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General features of three-family quark mass matrices M, and M, on a specific quark basis are
discussed. This quark basis is defined as the basis on which a traceless matrix :K = M, My — MaM,
takes a diagonal form. In this mass matrix scheme, the number of independent parameters in M,
and My is the same as that of the observable quantities, i.e., ten parameters.
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I. INTRODUCTION

Enormous progress in the experimental study of Z and
B decays during the past few years has brought a realistic
study of the quark mass matrix model almost within our
reach, at least as far as three family quarks are concerned.
There will be a simpler and more beautiful description
of the quark mass matrices behind such observed quark
and lepton mass spectra and their mixings. If we can find
it, it will offer a promising clue to the origin of families
and the mass generation mechanism of quarks and lep-
tons. By choosing a specific mass matrix frame, can we
obtain such a beautiful description of the mass matrices?
Some interesting quark mass matrix models with specific
matrix forms have been proposed: for example, Fritzsch
type [1], Stech type [2], radiative type [3], democratic
type [4], and so on. However, they are not based on a
general parametrization of quark mass matrices. Now,
we want to make a phenomenological study based on a
general parametrization of the mass matrices.

There is, however, an obstacle to our phenomenolog-
ical search for quark mass matrix models. Suppose a
set of up- and down-quark mass matrices M, and My
(My, My), which provide excellent predictions of the di-
agonalized quark mass matrices D, and D4 and the
Kobayashi-Maskawa (KM) [5] matrix V as

Du = UuMuUJ ’
Dy = UsMuU} (1.1)
vV =UU},

where, for simplicity, we have considered a Hermitian
quark mass matrix model. As is well known, a mass ma-
trix model (M, M}), which is connected to (M, M)
by the relations M}, = UoM,U{ and M}, = UyMuU},
where Up is an arbitrary unitary matrix, is equivalent
to the model (M,, M,) as far as the physically observ-
able quantities (i.e., D,, D4, and V) are concerned.
Therefore, even if we find a set of quark mass matri-
ces (M,, M;) which can provide predictions in excellent
agreement with experiment, the excellent agreement does
not always guarantee that this model is really true.

In general, in quark mass matrices (M,, M ) the num-
ber of independent mass matrix parameters is bigger than
that of observable quantities. For example, in the case of
a three-family Hermitian quark mass matrix model, we
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have, in general, 18 independent parameters in (M,,, My),
while we have only ten observable quantities, i.e., six
up- and down-quark masses m(u;) = (my, m, m;) and
m(d;) = (mg, ms,mp) (i = 1,2,3) and four independent
parameters in a 3 X 3 KM matrix V. The remaining
eight unobservable parameters come from arbitrariness
of a choice of the unitary matrix Up in (1.1).

However, note that the number of the independent pa-
rameters in (M,, M) depends on what quark basis is
chosen. The number 18 stated above is the maximal
number in the most general case of 3 x 3 Hermitian mass
matrices. If we choose a special quark basis, we can de-
crease this number.

For example, if we choose a quark basis where up-quark
mass matrix M, takes the diagonal form D,, we have
seven independent parameters in My, so that we can pos-
sess the same number of the independent parameters as
that of the observable quantities, i.e., three down-quark
masses and four KM-matrix parameters. These seven in-
dependent parameters in My can easily be represented
[6] by these seven observable quantities, i.e., three in Dy
and four in V, because My is given by My = VD,V*t. If
we put some ansatz on My, then we can obtain sum rules
for down-quark masses m(d;) and KM matrix elements
|Vij|. For instance, as pointed out by Weinberg (7], if we
put an ansatz (My);; = 0, we get the well-known sum
rule for the Cabibbo mixing |V,,s| ~ 1/ma/m,. Recently,
Ma [8] has derived interesting sum rules on the basis of
a model with M,, = D,,. More phenomenological charac-
teristics of Ma’s model have been studied by Lavoura [9].
(However, since My in his model is not Hermitian, our
mass matrix description stated below does not include
his model.)

Although we cannot rule out the possibility that nature
chooses such a quark basis as M, = D,, such a model
does not satisfy our present interest in the top quark
mass, because such a model, in general, does not include
up-quark mass parameters, especially top quark mass m;
(although the down-quark mass matrix M, in Ma’s model
has included a parameter m,/m.). On the other hand,
there is a traditional idea that M, and My have the same
structure, except that the values of the parameters in M,
are different from those in My in their magnitudes. In
such a model, sum rules for KM matrix elements |V},
will include up-quark masses m(u;) as well as down-quark
masses m(d;).
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The purpose of the present paper is to make a general
study, from the phenomenological point of view, of 3 x
3 Hermitian quark mass matrices in a frame in which
quark mass matrices have minimal parameters, i.e., ten
parameters in (M,, My), and in which M, has the same
matrix form with My except for values of mass matrix
parameters, so that in our sum rules the mass parameters
appear symmetric as m(u;) « m(d;).

As discussed in the next section, our quark mass matrix
frame (quark basis) is defined as the frame in which a
traceless matrix iK = M, My — MyM, takes a diagonal
form. In our formulation, one of the ten independent
parameters, €, is a parameter with an extremely small
value, which is proportional to the rephasing-invariant
quantity J [10]. Therefore, our mass matrix frame is
convenient for studying the case of the limit J — 0, i.e.,
the limit of no CP violation.

In Sec. II, the general formulation in our quark mass
matrix frame is given. In Sec. III, sum rules for |V,,|,
|Vesl, and |Vys| in an interesting case of the parameters
are discussed. Finally, Sec. IV is devoted to summary
and discussion.

II. FORMULATION

In this section, we give a formulation for general 3 x

3 Hermitian mass matrices on our minimal parameter
basis, on which a traceless matrix K defined by
1K= MMy - MgM, (2.1)

takes a diagonal form Dg.

A. Expression of M, and M,

Since the determinant of K and the trace of K2 are
given by

det K ~ 2u§d§u2d2J
o~ 2uZd2uqds| Vi | Ves|| Vi sin 613 (2.2)
tr K2 o~ 2u2d2|V|? (2.3)

where u; and d; denote m(u;) and m(d;), respectively, J
is the rephasing-invariant quantity as a measure of CP
violation [10], and é;3 is a C P-violation phase parameter
in the standard parametrization [11] of the KM matrix
V. [The derivations of (2.2) and (2.3) are given in Ap-
pendix A.] The fact that the present experiments give
a very small value (of the order of 10™4) for the ratio
det K/(tr K2)3/2 suggests that one of the eigenvalues of
the traceless matrix 1K is extremely small compared to
the other two, i.e., the diagonalized matrix of K, D,
takes the form

100 10 0
iDgk=ik{ [0-10| +e|{01 0 , (2.4)
000 00-2

where € is a parameter with a small value, which is given
by
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~ det K u2 d2 |Vus||Vub| .

\/"(tr R~ uady Vgp S0 (29

Since tr (M, K) = 0 and tr (M3K) = 0, the quark mass

matrices My (¢ = u and d) on the K = Dy basis must
take the form

l1-¢ V1-€2a, V2ev/T+ec,
My = im{| V1I-¢&la: 1+4¢ \/_\/—b
V2eT +ecy V2e/T—eb; 0
+mi 1, (2.6)

where the complex parameters a, b, and ¢ must satisfy the
subsidiary conditions from the diagonalization condition
of (M My — MyM,)

ay — aq = bj,cj — bjcy (2.7)
by — bg = alcy — ajey (2.8)
ey —ca=apb) —ajby . (2.9)

The mass matrices M,, and My in (2.6) have included
four real parameters mj and m{ (¢ = u,d), six com-
plex parameters ag4, bq, and ¢; (¢ = u,d), and one real
parameter €. Of the six phase parameters ay = argay,
Bq = arg by, and v, = argcgy, however, only four parame-
ters,

a=ay—0aq4, B=Pu—Pa, Y=Yu—7, (2.10)

and

= 5(au +ag+ Bu+Pa+ v +74) »

play a substantial role in the predictions of the observable
quantities m(u;), m(d;), and |V;;| (4,5 = 1,2,3). There-
fore, we have 15 parameters in M,, and M. On the other
hand, of the subsidiary conditions (2.7)-(2.9), there are
five independent subsidiary conditions (in terms of real
parameters). In conclusion, we have ten independent pa-
rameters in M,, and My on our quark basis.

(2.11)

B. Subsidiary conditions
Putting (2.8) and (2.9) into (2.7), we obtain

|ay — ad'Z = by — bd|2 = lew — Cd'2 . (2.12)

From (2.8) x (b}, + b3)—(2.9)x (¢, + cjj), we obtain

(au — ag)(ay + ag) = (bu — ba) (b, + b7)

—(cu —ca)(cy, +c) - (2.13)

Eliminating (a, —ag4), (by
(2.9), we obtain

—bg), and (¢, —cq) from (2.7)-

lay + ag|? — 4 = |by + ba|? — |cu + cal? . (2.14)

Hereafter, we indicate |agq|, |bq|, and |cq| simply by aq,
bg, and c4. Relations (2.13) and (2.14) lead to the follow-
ing subsidiary conditions in terms of real parameters:
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a2 -1=02-¢c2, (2.15)
al-1=03-c%, (2.16)
ayaqgcosa —1 = bybgcos B — cyucqgcosy (2.17)
ayu048in o = bybgsin B — cycgsiny . (2.18)

The remaining subsidiary condition which is independent
of (2.15)—(2.18) is obtained from (2.7): i.e.,

a .
(ay — aq) cos 2 cos ¢ — (ay + aq) sin 3 sin ¢

2
= (bycq — bgcy,) cos s —2- il , (2.19)
or
(aw — aq) cos % sin ¢ + (@, + a4) sin % cos ¢
= —(bycq + bacy,) sin — (2.20)

Note that only one of the conditions (2.19) and (2.20)
is independent of (2.15)—(2.18), because (2.17)% + (2.18)?
and (2.19)2 + (2.20)2 lead to the same relation:

X
(ay — ag)? + 4ayaq sin® 3= (buca — bacy)?

+4bybgcycq sin? B ; X
(2.21)
Then, the matrix iDg is given by (2.4), where
k= %m’l‘m‘f [ayaqsina — e(bybgsin B + cycqsiny)] .

(2.22)

Now we must represent the observable quantities
m(u;), m(d;), and |V;;| in terms of these mass matrix pa-
rameters under the subsidiary conditions (2.15)-(2.20).

C. Quark masses

Quark masses ¢; = m(q;) (¢ = u,d; i = 1,2,3) are ob-
tained from the calculation of tr M, tr M2, and det M,.

It is convenient to introduce the following matrices Mg
and DY:

Mg=M)+mi1,
Dy=DS+md1. (2.23)
We can easily calculate the case of m§ = 0. Then, results
in the case of m{ # 0 are obtained from the replacement

g (=q) »aqa-mi, (2.24)

for the results in the case of m§ = 0, where ¢? are g; in
the limit of m{ = 0.
The sum rules for the quark masses ¢? are

2123
B+ +q) =tr M) =mi, (2.25)

a3q3 + 34 + a3}
(@3 +a+d9)?

csi M}

1
(tr M9)2 1

[(1-3e*)(1 - a2) — 262 + D)) ,

(2.26)
g893¢)  _ detM]
(@ +a2+a)°®  (trMQ)3
= —%s[ 1+ 62)(b3 + cg)
—2(1 — €%)agbgcq cos Py + 2¢(1 — ag)] ,
(2.27)

where the notation csi A is a function of the matrix A
which is defined by Lavoura [12] as

csiA = 2[(trA)? — tr A7) (2.28)
and the phase parameters v, denote
'l/)u_=_au+ﬂu+7u=¢+l(a+ﬁ+7)a (2.29)

Ya=ag+Pa+va=¢—5(a+B8+7).

D. KM matrix elements
The magnitudes of KM matrix elements |V;;| are ob-

tained from the calculation of tr(M,My), tr (M2M,),
tr (MyM32), and tr (M2M32) as follows:

J22 + uile + deZl + uidell

Viil? = 6i5 =
Vsl = b = G w s —w) (& = dm) (& — )
(i#k#l#iand j#m#n#j5), (2.30)

where

Jll = Ill ,

J2 =121 4 (DIt

J2 = 12! — tr (D, )1, (2.31)

J22 = I22 _tr (D)2 = tr (Dg) 2!

+tr (D, )tr (Dg) I |
I™ = tr (M™MF) — tr (DD2) . (2.32)

The derivation of the formulas (2.30) is given in Ap-
pendix B. The importance of denoting |V;;|? in terms
of tr(M*M}) has been stressed by Hamzaoui [13].
From (2.30), we can readily express |V;;|? in terms of
quark masses and tr (M{*M?}) (m,n = 1,2). How-
ever, since tr (M*M7}) ~ u5*d}, the numerical values of
|V;j|2 are sensitive to the deviations of tr (M™M7) from
tr (D*D%). Therefore, the expression (2.30) in terms of
I™" will be convenient for numerical study.
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If we define a parameter w, which gives deviation from
the symmetric KM matrix [14], i.e., V with |V;;| = [Vi],
as

w = |Va1|? — [Vaa|? = |Vaa|? — |Vas|?

=|Vasl® — [Va1?, (2.33)

then any matrix elements V;; are given in terms of four
independent parameters |Via|, |Vas|, [Vis|, and w [15].
J
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Therefore, four expressions of |Vy2|?, |Vi3)?, |Va1]?, and
|Va3|? obtained from (2.30) are sufficient to calculate ev-
ery |V;1%.

Exact expressions of tr (MJ*M7) (m,n = 1,2) are
given in Appendix C. As seen in Appendix C, the ex-
act expression of J22 consists of somewhat complicated
terms. Therefore, for calculation of |V,;| and |Ves|, it is
convenient to use the approximations

J21 = U3(U2 - ul)(dz - d1)|V12|2 + ul(u;; - u2)(d3 - dz)\V23\2
+ug(uz — u1)(ds — d1)|Vis|® — u1(us — uz)(dz — di)w

~ U3U2d2|V12|2

and

(2.34)

I = —(ug — uy)(dz — d1)|Via|® — (us — up)(ds — d2)|Vas|?

——(’LL3 — ul)(d3 — dl)[V13|2 + (’LL3 — ’Uq)(dz - dl)w

~ —uzug|Vas|?

(2.35)

rather than to use the exact expression (2.30) which includes J22. However, if we can calculate J?2 with a good

approximation, the use of the relation

J?2 = —u3d3(u2 - ul)(dz - dl)lvmlz - Uldl(us - u2)(d3 - d2)\V23l2

-—U2d2(U3 - ul)(dg - d1)|V1312 + U1d3(U3 - u2)(d2 — dl)w

~ —u3d3u2d2|V12|2

is also useful. [For (2.34)-(2.36), see Appendix B.]
Finally, we would like to note that |V;;| are indepen-
dent of a choice of m% and mg.

III. THE m¢ = md = 0 CASE

In this section, we investigate an interesting case

m¢=mg=0. (3.1)

A. Rough estimates of a,, by, and ¢,
In the case (3.1), from (2.26) and (2.27), we obtain
=~ $(1-a] (3.2)

and

_4(11;212 ~ —Le(b2 + c2 — 2agbgcq cos )

(3.3)

respectively. Here, since experimental values [16,17] of
ug/uz and da/d3 [see Appendix A, (A8)] give |1 — aZ| ~
0.016 and |1 — a2| ~ 0.13, and the value of ¢, which is
given by (2.5), is smaller than the order of 10~%, we have

assumed that |1 — a2| > |e|(bZ + c2).
We can show that in (3.3) the factor (b2 +
c2 — 2aybyc,cosy,) must be larger than |1 —
|1 — a2 cos? 1, | for any values of b, and ¢, under

(2.36)

—
the condition (2.15), so that we obtain the restriction

—Z—l > le]v/|1 — a2 cos? 1| (3.4)
3

from (3.3). The restriction (3.4) suggests that ¢, ~ 0
since |uy /us| ~ 2 x 1075, while |e| ~ 107 x | sin 13| (we
consider |siné13| ~ 1). (For 4, such a restriction is not
obtained.) Then, (3.3) leads to

Ui1uU2
" = —fe(by — c)? (3.5)
ug
so that we can roughly estimate
u2 4u1u2
by ~,/—e— 1|1 .
u 'u1( + 2 ) , (3.6a)
4
Cu 4] —22 (1 - “1’2‘2) , (3.6b)
Ui Eusg

where \/—¢eua/u; ~ 0.1 and |4ujug/eu?| ~ 0.6 x 1073 for
sin 613 ~ 1.

B. Sum rule for |V,,|?

In order to estimate |V,;s| by using the relation (2.34),
we calculate J?!. From (2.26) and (2.27), we get the
relation
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u3Uuz + usu; + ugUy UU2U]
(’U,3 + ug + u1)2 (U3 + ug + u1)3

= 211(1 - 52)[1 - a12:. - €(b124 + 012‘) — 2eaybycy cos wu] . 3.7
By using (C1) and (C2) in Appendix C and (3.7), we obtain

1
tr (M Ma) — tr Mybr (MyMa) = —2(m})?mi{(1 - €)[1 - af, — (b}, + )]

+26(1 + £2)(bubg cos B + cycq cos ) + 4e(1 — a,aq cos )
—2¢(1 — €2)[aybuca cos(iy, — )
+aubgcy cos(Yu — B) + aabucu cos(Yu — )]}

tatiath ) (ds +da +d1) — (m¥)?mdA? | (3.8)

= — | uguz + ugu; + uu; — ————
( ugz + uz + Uy

where

A2 = 36(1 + €2)(byba cos B + cycg cosy) + £2(1 — ayag cos a)

+3e(1 — €2){[au cos Py — ag cos(Pu — )]bucy — aulbuca cos(Py — ) + bacu cos(vu — B)]} - (3.9)
On the other hand, tr (D2Dg) — tr Dytr (D, D;) is given by
tr (D?‘Dd) — tr Dy tr (DuDd) = —u3U2(d3 + dz) - U3u2(d3 + d1) — u2’u1(d2 +d1), (3.10)

so that we obtain
UU1

T = —ug(ugdy + urdy) + ——2¥L
uz(uzdy + uy 2)+u3+uz+u1

[u3(d2 + dl) — (ug + ’U,l)dg] - (mll")zm‘liAZI . (3.11)

In order to estimate the A2! term exactly, we must assume an explicit model with specific values of the parameters.
However, when we use (3.1)—(3.4), we can roughly estimate the A?* term. Under the approximation 1, ~ 0, (3.9)
becomes

A o~ Le((by — cy)(bacos B — cqcos ) + (ay — aqcos a)bycy)

duiug 1 — aya4cosa U2
1 u
~ ze 1/— — (ay — agcosa)e—
2 [ E’Ulg \/_SUZ/UI ( u ) (751
uyds 1 _2U2U3
~—2—= (14 ze°—— .
2u:;d3 ( + 3¢ ” ) , (3.12)

where we have used cosa = 1 [see (3.24)] and u; < 0. The factor e2uzus/2u? in (3.12) is the order of ugd2/8u;d2 ~
0.036 for siné;3 ~ 1. Therefore, the A?! term is negligibly small compared to ugusd; in (3.11), but it cannot be
neglected compared to uzuidy, i.e.,

JH ~ —ug(ugd; + uida) + 2uzuids . (3.13)

Then, comparing (3.11) with (2.34), we can obtain a sum rule

d u
[Vis| = 4/ — (d—; - u—;) ~0.22, (3.14)

where we have used [16] d; ~ —0.0089 GeV, d2 ~ 0.175 GeV, u; ~ —0.0051 GeV, and uy ~ 1.35 GeV.

C. Sum rule for w = |V, |? — | V3,2

We adopt the parametrization [15] of the KM matrix in terms of the four independent parameters [Vausls [Vels [Vusl,
and w = |Ve4|? — |Vis|2. Then, the rephasing-invariant J can be described by these four parameres [18], so that the
CP-violation phase parameter 613 is expressed by these four parameters. Since we have already known the values of
[Vusl, [Veo|, and |Vip|, we now take a great interest in the value of the fourth parameter w related to estimating the
magnitude of C'P nonconservation effects.

In a way similar to (3.11), we can obtain

dady

12 __ _
J - d3(u2d1 +u1d2) d3 +d2 +d1

[us(dy + d1) — (ug + uy)d3] — m¥(md)2A12 (3.15)

where
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A2 = %5(1 + €%)(bybg cos B + cycq cos7y) + €%(1 — ayaqcosa)

+36(1 — e*){[aa cos g — ay cos(vg + @)]bacq — aalbacy cos(¥q + ) + buca cos(sa + B)]} .

From (3.11) and (3.16), we obtain

d3J?! — ugJ*? = [ug(da + d1) — (uz + u1)ds] (

—m’l‘m‘f[(ug + ug + ul)d;;Azl - u3(d3 +dy + dl)Alz] .

On the other hand, since the left-hand side of (3.17) is
approximately given by

d
d3J21 — ’U.3.]12 ~ —u%dadg (d_:|V23|2 + IV13|2 - w) ,

(3.18)
comparing (3.17) with (3.18) we obtain a sum rule

_di (da)?
dy \d3z) '

da\?
—w = |Vy? [chblz + (d_a)

Here, we have neglected the second term on the right-
hand side of (3.17).

The first term in (3.17) is the order
of (uada)(uadadi/ds) ~ uZdZ x 1076, while the second
term is of the order of u3d%(A%! — A!?). If we estimate

1

d
d—:chb|2+|Vub|2 —w (3.19)

or

— |Vas)? . (3.20)

J1= U3(d2 + dl) + (U2 + ul)d3 + uod; + uids

—%m‘l‘m‘f [(1 — 3¢?) (1 — ayag + 2a,a4sin? %)

~ u2 d2 U dl — gi 22 .o
~ uszds [(u3+d3) <U3+d3> sin 5 + ] .

Therefore, we obtain

a did
[Vesl? o sin® o — % (3.24)
3

Since the present data show |Vi|> > |dad;/d2|, the
dominant term in the right-hand side of (3.24) must be
sin?(a/2).

The result (3.24), i.e., |[Ve| =~ | sin{c/2)|, suggests that
a model with a = 0 leads to a prediction of |V,| which
is in poor agreement with experiment, so that the model
is ruled out. A model with 8 =+ =0leadsto o =0
by the subsidiary conditions (2.15)-(2.20), so that such
a model is also ruled out.

E. Democratic-type matrix form

Recently, considerable interest in the democratic-type
mass matrices has been taken. We would like to comment
on a relation between our mass matrix expression (2.6)
and a democratic type.

We consider a unitary matrix

(3.16)
Uz’uld3 U3d2d1
uz +ug +u; dsg+ds+d;
(3.17)
f
(A% — A12) optimistically, we get
(A21 - Alz) ~ %E(Gd — ay)(ba — by)(ca — cu)
~le(ag —ay)® ~ 1078, (3.21)

where we have used the relation (aq — ay) ~ 2d3/d3 ~
0.066 from (3.2). However, the factor (A%! — A!2?) can
maximally be of the order of |¢| ~ 10~%. Therefore, the
numerical result from (3.17) should not be taken rigidly.
The second term in (3.17) can, in general, contribute to
estimates of such small quantities as w.

D. Sum rule for |V|?

For estimate of J1, it is convenient to use the relation

q392 + 9391 + @2q1 g392q1
(g3 + g2+ q1)? (@3 +q2+q1)3

=11 +e)(1—a?) —e(1 — e?)aghgeacosty - (3.22)
Then, we obtain
— 2e(bybg cos B + cycq cos '7)]
(3.23)
f
R
p)
u=|3 3 7 |- (3.25)
53 0

which transforms democratic-type matrices X and Y as

UXUt =1y + 3 0 1++v20]), (3.26)
0 0 O
Uyul =Y, (3.27)
where the democratic-type matrices X and Y are defined
by
1 111 1 110
X=z(111), Y=5[110/ . (3.28)
3\111 000

Then, the dominant term in our mass matrix (2.6) (i.e.,
the remaining term in the limit of € — 0) is transformed
into a real matrix form as
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1 age*0
U | age=ies 1
0 0 o0

It should be noticed that the (M,)i; elements (¢,j = 1,2)
which include the phase factor a4 are transformed into
real matrix elements. The imaginary parts come from
the remaining terms (My)3; and (My)i3, which include
the phase factors 3, and ~,.

If we put an ansatz that the left-hand side of (3.29)
is given only by democratic-type matrices X and Y, we
obtain the restriction

1 .
1—agcosay = —7§aq sinayg , (3.30)
ie.,
0y aq 1-a2
tan — = ————— 1-2 -1
2 \/5(1 + aq) ( ag
1 q2
~——(1-ag) ~—v22 3.31
\/5( q) a3 ( )
which leads to an excellent prediction
- d
Vip| = |sin 222~ 3|22 _ 221 L0040,  (3.32)
2 ds us

This sum rule (3.32) has been derived by Tanimoto [19)
on the basis of the democratic-type mass matrix scheme

(3.33)

where the matrices X and Y are given by (3.28), the
matrix Z is a constant traceless matrix, and their coef-
ficients satisfy m% > m{ > m% ~ 0. Our ansatz that
the right-hand side of (3.29) should be expressed only
in terms of the democratic-type matrices X and Y is
essentially identical with the Tanimoto model, although
[m%| = |1 —agcosay| < [m§| = |1 + agcosay| in our
model, while [m%| > |m}| in the model of Tanimoto.
Of course, this is not essential, because there is a unitary
transformation which exchanges an X term for a Y term.

In addition, the successful derivation of the sum rule
(3.32) seems to suggest that the following scenario is
promising: the dominant terms, which provide J = 0
and u; = d; = 0, are given only by the democratic-type
matrix X and the “partially” democratic-type matrix Y,
and the effects of CP nonconservation (J # 0) and non-
vanishing first-family quark masses (u; # 0, d; # 0)
come from a third term with small parameter values and
with a mass matrix form which violates democratic or
partially democratic family mixing, for example the Z
term in Tanimoto’s model (3.33).

My=m%X +miY +m%Z,

IV. SUMMARY AND DISCUSSION

We have studied 3 x 3 Hermitian quark mass matri-
ces on a quark basis in which a traceless matrix i K =
MMy — MM, takes a diagonal form and the number
of independent parameters of M, and My is the same as
that of observable quantities.

0| U= (1+agcosa,)Y + (1 —agcosay) [ 000 | —

000 001
—=agsina, | 001 (3.29)
001) V2 110

—

One of the ten independent parameters, €, is a param-
eter with an extremely small value, which is proportional
to the rephasing-invariant quantity J, so that our mass
matrix frame will be convenient for studying the case of
the limit J — 0, i.e., the limit of no C P violation.

For the case 1> |1 —a2| > [e|(b2 +c2), (3.3), if we set
m¥ = md = 0, we can obtain an excellent sum rule for
the Cabibbo mixing (3.14). This ansatz is substantially
correspondent to the ansatz (Mgz)11 = 0 in another min-
imal parameter frame where M, = D,. The condition
(3.3) for our parameters also leads to a sum rule (3.21)
for small quantities such as |Vis|?|Ves|?, |Vus|?, and w.
For a further detailed check on our sum rules, a numer-
ical study by using a computer will be needed. Such a
systematical search for possible numerical values of our
parameters is a future task, because the purpose of the
present paper is to give a general formulation of our mass
matrix frame with K = Dg.
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APPENDIX A: CALCULATION OF
det K AND TR K2

The relation (2.2) is readily obtained from the defini-
tion of the rephasing-invariant quantity J [10]:

det(M, My — MyM,)=idet K
= 2i(uz — u2)(uz — u1)(u2 — u;)
X(d3 - dg)(ds - d1)(d2 - dl)J.
(A1)

The derivation of (2.3) is somewhat intricate. From
the general formula for arbitrary 3 x 3 matrices A and B,

tr (A°B?) — [tr Atr (AB?) + tr Btr (42B)]

+tr Atr Btr (AB) —csi (AB) —csiAcsiB=0, (A2)

where csi A is Lavoura’s function [12] for a matrix 4 de-
fined by (2.28), we obtain

tr (M2M3) — [tr Dytr (MyM2) + tr Datr (M2My))

+tr Dytr Dgtr (MuMd)

—csi (MyMg) —csiDycsiDg =0, (A3)
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which leads to
1?2 — (I'?tr Dy + I*'tr Dg) + I''tr Dytr Dy

+3 (12— $tr K?) — L1 11 + 2tr (DyDy)] =0,
(A4)
where

tr K? = —2 [tr (M, MagM,My) — tr (MZM?)] , (A5)

and I™" (m,n = 1,2) are defined by (2.32). Therefore,
we obtain

tr K2 = 61°% — 4 [I"?tr D,, + I*'tr Dy)
+4I' [tr Dytr Dy — tr (D Dg)] — 2(I*1)?

~ 2u§d§chb|2 ) (AG)
where we have used the experimental facts
[Vus|? = 0.0486 , |Vip|2 ~ 1.9 x 1073, (A7)
|Vis|? =~ 2 x 107° [20],
|u1/uz| ~ 0.0038 [16], |u2/u3| ~ 0.004 [17], (A8)

|d1/da| ~ 0.051 [16], |d2/d3| ~ 0.033 [16].

(For an expression of I™" in terms of |V;;| and quark
masses ¢;, see Appendix B. )
Relation (2.5) is derived from the exact relations

|

tr (MPM7T') = ugd3' + uydy + uidy” — (uy
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det Dx = 2¢(1 — e?)k® (A9)

and

tr D% = 2(1 + 3¢2)k? . (A10)

APPENDIX B: GENERAL FORMULAS
FOR |V

The general formulas (2.30) for |V;;|? are derived as
follows: The traces of M MJ* (n, m : integers) are given
by
tr (MyM") = tr (DFVDRVY) =S uldP|Vy|* . (B1)

i J
Since |V;;|? are expressed in terms of the four indepen-
dent KM matrix parameters

o =|Vio|?, B2=|Vasl?, 4% =|Vis|,

(B2)
w= “/21'2 - I‘/l2|2 3
as
1—a? — 42 o? +2
Vil =| e?+w 1-a?-p2-w p? ;
v —w B +w 1-82—42
(B3)

we can write tr (MZ?M7T) in terms of o?, 4%, 7% and w as

— u)(d] - d])o?

—(u — uB)(dF* — dF")B” — (uf — uP)(dF' ~ dT")y?

—(ug — ug)(dg' —di")w -

[Throughout this appendix we use , (3, and v as those
defined by (B2), but not as those defined by (2.10).]
Setting

v12 = (ug — uy)(da — d1)a?
vo3 = (us — ug)(ds — d2)B° ,
vis = (uz —u1)(ds — d1)7?,
w = (ug — ug)(dy — di)w ,

(B5)

we can write (B4) explicitly as

M= —vp —vps —viz+w, (B6)
I = —(ug + uq)viz — (u3 + u2)vas

—(us + u1)v1z + (uz +u2)w , (B7)
2 = —(d2 + d1)‘U12 - (d3 + d2)'U23

—(ds +di)via + (d2 + d1)w , (B8)

(B4)

I?? = —(ug + u1)(dz + d1)vi2 — (us + u2)(ds + d2)v2s
—(uz +u1)(ds + d1)vis + (us + ug)(d2 + di)w .
(B9)

Then J™™, which were defined by (2.31), are expressed
as

Jll -1 -1 -1 1 V12
JRY | o us ow uz —w v23
J12 - d3 d1 d2 —d3 V13
J22 —U3d3 —u1d1 —U2d2 u1d3 w
(B10)

Therefore, by solving (B10) inversely, we can obtain the
formulas (2.30).



I&

QUARK MASS MATRICES ON A MINIMAL PARAMETER BASIS 2129

APPENDIX C: FULL EXPRESSIONS OF TR (M*M})

The full expressions of tr (M*M7}) for the mass matrix form (2.6) are given as

br (M Ma) _ 1-1(1-3¢%) (1 - ayagcosa) + & (bybacos B + cuca cosy) , (C1)
mim{
tr (M3 Ma) 2 1 2y(1 _ 2
W__- 1—%(1—6 )(1—auadcosa)—z(1—s )(1 au)
+1e(1 - €?) [b2 + 2 + 2(buba cos B + cyucq cos )]
+1e(1 — €2) [aubuca cos(Py — ) + aubacu cos(pu — B) + aabucy cos(Pn — a)l , (C2)
b (M. M]) _ =1-1(1-¢%(1-auagcosa) — (1 —€?)(1 —ad)
mtf(mq)z
+3e(1 — €2) [b3 + & + 2(buba cos B + cucq cos )]
+3e(1 — €?) [agbacy cos(1pa + ) + aabuca cos(a + B) + aubaca cos(g + )] , (C3)
tr (M2M?
LM o 1 401 )01~ auaacosa) = 01 =) [+ 2692 -~ o) + (1~ 3)(1 - )]

+3e(l+e)(1 -

€?) (b2 + b3 + 2bybg cos B) +
+3e(1 —€?) [a%(bF + c3) + a3(b] + )]

1e(1—€)(1 - €?) (2 + ¢ + 2cucq cos )

+31e(1 — e¥)ayaq [(1 — €)bybg cos(o + B) + (1 + €)cuca cos(a +7)]

+3e(1 = ){(1 + €) [aubacu cos(Pu
+(1 — €) [aubucd cos(y

— B) + agbycq cos(vg + B)]
— ) + agbacy cos(Pa + )]

+2 [aybdcq cos(YPq + a) + agbucy cos(Py — )]}

+3e2 [(1 —€)?b2b% + (1 +&)2c2c3] +

1e2(1 — &%) [b3c] + b3

¢ + 2bybacucy cos(B —7)] .
(C4)
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