(gz) tanz(g/2)
4Ez sin (8/2) &

in terms of invariants, is

(1.3)

where, as in the Drell- Yan [18] frame, the photon momen-
tum is transverse to the direction of the incident spin-one
system, with q&

——Qz = —qs, and q+ = 0 for space-
like photons. Elastic kinematics requires (p+ q) = Ms,
2p q = Q2. Although this frame is often referred to as
the infinite momentum frame, the light-cone kinematics
are exact, and no limiting procedure has to be taken.
In particular, the value of the frame-dependent momen-
tum p+ is irrelevant. In the transverse frame analysis,
the dominance of the helicity-zero to zero matrix ele-
ment of the electromagnetic current is sufBcient as an as-
sumption to determine the relationship between all three
form factors. Predictions for time-like photons, such as in
e+e -+ p+p, can be obtained from crossing relations.

We repeat the analysis using the Breit frame with p
and q parallel. Here we find that predictions for form
factors require information about nonleading matrix ele-
ments; helicity-conserving matrix elements alone are not
sufficient to determine the magnetic form factor. In ad-
dition, as recently emphasized by Sawicki [19], light-cone
perturbation theory analyses in the Breit frame must
take into account nondiagonal Z-graph contributions to
the electromagnetic current.

The standard Rosenbluth cross section [15] for elastic
electron scattering on a target of any spin in the labora-
tory frame,

Thus the ratio B/A could rise as fast as t/M~. However,
a more complete analysis [22] finds that the ratio becomes
a constant. We elaborate on this in a later section.

A critical issue is the determination of the momentum-
transfer scale at which perturbative @CD can make
meaningful predictions for quantities such as B/A and
the tensor polarization for spin-one targets T20. Because
of kinematic factors, this scale is difFerent from the scale
at which A can be predicted. We discuss an appropriate
choice of scale and obtain predictions for B/A and T2s.
In the latter case, our predictions for the deuteron dif-
fer significantly from what is usually quoted [23] for the
experimentally accessible region [24].

With regard to perturbative calculations at large mo-
mentum transfer, we would like to draw attention to the
work of Farrar, Huleihel, and Zhang [25] on the helicity-
zero to zero deuteron form factor. They find that hidden-
color degrees of freedom in the deuteron wave function
may be important in obtaining the correct perturbative
/CD predictions for normalization of the deuteron form
factors at experimentally accessible momentum transfers.
In addition, as shown in Ref. [26], the evolution of the
deuteron's distribution amplitude leads to the dominance
of hidden-color state contributions in the asymptotic do-
main of very large momentum transfer. Our analysis will
be independent of the existence of the relative normal-
ization of hidden-color states.

To confirm the generality of the form-factor analysis,
we also consider a simple model in which the compos-
ite spin-one system is constructed in a Lorentz-invariant
and gauge-invariant way from two spin-& constituents in
a zero-binding limit of one-boson exchange. The anal-
ysis of the electromagnetic interactions in this model
gives a simple demonstration of the connection between
radiation null zones [27] and the natural magnetic and
quadrupole moments of spin-one systems.

An outline for the remainder of the paper is as follows.
In Sec. II we discuss the sum rules and anomalous mo-
ments of spin-one systems. Form factors and their ratios
are analyzed in Sec. III. The zero-binding model is pre-
sented in Sec. IV; this includes discussion of null zones
in radiative processes. Finally, Sec. V contains a brief
summary.

AcJ

dt

M2t

(. M) B(-') (1.4)

The dimensional counting rules [20] of perturbative @CD
for exclusive two-body scattering processes at large s,
with t/s fixed, predict

(1.5)

where n is the total number of incident and outgoing
fields. In the case of electron-deuteron elastic scattering,
n = 14. This implies that A( —t) falls as t io and that
B falls at least as fast as [21] tA/M for the deuteron.

II. SUM RULES

2 1 cled
[~~(~) —~~(~)1 (2.1)

where p = p, i —
M is by definition the anomalous mag-

The low-momentum-transfer properties of both ele-
mentary particles and composite systems can be related
by general principles to integrals over scattering ampli-
tudes. The best-known of these relationships is the Drell-
Hearn-Gerasimov (DHG) sum rule [3, 4] for the anoma-
lous magnetic moment of spin-2 systems. It can be ob-
tained by using an unsubtracted dispersion relation and a
low-energy theorem [1] for the helicity-flip Compton am-
plitude. The generalization to arbitrary spin has been
made [4, 5]; the form for the spin-one case is
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1 ~ dv2

)s [Im fi (s, t) —Im f~(s, t)],
"th

(2.2)

where M is the mass, Q = Qi+ M, defines the anoma-
lous quadrupole moment, v is (s —u)/4, and fI (fg) is
the helicity amplitude for parallel (antiparallel) photon
and target spins. The standard Mandelstam variables s,
t, and u are used. The normalization of the helicity am-
plitudes given by Bardeen and Tung [30] is used to derive
(2.2). With this normalization, the optical theorem takes
the form

Imfs, x = 2vap, x. (2.3)

In the forward direction, (2.2) reduces to (2.1), with use
of u = v/M. A sum rule that relates Q~ to total cross
sections does not exist [6].

It is interesting to apply (2.2) to composite spin-one
systems which become pointlike in some limit. In such a
case the photoabsorption cross section and the integrals
that appear in (2.1) and (2.2) vanish as the size R ~ 0
or the excitation energy vth ~ oo. Thus in this limit,

Q ~ 0 and p, -+ 0. Therefore pi =
M and Qi ———M,

are the canonical moments of a spin-one system. Note
that this analysis is nonperturbative. In the case of the
standard model, the integrals in (2.1) and (2.2) are of
order oz; thus again piv =

M and Qgr = —M, , up to
Schwinger-like radiative corrections of order o./z. Spe-
cific models for compositeness of leptons and interme-
diate vector bosons are discussed by Brodsky and Drell
[31], Abbott and Farhi [32], and Claudson, Farhi, and
Jaffe [33]. The DHG sum rule has also been used to
place constraints on quark and lepton compositeness and
excited states in the strong-coupling standard model [32]

netic moment for the spin-one system, 0~ (0~) is the
total cross section for absorption of a photon with spin
parallel (antiparallel) to the spin of the target, and cu

is the photon energy, with ut, h the threshold energy. Al-
though an experimental verification of the DHG sum rule
for nucleons has been carried out [28], it would be inter-
esting to verify this result for deuterons.

The extension of the DHG sum rule analysis to include
the quadrupole moment of a spin-one system requires a
low-energy theorem to second order in the photon en-
ergy. At this order, the polarizability enters the forward
Compton amplitude [29] in addition to the quadrupole
moment. However, Tung [6] has shown that one can ob-
tain the following sum rule for the nonforward Compton
amplitude:

2t (
Ps + Mz I P~+

2
Qs IMzg 2 )

by Jaffe and Ryzak [34].
Note that any spin-one system is required to satisfy

the extended DHG sum rule (2.2). This implies univer-
sal behavior for the properties of spin-one particles in
the zero-radius limit. In the next section we explore a
complimentary universality for the form factors of such
particles at large momentum transfer in gauge theory.

III. SPIN-ONE FORM FACTORS

A. General formulas

For a spin-one particle, the matrix elements of the elec-
tromagnetic current J'i' can be written in terms of three
form factors, assuming parity and time-reversal invari-
ance [14]. We define

G~q, „——(p'h'~ J"~ph), (3.1)

where [ph) is an eigenstate of momentum p and helicity
h. This matrix element can be written in the form [14]

G"..=-(G (Q')"' e +p'"]

+Gz(Q )[ti s ~ q —s i s q]
—Gs(Q )e q~" q(p" +p'")/(2Mz)), (3.2)

with Q' = —q, q = p' —p, and t = st, and s':—sh,

the initial and final polarization vectors. The Lorentz-
invariant form factors G, (Q ) are related to the charge,
magnetic and quadrupole form factors [14]:

Gc = Gi+ szilGg,

GM =Gz, (3 3)

Gq = Gi —G, +(1+ii)G»
where il = 4M, is a kinematic factor. At zero momentum
transfer, these form factors are proportional to the usual
static quantities of charge e, magnetic moment p~, and
quadrupole moment Qi.

eG~(0) = e,

eGM(0) = 2M@i, (3.4)

eGq(0) = M Qi.
The Rosenbluth cross section (1.3) for elastic electron
scattering on a spin-one particle is determined by these
form factors via the definitions

Gc+ s GM+17 Gq

(3.5)

B=-n(s1+n)GM.
The tensor polarization [16] T2p can also be written in
terms of these form factors as

Iil ~+ srlGcGq+ -rlGM 2+ (1+@)tanz(2)
v 2 A+ Btan (z)

(3 6)
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The relationship (3.2) between the covariant form fac-
tors and current matrix elements can be inverted [17,35]
for any ehoiee of Lorentz frame. In the standard LCF,
defined by [18] q+ = 0, q„= 0, q = Q, all the form fac-
tors can be obtained from the plus component of three
matrix elements:

1 16 G+o 2g —3

2p+(2@+ 1) 3 ~rl 3

+-(2' —1)G+
2 +

G+
&2 —1& +'+G+ -G+

2+(2 +1)
(3.7)

1 G++o + ran+1

2&+(2&+1) ~~ "
~

+-
M

In contrast, in the Breit frame, where q~ = 0, p =
—

& q = —p ', an x component of a current matrix element
is needed to extract GM ..

—1

2M+1
2

2M+1
—1

2M/1

1 + 2 +
+n . Goo G+

G+o

Goo+ G+-
+0

(3.8)

B. Asymptotic forms

Perturbative QCD predicts [36] that the helicity-zero
to zero matrix element Go+ will be the dominant he-
licity amplitude at large Q for lepton scattering on a
spin-one bound state. This follows since quark helicity is
conserved in the hard-scattering quark-gluon amplitude,
and the dominant wave function coefficient, or distribu-
tion amplitude, has I, = 0. However, it is important to
distinguish two scales in the form-factor analysis. The
primary scale for the validity of perturbative QCD pre-
dictions is set by the requirement that the momentum
transfer through the hard-scattering amplitude and the
propagators be large compared to the QCD scale AqgD.
Since the current value of AMS lies between 120 MeV
and 200 MeV [37], where MS denotes the modified min-
imal subtraction scheme, we take AgcD to be of order
200 MeV. From estimates by Carlson and Gross [35] we
conclude that the LCF helicity-Hip amplitudes G++o and

G+ are suppressed by factors of ~& and ~P, re-AgcD Ag CD

spectively. There are also corrections of order Aq~D/M.
The second scale is a purely kinematic one. In order to

control the kinematic factors in (3.7), and thereby retain
dominance of Go+0, one needs

Predictions of the behavior of the matrix elements as
functions of momentum transfer can then be used to ex-
tract the Qz dependence of form factors.

Q » +2MAqcD. (3.9)

rl[q ——,'+ (ran+1) t ' -', ]

rlz + rl + 4 + 4g(rl + 1) tan2
z

In the extreme limit rl » 1, these reduce to

B 1+ tan—=4, Tzo- —v2 1+4tan
(3.11)

The asymptotic value of —v 2 usually quoted [23] for Tzo
only applies when e is zero, and when Q~ is much larger

0.015

0.01—

~ Arnold et al.

e Crarner etal,
Platchkov et al.

Q (Gev )

FIG. 1. Scaling of the reduced deuteron form factor fq
The data are given in Ref. [38].

This follows from the assumPtions G++o oq Go+o and

A
G++ ~ Go+0. For the imensionless ratio q =

4~M, , this requirement translates to rl && AM . Thus for
M & Aq&D, the validity of perturbative QCD predictions
does not depend on taking rl » 1.

The present data for the deuteron form factor [38] v A,
and also for the photodisintegration of the deuteron at
large momentum transfer [39], appear to be consistent
with perturbative QCD dimensional counting rules [20]
and reduced amplitude scaling [21,40]. The scaling of the
dominant form factor v A can be seen in Fig. 1, where
the data are plotted in terms of the reduced form fac-
tor [21] fd(Q )—:A(Q )/FN(Q /4), with FN the dom-
inant nucleon form factor. Perturbative QCD predicts
asymptotic scaling for Q fd, (Q ) up to calculable loga-
rithms [26). Thus, optimistically, one could expect that
the dominance of Go+o begins at Qz 1GeV . We em-
phasize that the kinematic quantity g can be small in the
perturbative QCD regime: for example, for the deuteron
Q = 5GeV corresponds to rl 0.35, whereas we only
require g py gM 0.95.

Thus the domain for leading-power perturbative QCD
predictions for the deuteron form factors is Qz

2MgAqcD 0.8GeV . In this domain, one obtains [22],
from (3.7),

B 4q(rl + 1)
A
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than 4M', which is nearly 8 GeVz for the deuteron. For
rl « 1, which is relevant to experiment, we obtain

8 16 2v2 ( z el—rl, Tzo rl
~

1 —2tan —
~

.
A 3 ' 3 ( 2)' (3.12) 0

20'- eoad

The essential assumption made in all of these results is
that the Go+o amplitude is dominant.

The expressions derived for 8/A and T2o are compared
with experiment [38, 41, 24] in Figs. 2 and 3. Clearly,
the presently available data do not come close to the
prediction for 8/A. However, for Tso the trend of the
data is not inconsistent with the prediction. Data at a
larger momentum transfer are clearly needed. It would
also be useful to compare elastic electron and positron
deuteron scattering to check the size of the two-photon
exchange interference contribution to B(Q2) in the dip
region. For a comparison of the asymptotic expressions
for 8/A and Tzo to results computed from model wave
functions, see Ref. [22].

At lower Qs, where perturbative /CD is inapplica-
ble, the behavior of the p and deuteron form factors
can have completely different properties. For example,
the deuteron quadrupole moment is measured to be [42]
Qq = eGq(0)/Mz = (25.84 + 0.13)M, , whereas at large
Qs, Gq(Qz) is predicted to be negative. The change in
sign has led Carlson [43] to infer the existence of a zero
in Gq(Qz).

In the Breit frame, the assumption of Go+o dominance
is insufficient for determination of GM. In fact, in any
frame where the momenta are collinear, Go+o does not
contribute to GM, and, therefore, not to B. Collinear
momenta keep the spin quantization axis fixed; a mag-
netic interaction then requires a change in the spin state.
We therefore retain the ratio

z= ~2g ++',
Goo

'

~ The et er.

~ Schwa et V.

GIsnen et er.

0 ~~hovskii et el.

o Oitriev et el.

0 02 0.4 0.6 0.8 1 12 1.4 1.6 1.8
0 (Gev )

FIG. 3. Perturbative /CD predictions for T2o. The ex-
pression in (3.10) of the text is plotted for various angles for
comparison with data given in Ref. [24]. The prediction of
the model suggested by Carlson in Ref. [43], which difFers sig-
nificantl, is aiso plotted. The horizontal line at —v 2 is only
relevant for large g and 8 = 0.

which, using the scaling obtained by Garison and Gross

[35], can be estimated to be of order z P 0.07.
For general rl, the resulting perturbative estimates of
8/A and Tso are

8 4(q + 1)z'
A rl+ 2zz

(3.14)

~ rl+ —,'z'+ z'(rl +1)tan' -',

T2o —Q 2
rl + 2zz + 4z2 (rl + 1) tan2 zs

For rl » 1, they become

—~ 4z 2

16

4q (@+1)

rl +rl+ 3l4

1+z2 tan2 82

Tgp —V 2V )+4,gt 2 e

and, for rl « 1, they reduce to

(3.i5)

Q)
O

O

-3-

~ Arnold el al.
~ Cramer et al.
o Platchkov etal. 8 4z2

A rl+2z2 '

g+ &z +z tan
Tgp —V 2

q+ 2z~ + 4z2 tan2—

(3.i6)

f

2

0 (GeV')

FIG. 2. Perturbative @CD predictions for B/A for the
deuteron. Expressions in (3.10) and (3.12) of the text, which
are valid in the regimes Q » 0.8GeV and 16GeV
Q » 0.8 GeV, respectively, are plotted for comparison with
values computed from data given in Refs. [38, 41]. We plot
logic(B/A) in order to show the full range of data.

In the asymptotic limit, agreement with the LCF analy-
sis is obtained only if the ratio z is unity. In the regime
currently accessible to experiment, the two analyses pro-
duce completely different results. It should be noted that
the evaluation of matrix elements of the transverse cur-
rent J* is treacherous in light-cone quantized theories,
usually requiring Z-graph contributions [19] or surface
terms [44].
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The fewer assumptions required in the LCF analysis
clearly make this method the preferred approach. To
confirm that is the correct analysis, we compare the be-
havior of form factors for composites with the tree-level
form factors of the W in the standard model.

C. Tree-level properties of the W+

1
g Jh = ) N„» u(pi, si)v(pz) sz) ) (4 1)

where J is the total spin and h the helicity, and a spin-
independent part P(z). In the zero-binding limit, the
constituents are collinear, p, = (m;/M)p, and the distri-
bution amplitude P(x) becomes b(2:, —m;/M). The spin
wave functions then reduce to

At the tree level, the form factors of the W+ are given —1 1
Xih = &i(g —M), Xoo = Vs(W —M),

2 2
(4.2)

Gc =1 —szrI GM =2 Gq = —1 (3 17) with eh a polarization vector given by

These follow directly from the photon-absorption vertex
in the standard model. At Qz = 0 this corresponds to [7]
the canonical magnetic moment of e/Miv and quadrupole
moment of —e/Mizz, . For comparison, the form factors of
a composite spin-one object are, in the LCF, assuming
helicity-zero to zero dominance,

1
(0, 1, +i, , 0),

2

~o =
M (lpl 0 o v'lpl' + m')1

(4.3)

Goo= ( —-n) 2„(2„+,)
=2

2p+(2il+ 1)
'

2p+(2g+1)
'

(3.18)

Notice that the ratios of the three electromagnetic form
factors Gc . GM . Gq = (1 —-g): 2: —1 are identical
for elementary spin-one W's and for composite spin-one
hadrons in /CD when Go+o is dominant. In particular,
B/A and T2o for the W+ are given by (3.10). Thus
at large Qz, perturbative /CD predicts that the ratio
of form factors for deuterons, p+, etc. become identical
to those of the pointlike spin-one fields of the standard
model. We will see explicit realization of these results in
the next section.

In the Breit frame analysis, the ratios of form factors
do not match those for an elementary W. We therefore
conclude that the LCF analysis is the correct approach.

IV. ZERO-BINDING MODEL

As a test of the correctness of the LCF analysis we shall
study the form factors of a spin-one system in a very sim-

ple gauge-invariant, Lorentz-invariant model, in which
the composite system corresponds to two lightly bound
spin-2 constituents interacting via boson exchange. Re-
sults will be extracted in the zero-binding limit only. The
analysis is similar to that required for constructing the
hard-scattering amplitude TH in perturbative @CD anal-
yses of mesonic form factors [36]. This model is thus di-

rectly applicable to the form factors of the p meson at
large momentum transfer and, in the context of the re-
duced amplitude approach [40], is also applicable to the
deuteron.

The wave functions used are generalizations of the ver-
tex functions employed by Bagger and Gunion [45]. The
functions factor into a spin-dependent part

in any frame where p& = 0. The reduction can be done
in a variety of ways, which differ by the choice of basis
for the spinors. One can use the light-cone helicity ba-
sis of Brodsky and Lepage [36], a standard helicity basis
[46], or the Weyl basis discussed by Hagiwara and Zep-
penfeld [47]; except for different phases, they yield the
same results.

To obtain form factors, we compute the matrix ele-
ments for the transition from p, h to p', h' in a one-boson
exchange approximation. The corresponding diagrams
are presented in Fig. 4. For a spin-one boson, with mass
A, the usual Feynman rules yield

oc
8y

»»Q'+ ~' (» y.-)'M'—

X
h'h

2Q2 + m2 2.2M2

gPh'h + (1
y2Q2+m —y M (4.4)

and

A~),,h
——Tr(p yah p'[gP —xg p+ mi]p"yah) (4.5)

Bh h
= Tr(XJh'7 [yl S 4+ mi]'7 X&h7~) (4 6)

They can be reduced to

~h, ~h = —4M «p" +

+q e'" +» e" —q ee"" . (4.7)M

and

where the proportionality constant is determined by the
boson-fermion coupling, among other things, and where
the numerators inside the square brackets are Dirac
traces. These traces are
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x,P
P

charge and quadrupole form factors are

ei M xg 1

x',q'+ A2 q' z, 6

e2 M 22 1

2."q'+ A' qs 2:i 6

and

(4.11)

(4.12)
ez Mz

2qs + A2 qs 2.2q2 + A2 q2

en the constituent masses are ne
become [48), to leading

P

ei+ez Mz f' 2 )
(q/2)2+A2 q2 ~

1

+& M'
(q/2)2+A& q& '

ei+ez M
(q/2)'+A' q' '

(4.13)

P

FIG. 4. FeFeynman diagrams for the curr ent matrix element
n exc ange approximation.

ian in t e collinear approximation.

gp 2
BI,,~

———4M " Q+ (EM

m—q e + y2 ~'*"+q e'*e" . 4.8

With the restriction to x, = y; = m.
1 ti fo dt b

'&"—(&" + p'")

1+—(q e"e" —q e~"")
X2

+(1 ~ 2).
Form factors can then be extracted b

(3.2). We obtain
e e racted by comparison with

(4.9)

ey M Xg e2 M2 X2

+ A q' x~ z'q'+ A2 ~& X1'
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can be obtained from present pp —+ WpX data has been
recently given by Samuel et aL. [10].

In the crossed reaction e+e ~ p' —& VV [49], where
V is any massive vector particle with charge or charged
constituents, one again predicts the dominance of the
(0,0) helicity amplitude, so that the cross section der/dA
is proportional to sin 8. This agrees with the perturba-
tive QCD prediction of Ref. [2] for e+e —+ p+p and
the standard-model prediction for e+e —+ W+W by
Alles et aL. [50]. Notice, however, that e+e ~ W+W
receives contributions from v exchange which do not ap-
pear in the above analysis. That the vector particle need
not itself be charged implies that the sin 8 behavior of
the cross section should hold at large s = q~ for processes
such as e+e —+ K *K *. In each case, the timelike form-
factor ratios should satisfy G~ . GM . Gq = (1 —srL):
2: —1, where now rL = s/4M .

V. SUMMARY

We have provided two new nonperturbative arguments
for the selection of e/M and —e/M as the natural mag-
netic and quadrupole moments of a spin-one particle.
These are the canonical values that emerge in the strong
binding limit of zero bound-state radius or infinite exci-
tation energy of a composite spin-one system. The first
argument, presented in Sec. II, is based on an extension

[6] (2.2) of the DHG sum rule (2.1). The second uses the
requirement that radiation null zones of composite parti-
cles must be the same as those of pointlike particles; this
is discussed near the end of Sec. IV. Arguments that have
been given previously in the literature are perturbative in
nature. They include the requirement of renormalizabil-
ity and tree-level unitarity [8] which limits terms allowed
in the interaction Lagrangian, and a perturbative analy-
sis of the DHG sum rule [7]. In the case of the Zs and W+
vector bosons, any deviation from these canonical values
beyond that predicted from radiative corrections in the
standard model would provide empirical constraints on
the possible internal structure of the gauge particles [10].

Notice that in the pointlike limit the deuteron has the
quadrupole moment of —e/Mz. In this analysis, the 8
wave is then sufficient for existence of a nonzero moment.

We have also established natural ratios for the elec-
tromagnetic form factors of spin-one systems in gauge
theory:

G~(Q ):GM(Q ):Gq(Q ) = (1 —srL): 2: —1, (5.1)

where rI =
~q ~/4M . These ratios hold at tree level for

the W+ in the standard model, and at large momentum
transfer for hadrons in perturbative QCD. These results
are most easily derived in the light-cone frame assuming
the dominance of the helicity-zero to zero amplitude. In
the Breit frame one has the complication of evaluating
nonleading transverse current matrix elements.

The ratios of the fundamental form factors (5.1) also
determine the ratio B/A of Rosenbluth form factors [15]

and Tzo, the tensor polarization [16]. Both have been
measured for the deuteron [38, 41, 24] out to momen-
tum transfers where one might have thought perturba-
tive QCD would apply. However, the expressions for
these quantities contain kinematic factors that depend
on rL = Q /4M, which introduces M as a dimensional
parameter in addition to the intrinsic QCD mass scale
AQQD ~ We have argued that the perturbative QCD pre-
dictions for B/A and T2rr become valid for momentum
transfers large compared to /2MAqcD, not AqcD. For
the deuteron, this difference is significant and does post-
pone applicability of perturbative QCD.

The predictions made for B/A and Tqs are given in
(3.10). Comparisons of (3.10) with the deuteron data are
shown in Figs. 2 and 3. The often-quoted prediction of
—~2 for Tzs applies only for momentum transfers so large
that rL is much larger than one. Such a large momentum
transfer is not actually necessary for a prediction to be
made. The general perturbative QCD prediction (3.10)
should start to be valid at moderate momentum transfer
Q~ && 2MgAqoD.

As a result of the universality of electromagnetic form
factors, one can conclude that any seemingly pointlike
spin-one particle could actually be composite. This pos-
sibility has received considerable attention with respect
to the W [32, 33]. In Sec. IV we explored a simple model
for a composite spin-one particle and found that the ex-
pected form-factor ratios can be obtained.

It should also be emphasized that the analysis pre-
sented here also applies to any spin-one bound state in

gauge theory, for both space-like and time-like electro-
magnetic processes. In particular, the helicity zero am-

plitude should dominate and the form-factor ratios (5.1)
should hold for crossed reactions at large s = q2 such as
e+e —+ p+ p . It is clearly very important to verify the
perturbative QCD predictions for this type of exclusive
annihilation process.

Although we have considered only spin-one particles,
one could imagine considering any class of composite sys-
terns with any fixed total spin. In particular, the general
analysis of the spin-z case can be applied to the form
factors of the helium-3 nucleus in order to determine the
scale where the underlying quark-gluon structure of more
general nuclei becomes important.
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