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Quark mass matrices on a minimal parameter basis
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General features of three-family quark mass matrices M„and Mp on a speci6c quark basis are
discussed. This quark basis is de6ned as the basis on which a traceless matrix iK = M„Mp —MpM„
takes a diagonal form. In this mass matrix scheme, the number of independent parameters in M„
and M& is the same as that of the observable quantities, i.e., ten parameters.
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I. INTRODUCTION

Enormous progress in the experimental study of Z and
Bdecays during the past few years has brought a realistic
study of the quark mass matrix model almost within our
reach, at least as far as three family quarks are concerned.
There will be a simpler and more beautiful description
of the quark mass matrices behind such observed quark
and lepton mass spectra and their mixings. If we can find
it, it will offer a promising clue to the origin of families
and the mass generation mechanism of quarks and lep-
tons. By choosing a specific mass matrix frame, can we
obtain such a beautiful description of the mass matrices?
Some interesting quark mass matrix models with specific
matrix forms have been proposed: for example, Fritzsch
type [1], Stech type [2], radiative type [3], democratic
type [4], and so on. However, they are not based on a
general parametrization of quark mass matrices. Now,
we want to make a phenomenological study based on a
general parametrization of the mass matrices.

There is, however, an obstacle to our phenomenolog-
ical search for quark mass matrix models. Suppose a
set of up- and down-quark mass matrices M„and Mg
(M„,Mg), which provide excellent predictions of the di-
agonalfzed quark mass matrices D„and Dg and the
Kobayashi-Maskawa (KM) [5] matrix V as

D„=U„M„Ut,
Da = UdMdUd )

t

V= U„U~,

where, for simplicity, we have considered a Hermitian
quark mass matrix model. As is well known, a mass ma
trix model (M„', M&), which is connected to (M„,Md)
by the relations M„' = UoM„U&t and M& ——UoM&U&,
where Uo is an arbitrary unitary matrix, is equivalent
to the model (M„,Md) as far as the physically observ-
able quantities (i.e. , D„, Ds, , and V) are concerned.
Therefore, even if we find a set of quark mass matri-
ces (M„,Md) which can provide predictions in excellent
agreement with experiment, the excellent agreement does
not always guarantee that this model is really true.

In general, in quark mass matrices (M„,Mg) the num-
ber of independent mass matrix parameters is bigger than
that of observable quantities. For example, in the case of
a thr""=family Hermitian quark mass matrix model, we

have, in general, 18 independent parameters in (M„,Md),
while we have only ten observable quantities, i.e., six
up- and down-quark masses m(u, ) = (m„, m„mt) and
m(d;) = (md, , rn„mt, ) (i = 1,2, 3) and four independent
parameters in a 3 x 3 KM matrix V. The remaining
eight unobservable parameters come from arbitrariness
of a choice of the unitary matrix Us in (1.1).

However, note that the number of the independent pa-
rameters in (M„,Md) depends on what quark basis is
chosen. The number 18 stated above is the maximal
number in the most general case of 3 x 3 Hermitian mass
matrices. If we choose a special quark basis, we can de-
crease this number.

For example, if we choose a quark basis where up-quark
mass matrix M„ takes the diagonal form D„, we have
seven independent parameters in Md, so that we can pos-
sess the same number of the independent parameters as
that of the observable quantities, i.e., three down-quark
masses and four KM-matrix parameters. These seven in-
dependent parameters in Mg can easily be represented
[6] by these seven observable quantities, i.e., three in Dg
and four in V, because Mg is given by Md = VDdVt. If
we put some ansatz on Md, then we can obtain sum rules
for down-quark masses m(d;) and KM matrix elements

~Vts ~. For instance, as pointed out by Weinberg [7], if we
put an ansatz (Mg)qq = 0, we get the well-known sum
rule for the Cabibbo mixing [V„,

~
gmg jm, . Recently,

Ma [8] has derived interesting sum rules on the basis of
a model with M„= D„. More phenomenological charac-
teristics of Ma's model have been studied by Lavoura [9].
(However, since Mg in his model is not Hermitian, our
mass matrix description stated below does not include
his model. )

Although we cannot rule out the possibility that nature
chooses such a quark basis as M„= D„, such a model
does not satisfy our present interest in the top quark
mass, because such a model, in general, does not include
up-quark mass parameters, especially top quark mass mt
(although the down-quark mass matrix Mg in Ma's model
has included a parameter m„/m, ). On the other hand,
there is a traditional idea that M„and Mq have the same
structure, except that the values of the parameters in M„
are different from those in Mg in their magnitudes. In
such a model, sum rules for KM matrix elements ~Vs~
will include up-quark masses rn(u;) as well as down-quark
masses m(d;).
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The purpose of the present paper is to make a general
study, from the phenomenological point of view, of 3 x
3 Hermitian quark mass matrices in a frame in which
quark mass matrices have minimal parameters, i.e., ten
parameters in (M„,Mq), and in which M„has the same
matrix form with Mg except for values of mass matrix
parameters, so that in our sum rules the mass parameters
appear symmetric as m(u, ) ~ m(d;).

As discussed in the next section, our quark mass matrix
frame (quark basis) is defined as the frame in which a
traceless matrix iK = M„Mg —MgM„ takes a diagonal
form. In our formulation, one of the ten independent
parameters, s, is a parameter with an extremely small
value, which is proportional to the rephasing-invariant
quantity J [10]. Therefore, our mass matrix frame is
convenient for studying the case of the limit J ~ 0, i.e. ,
the limit of no CP violation.

In Sec. II, the general formulation in our quark mass
matrix frame is given. In Sec. III, sum rules for IV„,I,
IV,gl, and IV„gl in an interesting case of the parameters
are discussed. Finally, Sec. IV is devoted to summary
and discussion.

II. FORMULATION

In this section, we give a formulation for general 3 x
3 Hermitian mass matrices on our minimal parameter
basis, on which a traceless matrix K defined by

det K uz dz IV„,IIV„,
(tr K2)s~2 us d IV I2

(2 5)

where the complex parameters a, b, and c must satisfy the
subsidiary conditions from the diagonalization condition
of (M„Mg —Md, M„)

a„—ag = b„'c& —b&c„', (2 7)

b„—bg = a„'c& —a&c„', (2.8)

c, —cg = a„'b& —a&b„' . (2.9)

The mass matrices M„and Mg in (2.6) have included
four real parameters mqz and moq (q = u, d), six com-
plex parameters aq, bq, and cq (q = u, d), and one real
parameter s. Of the six phase parameters aq

—= argaq,
Pq

——arg bq, and pq
—arg cq, however, only four parame-

ters,

Since tr (M„K) = 0 and tr (MqK) = 0, the quark mass
matrices Mq (q = u and d) on the K = D~ basis must
take the form

1 —s gl —c'aq ~2~&1+cc,' )
Mq = &mqz gl —gaza" 1 + e' ~2s'gl —sbq

(~2sdl + scq ~2sgl —sb' 0 j
+m~0 X, (2 6)

iK = M„Mg —MgM„

takes a diagonal form Da.

A. Expression of M„and Mg

(2.1)

and

0 = z (cr + &~ + P + P~ + 1 + &~)

(2.1o)

(2.11)

detK 2usdsu2d2J

2usdsuzdzlv„, llv, t, llv„pl sin6$3 (2.2)

Since the determinant of K and the trace of Kz are
given by

play a substantial role in the predictions of the observable
quantities m(u;), m(d;), and

I V~ I (i,j = 1, 2, 3). There-
fore, we have 15 parameters in M„and Mg. On the other
hand, of the subsidiary conditions (2.7)—(2.9), there are
five independent subsidiary conditions (in terms of real
parameters). In conclusion, we have ten independent pa-
rameters in M„and Mg on our quark basis.

tr K 2uzsdslvd, lz, (2 3) B. Subsidiary conditions

where u, and d, denote m(u;) and m(d, ), respectively, J
is the rephasing-invariant quantity as a measure of CP
violation [10],and 6qs is a CP-violation phase parameter
in the standard parametrization [11] of the KM matrix

[The derivations of (2.2) and (2.3) are given in Ap-
pendix A.] The fact that the present experiments give
a very small value (of the order of 10 4) for the ratio
det K/(tr K2)s~2 suggests that one of the eigenvalues of
the traceless matrix iK is extremely small compared to
the other two, i.e. , the diagonalized matrix of K, D~,
takes the form

'(» 01 ('10 o
iD~ = ik & 0 —10 +s' 01 0 t, (2.4)

0 0 0) (00 —2)
where s is a parameter with a sma11 value, which is given
by

Putting (2.8) and (2.9) into (2.7), we obtain

From (2.8) x(b„'+ bz) —(2.9)x(c„'+cz), we obtain

(a -a~)(a„'+a~) = (b -4)(b„'+by)
-(c„—cg)(c„' + c~) .

(2.12)

(2.13)

Eliminating (a„—aq), (b„—bq), and (c„—cg) from (2.7)—
(2.9), we obtain

Ia +«I' —4= lb +b~l' —lc +«I'. (2.14)

Hereafter, we indicate laql, Ibql, and Icql simply by aq,
bq, and cq. Relations (2.13) and (2.14) lead to the follow-
ing subsidiary conditions in terms of real parameters:
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a„—1 = b„—c„, (2.15) qs + q2 + ql = tr M = ml,0 0 0 0 q (2.25)

ag —1 = bg —cg,2 = 2 — 2

a„aq cos a —1 = b„bd, cos P —c„cqcos p,

(2.16)

(2.17)
(qs + q2 + ql)'

a„ag sin n = b„bg sin P —c„cgsin p . (2.18) (1 —3s )(1 —aq) —2s(bq + cq)

or

= (b„cg —bgc„)cos, (2.19)
2

A G(a„—ag) cos —sin P + (a„+ag) sin —cos P

The remaining subsidiary condition which is independent
of (2.15)—(2.18) is obtained from (2.7): i.e.,

Q A(a„—ag) cos —cos P —(a„+ag) sin —sin P qsq2ql det Mo

(qso+q20+ qo)s (trMs)s

= -4s[(1+s')(b,'+ )
—2(1 —s )aqbqcq cos Qq + 2c(1 —a2)]

(2.26)

(2.27)

= —(b„cg + bye„) sin . (2.20)
. P —v

2

Note that only one of the conditions (2.19) and (2.20)
is independent of (2.15)—(2.18), because (2.17)2+ (2.18)2

and (2.19)2 + (2.20)2 lead to the same relation:

(a„—ag) + 4a„ag sin —= (b„cg —bye„)

csiA —= 2[(trA) —trA ]

and the phase parameters gq denote

@ —= ~ + P + &. = 4 +
&

(~+ P+ q),
A=~~+P~+y~=4- ,(~+P+-q).

(2.28)

(2.29)

where the notation csiA is a function of the matrix A
which is defined by Lavoura [12] as

+4b„bye„cg sin

(2.21)
D. KM matrix elements

Then, the matrix iDIr is given by (2.4), where

k =
z ml ml [a„ag sin n —s(b„bg sin P + c„cgsin p)] .

(2.22)

Now we must represent the observable quantities
m('u, ), m(d, ), and [V~] in terms of these mass matrix pa-
rameters under the subsidiary conditions (2.15)—(2.20).

(u, —uA')(u, —ui)(d, —d )(d, —d„)

where

(i g k P l g i and j g m P n Pj), (2.30)

The magnitudes of KM matrix elements [V~ [ are ob-
tained from the calculation of tr(M„M~), tr (M2Mq),
tr (M„M&), and tr (M2M&~) as follows:

C. Quark masses

Quark masses q, :—m(q;) (q = u, d; i = 1,2, 3) are ob-
tained from the calculation of tr Mq, tr M2, and det Mq.

It is convenient to introduce the following matrices M
and Do:

all —Ill
g12 —I12 tr (D )Ill
g21 —I21 tr (D )Ill
J = I —tr (D„)I —tr (Dg)I 1

+tr (D„)tr (D&)I",

I "—:tr (M„M& ) —tr (D„D&) .

(2.31)

(2.32)
(2.23)

We can easily calculate the case of mqo ——0. Then, results
in the case of mqo g 0 are obtained from the replacement

q, (—= qo) ~ q; —mqo, (2.24)

for the results in the case of m& ——0, where q,. are q,. in
the limit of mqs ——0.

The sum rules for the quark masses q,. are

The derivation of the formulas (2.30) is given in Ap-
pendix B. The importance of denoting ]V~~] in terms
of tr(M„Md) has been stressed by Hsmzaoui [13].
From (2.30), we can readily express [V~] in terms of
quark masses and tr(M~~Mg) (m, n = 1,2). How-
ever, since tr (M„M& ) us ds, the numerical values of
[V~ ~

are sensitive to the deviations of tr (M„Mg) from
tr (D~D&). Therefore, the expression (2.30) in terms of
I " will be convenient for numerical study.
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If we define a parameter u, which gives deviation from
the symmetric KM matrix [14], i.e., V with IV~~ I

= IV~, I,

(2.33)

then any matrix elements V~ are given in terms of four
independent parameters IV12I IV23I I&»l and ~ [»].

I

Therefore, four expressions of IV»l I&»l' I&»l', and

IV23I obtained from (2.30) are sufficient to calculate ev-

ery IV~I .

Exact expressions of tr(M„M&) (m, n = 1,2) are
given in Appendix C. As seen in Appendix C, the ex-
act expression of J22 consists of somewhat complicated
terms. Therefore, for calculation of IV„, I

and IV,bI, it is
convenient to use the approximations

J"= us(B2 —ui)(d2 —~i) IVi2l'+ ui(us —B2)(ds —d2) l~»l

+B2(us —ui) (ds —"i)IV131 Bi (us B2)(d2 di)~
= usu2d2IV12I (2.34)

and

= —(B2 —ui) (d2 —di) IV» I

—(us —B2)(ds —d2) IV23 I

(B3 ui) (d3 d1) I
vis I

+ (us —B2) (d2 dl)~

= —usu2 lv2s I'

(2.35)

rather than to use the exact expression (2.30) which includes J2 . However, if we can calculate J22 with a good

approximation, the use of the relation

3( 2 i)($2 di)IV12I uidi(us —u2)(ds —d2)IV23I

—B2d2 (u3 —ui) (d3 —di) I v13I + uid3(u3 B2)(d2 dl)~

= —us~su2~2IVi2 I' (2.36)

is also useful. [For (2.34)—(2.36), see Appendix B.]
Finally, we would like to note that IV~ I

are indepen-
dent of a choice of nPO and m, o. ' ) l&lgl1 —a2cos20„I

Vs
(3.4)

the condition (2.15), so that we obtain the restriction

Irr. THE ~, = m", = O CASE

In this section, we investigate an interesting case

u d n
mo =mo=0. (3.1)

from (3.3). The restriction (3.4) suggests that $„0
since Iui/usl 2 x 10,while lsl 10 x lsinbisl (we

consider
I
sin bisl 1). (For @g, such a restriction is not

obtained. ) Then, (3.3) leads to

A. Rough estimates of a„, 5„, and c„

In the case (3.1), from (2.26) and (2.27), we obtain

&1&2 4s(b„——c„)
Qs

so that we can roughly estimate

(3.5)

—=-(1—a )4 q (3.2)
u2 f 4uiu2 l

b = —s—1+
ui ( Eus

(3.6a)

4s(b + c——2aqbqcq cosQq)
QB

B2 4uiu2 )
C~ —E'—1—

Eus
(3.6b)

respectively. Here, since experimental values [16,17] of
u2/us and d2/ds [see Appendix A, (A8)] give I1 —a„l
0.016 and ll —a~&I 0.13, and the value of e', which is
given by (2.5), is smaller than the order of 10 4, we have
assumed that I1 —a2I )& le'I(b2 + c2).

We can show that in (3.3) the factor (b„+
c2 — 2a„b„c„cos@„) must be larger than

I
1

a2lgll —a2 cos2 Q„l for any values of b„and c„under

where g—su2/ui 0.1 and I4uiu2/zusl 0.6 x 10 for
sin bq3 1.

B. Sum rule for IV„,I

In order to estimate IV„,I
by using the relation (2.34),

we calculate J21. From (2.26) and (2.27), we get the
relation
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Q3+ 5,2+ Qy tt3+ the+ Qy
(3.7)

By using (Cl) and (C2) in Appendix C and (3.7), we obtain

tr (M„Mq) —tr M„tr (M„Mq) = —-(rnl ) rnl ((1 —s2) [1 —a„—s(b„+c„)]

+2s(1+ s )(b

buncos)9+

c„cgcosy) + 4s(1 —a„agcosu)
—2s(1 —s ) [a„b„cgcos(g„—p)

+a bdc cos(y —P) +adb c cos(4 —™)])
I &3&2+ &3&l + &2&l

&3&2&&
l
(ds+ d2+ dl) —(rn", ) rn, h, (3.8)u2 d 21

us+u2+ul j
where

= 2s(1+ s

)(b„buncos)9+

c„cgcosy) + s (1 —a„ag coso()

+2s(1 —s )([a„cos@„—a& cos(f//„—n)]b„c„—a„[b„c&cos(f//„—p) + bzc cos(f//24 —p)]) .

On the other hand, tr (D2Dq) —tr D„tr (D„Dg) is given by

tr (D„Dd) —tr D„tr (D„Dg) = —usu2(ds + d2) —usu2(ds + dl) —&2&1(d2 + dl) 1

so that we obtain

&3(&2dl + &ld2) + [us(d2 + dl) —(&2 + &1)ds] —(~1)'~1&u3+ up+ uy

(3.9)

(3.10)

(3.11)

In order to estimate the b,21 term exactly, we must assume an explicit model with specific values of the parameters.
However, when we use (3.1)—(3.4), we can roughly estimate the b,21 term. Under the approximation $„0,(3.9)
becomes

b,21 = 21s [(b„—c„)(b~ cos p —cg cos p) + (a„—ag cosa) b„c„]

4t4y@g 1 —G~Gg cos A &2—(a„—ag cos cx)s——8'Qp Qy Qy

Qld2 ( 1 2 u2us ~(—2
(
I+-z

usd3 (3.12)

where we have used cosa 1 (see (8.24)J end ur & 0. The fsctor ssusus/2urs in (8.12) is the order of usdss/8urdss
0.036 for sin613 1. Therefore, the 6 term is negligibly small compared to usu2dl in (3.11), but it cannot be
neglected compared to usuld22 i.e.,

&3(&2dl + &ld2) + 2&3&ld2 ~

Then, comparing (3.11) with (2.34), we can obtain a sum rule

(3.i3)

(dl ug &

»)
where we have used [16] dl —0.0089 GeV, d2 0.175 GeV, ul —0.0051 GeV, and u2 1.35 GeV.

(3.14)

C. Sum rule for u:—(Vqq( —(V~2(

We adopt the parametrization [15] of the KM matrix in terms of the four independent parameters (V„,(, (V~(, (V„g(,
and (tf =— (V~(2 —(V„,(

. Then, the rephasing-invariant J can be described by these four parameres [18], so that the
t P-violation phase parameter b13 is expressed by these four parameters. Since we have already known the values of
(V„,(, (V~(, and (V„g(, we now take a great interest in the value of the fourth parameter u related to estimating the
magnitude of CP noneonservation effects.

In a way similar to (3.11), we can obtain

sJ — ds(u2dl + ul)d2[fl3(d2 + dl) (Q2 + Ql)d3] rnl (rnl)ds+ d2+ dl

where

(3.i5)
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= 2s(1 + 3 ) (b„bg cos p + c„«cosp) + z (1 —a„ad, cos n)

+2s(1 —s )j[a& cosgd —a„cos(@~+ n)]bz« —a~[bzc„cos(@&+p) + b„«cos(g& + p)] j
From (3.11) and (3.16), we obtain

(3.i6)

(u3 + u2 + ul d3 + d2 + dl )
ml ml [(u3 + u2 + ul)d3+ u3(d3 + d2 + dl)+ ] (3.17)

(3.is)
comparing (3.17) with (3.18) we obtain a sum rule

or

2

v,bl + Iv„b
dl 2 2 dl t'd21
d2 d2 (ds)

2

lvbl +
I

—
I«3)

(3.ig)

(3.20)

Here, we have neglected the second term on the right-
hand side of (3.17).

The first term in (3.17) is the order
of (usd2)(usd2dl/ds) usds x 10, while the second
term is of the order of u32d32(621 —612). If we estimate

I

On the other hand, since the left-hand side of (3.17) is
approximately given by

d3J u3 J — usd3d2
I Iv23] + ]vis]

21 12 2 ~dl 2 2

I

(621 —612) optimistically, we get

(& —~ ) - —,&(&~ —& )(b~ —b )(« —c )

2s(ag —a„) 10 (3.21)
where we have used the relation (ag —a„) 2d2/d3—
Q.Q66 from (3.2). However, the factor (b, —6 ) can
maximally be of the order of lsl 10 . Therefore, the
numerical result from (3.17) should not be taken rigidly.
The second term in (3.17) can, in general, contribute to
estimates of such small quantities as ~.

D. Sum rule for !V~!2

For estimate of J, it is convenient to use the relation

A/2 + Q3gl + Q2Q1 Q3$2gl

(93 + Q2 + 'gl) (g3 + Q2 + Ql)

= 4(1+ s )(1 —aq) —s(1 —s )aqbqcq cosQq . (3.22)

Then, we obtain

= u3(d2 + dl) + (u2 + ul)d3 + u2dl + uld2

—zmlml (1 —3s ) 1 —a„ay + 2a„ag sin — —2s(b„bg cos p+ c„«cosy)

(u2 d21 (ul dll . 2 n—u3d3
I

—+ —
I I

—+ —
I

—sin
(u3 d3) (u3 d3) 2

(3.23)

Therefore, we obtain

Iv, bl =sln ——2 n d2dl

2 d2 (3.24)
(3.25)

Since the present data show IVbl » Id2dl/d23I,
dominant term in the right-hand side of (3.24) must be
sin (n/2).

The result (3.24), i.e. , IV,bl I
sin(n/2) I, suggests that

a model with n = 0 leads to a prediction of IV,bl which
is in poor agreement with experiment, so that the model
is ruled out. A model with P = p = 0 leads to n = 0
by the subsidiary conditions (2.15)—(2.20), so that such
a model is also ruled out.

E. Democratic-type matrix form

Recently, considerable interest in the democratic-type
mass matrices has been taken. We would like to comment
on a relation between our mass matrix expression (2.6)
and a democratic type.

We consider a unitary matrix

which transforms democratic-type matrices X and Y as

1 (1 —~2 O 0)
UXUt = —,'Y+ — p 1+~2p

o o o)
UYU~ = Y,

(3.26)

(3.27)

where the democratic-type matrices X and Y are defined
by

, (»0)
X= — ill, Y= —

! 110
111) (000)

(3.28)

Then, the dominant term in our mass matrix (2.6) (i.e. ,

the remaining term in the limit of s —+ 0) is transformed
into a real matrix form as
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( 1 aqe tt'000)
U aqe '~' 1 0 Ut = (1+aqcosoq)Y+ (1 —aqcosnq) 000

0 0 0) (001

(001)
aq sin oq 001

2 (110)
(3.29)

It should be noticed that the (Mq);~ elements (i,j = 1,2)
which include the phase factor o.q are transformed into
real matrix elements. The imaginary parts come from
the remaining terms (Mq)3; and (Mq);3, which include
the phase factors Pq and pq.

If we put an ansatz that the left-hand side of (3.29)
is given only by democratic-type matrices X and Y, we
obtain the restriction

i.e.,

1
1 —Gq cos 0!q = — Gq slnclq,

2
(s.so)

1 —a&

2
—1

a~~

~n a,
~Z(1+aq) ~

(1 —aq) = —~2—,
2 gs

which leads to an excellent prediction

~Vd, [
= sin

" ~2 ——— 0.040.
cr~ —Ag d2 ug

2 3 Q3

(s.s1)

(3.32)

This sum rule (3.32) has been derived by Tanimoto [19]
on the basis of the democratic-type mass matrix scheme

Mc = ~xX + mv Y+ m, zZ (3.33)

IV. SUMMARY AND DISCUSSION

We have studied 3 x 3 Hermitian quark mass matri-
ces on a quark basis in which a traceless matrix iK =
M„Mg —MgM„ takes a diagonal form and the number
of independent parameters of M„and Mg is the same as
that of observable quantities.

where the matrices X and Y are given by (3.28), the
matrix Z is a constant traceless matrix, and their coef-
ficients satisfy mqx &) m1q, » mqz 0. Our ansatz that
the right-hand side of (3.29) should be expressed only
in terms of the democratic-type matrices X and Y is
essentially identical with the Tanimoto model, although
[mx[ = [1 —aqcosaq~ (( [m1,

~

= [1+aq cosa, q[ in our
model, while [mqx[ » [mqz( in the model of Tanimoto.
Of course, this is not essential, because there is a unitary
transformation which exchanges an X term for a Y term.

In addition, the successful derivation of the sum rule
(3.32) seems to suggest that the following scenario is
promising: the dominant terms, which provide J = 0
and u1 ——d1 = 0, are given only by the democratic-type
matrix X and the "partially" democratic-type matrix Y,
and the efFects of CP nonconservation (J g 0) and non-
vanishing first-family quark masses (u1 g 0, d1 g 0)
come from a third term with small parameter values and
with a mass matrix form which violates democratic or
partially democratic family mixing, for example the Z
term in Tanirnoto's model (3.33).

One of the ten independent parameters, e, is a param-
eter vrith an extremely small value, which is proportional
to the rephasing-invariant quantity J, so that our mass
matrix frame will be convenient for studying the case of
the limit J ~ 0, i.e., the limit of no CP violation.

For the case 1 &) [1—aq~ [ )& ~s[(b~q+ c~q), {3.3), if we set

mo ——mo ——0, we can obtain an excellent sum rule for
the Cabibbo mixing (3.14). This ansatz is substantially
correspondent to the ansatz (Mg)11 ——0 in another min-
imal parameter frame where M„= D„The. condition
(3.3) for our parameters also leads to a sum rule (3.21)
for small quantities such as [V~~[z[Vcb[2
For a further detailed check on our sum rules, a numer-
ical study by using a computer will be needed. Such a
systematical search for possible numerical values of our
parameters is a future task, because the purpose of the
present paper is to give a general formulation of our mass
matrix frame with K = D~
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APPENDIX A: CALCULATION OF
detK AND TRK~

The relation (2.2) is readily obtained from the defini-
tion of the rephasing-invariant quantity J [10]:

det(M„Mg —MgM„) =—i det K
= 2i(u3 u2)(u3 ul)(u2 u1)

x(d3 —dz)(ds —d1)(d2 —d1)J.
(A1)

The derivation of (2.3) is somewhat intricate. From
the general formula for arbitrary 3 x 3 matrices A and B,
tr(A B ) — trAtr(AB )+trBtr(A B)

+tr A tr Btr (AB) —csi (AB) —csi A csi B = 0, (A2)

where csi A is Lavoura's function [12] for a matrix A de-
fined by (2.28), we obtain

tr (M„M& ) —tr D„tr (M„M~ ) + tr D~tr (M„Ma)

+tr D„tr Distr (M„Mg)
—csi (M„Mq) —csi D„csiDa = 0, (&3)
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which leads to

I22 —(I12tr D„+I tr Dg) + I tr D„tr Dg

+-,'(I22 —-', trK') ——,
'I" I"+2tr(D„D„) =0,

(A4)

detD~ = 2s'(1 —z )k

tr D~ ——2(l + 3s )k

(A9)

(A10)

where

tr K = —2 tr (M„MgM„M~) —tr (M„Md ) (A5)

APPENDIX 8: GENERAL FORMULAS
FOR ]Vg;[

and I " (m, n = 1,2) are defined by (2.32). Therefore,
we obtain

The general formulas (2.30) for ]V~z~ are derived as
follows: The traces of M„"M& (n, m: integers) are given
by

tr K~ = 6I ' —4 I"tr D„+I"tr D„
+4I [trD„trDd, tr(D„—D&)] —2(Ill)2

= 2usd3] &.b]', (A6)

tr(M„"M„) =tr(D„"VDpV ) =) u",. d. iV,, ~'

Since ~V~~ ~

are expressed in terms of the four indepen-
dent KM matrix parameters

where we have used the experimental facts

iV„, i
= 0.0486, iV,g] 1.9 x 10

iV„g] 2 x 10 [20],

(A7)

&' -=IV»l' &' =- IV23I' W' =- IV»l

~ -=IV21]'- IV12]',
(B2)

Iui/u2I —0.0038 [16],]u2/us] 0.004 [17],
[dl/d2[ 0.051 [16], [d2/ds[ 0.033 [16]. (A8)

(For an expression of I " in terms of ]V~] and quark
masses g;, see Appendix B. )

Relation (2.5) is derived from the exact relations

(1 —n2 —p2 c 2

o'+ ~ 1 —n2 —P2 —(u

+~

~2
p2

p2 ~2)

(B3)

we can write tr (M„"M&~) in terms of o2, p2, p2 and ~ as

—(u3 u2)(ds —d2 )p —(us —u", )(ds —d, )p

-(us - u2)(d2 —dl )~. (B4)

V12 = (u2 ul)(d2 dl)&
V23 =—(us —u2)(ds —d2)P',
V13 = (u3 ul)(d3 dl) y
u)—:(us —u2)(d2 —di)(u,

(B5)

[Throughout this appendix we use a, P, and p as those
defined by (B2), but not as those defined by (2.10).]

Setting

(u2 + ul)(d2 + dl)V12 (us + u2)(ds + d2)V23

(u3 + ul)(d3 + dl)v13 + (us + u2)(d2 + dl)& ~

(B9)

Then J",which were defined by (2.31), are expressed

we can write (B4) explicitly as

I = —81' —Vg3 —V13 + tD,11=—

I = (u2 + ul)v12 (u3 + u2)v23

(u3 + ul)V13 + (u3 + u2)lv

J12
(J")

—1 —1 1 ) (v12)
Q3 tl 1 Qg —V1 Vg3

d3 d1 dg —83 V13

u3ds uldl u2d2 uld3I ( vr )

(B10)

I"= —{d2+di)vi2 —(d3+ d2)V23

-(d3 + di) V13 + (d2 + dl)tu, (B8)
Therefore, by solving (B10) inversely, we can obtain the
formulas (2.30).
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APPENDIX C: FULL EXPRESSIONS OF TR(M~M))

The full expressions of tr (M„M& ) for the mass matrix form (2.6) are given as

tr(M Mg) 1 2= 1 ——(1 —3s ) (1 —a„ay cosa) + E(b bgcosP+ cucgcosp)
m"m"

1 1
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(C1)

tr (M„Ma) = 1 —-(1 —s )(1 —a„ay cosa) —4(1 —s )(1 —a„)1 2 2

(m", )zm",

+&is(1 —s ) b„+c„+2(b„bg cos P + c„cgcos p)

+zs(1 —s ) [a„b„cgcos(Q„—p) + a„bqc„cos(g„—P) + aqb„c„cos(Q„—cr)], (C2)

tr (M„M~) 1 2 2

m-(m~)s
= 1 —-(1 —s )(1 —a„agcosn) —-(1 —s )(1 —a&)4

+4s(1 —e ) b~ + c& + 2(b„bg cos P + cucg cos p)

+zs(l —s ) [aabdc„cos(gd+ p) + ahab„cocos(Qg+ P) + a„bgcgcos(gd, + cr)],

tr (M„M~)2 2
1 2 2 2 2 2 2 2

(m")z(m )s
= 1 —-(1 —s )(1 —a„aycoscr) —-(1 —s ) (1+2s )(2 —a„—a&) + (1 —3s )(1 —a„a&)8

+s s(1 + s) (1 —s ) (b„+b& + 2b„bg cos P) + s s(l —s) (1 —s ) (c„+c& + 2c„cg cos p)

+ss(l —s ) a„(bq + cd) + aq(b„+ c„)
+&~s(l —ss)a„ag [(1 —s)b„bd cos(n + p) + (1+s)cucg cos(cr + p)]

+&~s(1 —s )((I + s) [a„bgc„cos(g„—p) + ahab„cd, cos(Qg + p)]
+(1 —s) [a b„cg cos(Q„—p) + agbgcu cos(Qg + p)]
+2 [a„bdcg cos(gg + cr) + ahab„cu cos(Q„—n)])

+zs (1 —s) b„b&+ (1+a) c„c& + 4s (1 —s ) b„cz+b&c„+2b„bg „cgcc (oPs—p)
(C4)
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