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Model-independent radiative corrections are calculated for the X ~nev, A~pev, and n ~pev de-

cays with polarized initial baryons. The method of polarization asymmetry calculation is outlined, and
the most important formulas are presented. Numerical results for the corrections to two- and one-
dimensional asymmetry distributions and totally integrated asymmetries are tabulated for the electron,
neutrino, hadron, a, and P asymmetries.
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I. INTRODUCTION

Semileptonic decays of spin- —,
' octet baryons play a cru-

cial role in our understanding of the interplay between
strong and weak interactions and of the Cabibbo-
Kobayashi-Maskawa (CKM) quark-mixing matrix. The
observable quantities for each semileptonic decay depend
on CKM matrix elements and on a few form factors. The
precise determination of these form factors provides im-
portant information about the low-energy dynamics of
the strong interaction. There are many theoretical pre-
dictions for these form factors [1—19]. Most of these
studies are quark model calculations, using various mod-
els for the low-energy behavior of the quarks and gluons.
The Cabibbo model [2], assuming exact SU(3)-fiavor sym-
metry, has been very successful at describing the semilep-
tonic decays so far. The SU(3) symmetry of the octet
baryons has particular relevance to recent discussions of
the structure functions for polarized deep-inelastic
scattering (the proton spin problem) [20]. It is very likely
that lattice QCD calculations for baryon semileptonic de-
cay (BSD) form factors will also be carried out in the near
future (lattice QCD studies for semileptonic decays of
mesons [21] and for electromagnetic properties of
baryons [22] have been published recently).

On the other hand, precise measurements have been
made in the last decade both for hyperon semileptonic
decays (HSD's) [23—26] and for neutron decay [27—36].
The statistical errors of these experiments are rather
small. In order to achieve precise values for the form fac-
tors and the CKM matrix elements, serious attention has
to be paid to the reduction of the various systematic er-
rors of the measurements and of the off-line analyses.
There are two types of systematic errors occurring in

these measurements. One of them comes from the vari-
ous shortcomings of the experimental devices (back-
ground, kinematic cuts, detection efficiencies, energy and
momentum resolution and calibration, etc.). Ingenious
Monte Carlo simulation programs have been used (main-

ly for HSD off-line analyses) to correct for these errors.
The other type of systematic errors is of theoretical na-

ture, and takes its origin from the inaccuracies of the
theoretically derived relations of the form factors and the
CKM matrix elements with the observable quantities.

The main theoretical uncertainties are the following: (i)

theoretical assumptions for some form factors; (ii)
momentum transfer dependence of the form factors; (iii)
radiative corrections.

The connection of the first two points with the observ-
ables is rather easy to handle (see Sec. II). On the other
hand, the precise and reliable calculation of the radiative
corrections to various measurable quantities relevant for
experimental analyses is the most difficult theoretical
problem of BSD's.

Many radiative correction calculations have been pub-
lished in the past three decades: for unpolarized-neutron
decay [37—43], for polarized-neutron decay [44—47], for
semileptonic decays of unpolarized [48—54] and of polar-
ized [55,56] hyperons. In the framework of the
SU(3), XSU(2)L XU(1) standard model these radiative
corrections are free from ultraviolet divergences [57—59].
One can decompose the virtual correction in a gauge-
invariant manner into three parts: model-independent
(MI) part + asymptotic part + model-dependent (MD)
part (see Ref. [54], Sec. II). Only the MI part contains in-

frared divergent terms. The MI correction is defined as
the sum of the MI part of the virtual correction and of
the real-photonic (bremsstrahlung) correction (this sum is
infrared finite). The MI corrections to various observ-
ables can be reliably calculated, there are only technical
difficulties due to the phase space integration of the
bremsstrahlung (BR) photon. The neglect of MI correc-
tions in the experimental analysis might cause essential
systematic errors. The asymptotic part [60] gives the
leading asymptotic dependence of the virtual correction
on the M~, Mz vector-boson masses. This correction is a
universal coefficient of the zeroth-order amplitude; there-
fore, it is not relevant for the determination of the ratio
of the axial-vector to the vector coupling constants. The
reliable calculation of the MD part is hampered by the
uncertainties of our present knowledge about the low-

energy dynamics of the strong interaction. One can find

some crude estimates for the MD corrections in the
literature [40,61,62], suggesting that the contribution of
the MD part is smaller than the asymptotic part by one
order of magnitude. Calculations for the MD corrections
by nonperturbative methods is badly needed (perhaps to-
gether with the form factor calculations).
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This paper is devoted to give numerical results for the
order-a MI corrections to various polarization asym-
metries of the g ~nev, A~pev, and n~pev decays
For the MI part of the virtual correction the definition of
Sirlin [42] is used. The pointlike hadron approximation
is employed in order to calculate the BR part of the
corrections. In our previous papers [53,54] we published
numerical results for MI radiative corrections to several
measurable quantities in semileptonic decays of unpolar-
ized baryons.

The plan of the paper is the following. In Sec. II we
describe the general method of the polarization asym-
metry calculations in zeroth order, and we define several
polarization asymmetries and measurable quantities. In
Sec. III we discuss the method of calculation of the radia-
tive corrections to polarization asymmetries. Section IV
contains our numerical results. In Appendix A we
present the coefficients of the various form factor com-
binations of the zeroth-order matrix element squared for
semileptonic decays of polarized baryons. Finally, Ap-
pendix B is devoted to give some detailed formulas useful
for the radiative correction calculations.

II, OBSERVABLE QUANTITIES IN ZEROTH ORDER

The conventions of Refs. [63] and [64] are used in this
paper. Indices 1, 2, i, and f refer to an antineutrino, elec-
tron, initial (decaying) baryon, and final baryon, respec-
tively. p, p, E, and m denote four-momentum, three-
momentum, energy and mass, respectively. G =G„V„d
for strangeness-conserving decays, G =G„V„, for
strangeness-changing decays, where G„ is the muon de-
cay coupling constant, and V„d and V„, are CKM matrix
elements.

The most general form of the zeroth-order amp1itude
in V —A theory is

[ufH u;][u2r~(1 —r5}U,],&2

H =H'+a"
e '

G
Vo(E2, Ef,cos8, $)=

4 (Lo+So)
16m, m

(2.2)

four-dimensional distribution. The E2 and Ef energies
determine the decay triangle (with sides ~p2~, ~pf ~, and
~p, ~ ), and its spatial direction is represented by the 8,$
angles. Lo and So (defined in Appendix A) are quadratic
functions of the form factors:

Lo =ff (e')Lo [fi ]+gf (e'}Lo[g i ]

&,"=H,'[f, g, ]r5 ~

Here q=p; —pf is the four-momentum transfer. The
most complete information about the semileptonic decay
of a polarized baryon is given (in zeroth order) by the

and similar decomposition holds for So (real form factors
are assumed). The coefficients of the diS'erent form factor
combinations depend on the scalar products of the
p„p2,p, ,pf four-momenta; the So contains also (p&s),
(p2s ), and (pfs) scalar products, where s is the spin four-
momentum of the initial baryon [s=(0,s), s =1]. The
coefficients of the quadratic combinations of the
f„f2,g„and g2 form factors are presented in Appendix
A (the contribution of the terms involving the f3 and g3
form factors is negligible for the electronic decays).

To specify the 8 and P angles, let us choose an n direc-
tion vector as some linear combination of the n, ,n2, and t
unit vectors, where

pj n2Xn)
n = ' (j=l,2}, t=

Ip, l

(2.4)

nz+n&a=
ln)+n(l

'
/n, —n, /

(2.5)

(see Ref. [64]).
Define 8 by the cosO=s n equation, where s is the po-

larization vector of the initial baryon (0'&8&180').
Then we define the n vector in the following way:

n=n, : if ~n n, ~
&1;

n=n2: if /n. n, /=1, /n. n2f &1

(the ~n, nz~ =1 case can be regarded as the ~n, nz~~1
limit). We consider the n vector as a polar axis, and
define P by the azimuthal angle of the above introduced n
vector around n. The zero value of (() is irrelevant in our
considerations.

Next we integrate Eq. (2.2) over the P angle (with fixed
E2,Ef, and 8). The Lo term does not depend on s, and
So is linear ins: So=+.C.(p.s) (j=1,2,f). Therefore

J dPL =1, (2.6)

2m.

d /So = g C&pp~ cos82' 0
(2.7)

where p
~~

(j =1,2,f) is the projection of the p~ three-
momentum to the n direction:

Different choices for the n vector give different polariza-
tion quantities:

electron asymmetry: n =n2,

neutrino asymmetry: n=n&,

hadron asymmetry: n=pf/~pf~ (pf= —p, —p2),

a asymmetry: n=a,
P asymmetry: n=P,
triple correlation asymmetry: n=t,

where

+fi(e')gi(e')Lo[f hagi]

+18 similar terms, (2.3) After the P integration we get the

(2.8)
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three-dimensional distribution, where

G2
Wo(E 2~Ef ) = 3 Lo

4m; m.
(2.10}

Qo(E2~Ef cos8) =
2 [ W()(E2~Ef )+ A()(E2 Ef )cos8]

(2.9)

is the totally integrated asymmetry parameter (N+ and
are the zeroth-order decay rates for cos0&0 and

cos8 & 0, respectively).
The ao(Ez, Ef } asymmetry functions have remarkable

properties at the lower and upper boundaries of the Dal-
itz plot.

(1), (a) At the lower boundary [Ef=Ef (Ez)],
min

G2
A()(E2,Ef ) = SJ

4m;~

S(=SO[(p/s)~ pJ)
—J=12 fl

(2.11)

(2.12)

ap (Ez Ef ) = ao" (E2,Ef ) =ao '(Ez, Ef )

ao (E2 Ef } i«2 & E2h

a() '(—Ez,Ef ) if Ez )Ezh,
(2.21)

The (pjs) scalar products in So are to be replaced by
the —

p, i= —
p, n factors, in order to get SII from So.

For example, the substitutions in the case of the electron
asymmetry are

(pz~ )~—
I pzl,

where

—1 m2
E2g — m; m +2h 2 t f f

(b) At the upper boundary [Ef=Ef (Ez)],

(2.22)

p&'p2(p)s)~—
Ipzl

(2.13)
ao"(Ez,Ef ) =a() '(Ez, Ef ) =a() '(Ez, Ef )

a' '(E—, Ef } (2.23)

Pf P2
(Pfs)

A()(E2,Ef )

W()(E2, Ef )

Integrating Eq. (2.9) over Ef yields the

cop(Ez, cos8) =
2 [(()p(E2 )+(zp(E2 )cos8]

(2.14}

(2.15)

distribution, where
E (E

Wp(E2 ) =f dEf Wp(E2 yEf )
I (E )min 2 (2.16)E (E)

ap(E- j=f dEf Ao(E2, Ef )

(for Ef (Ez),Ef (Ez) see Ref. [54], Eq. (3.7) o«ef.
[64], Eq. (2.11)}.

The one-dimensional ap(Ez) asymmetry function is
determined as

&o«2)
a()(E2 ) =

(()o Ez

Finally, we integrate Eq. (2.15) over Ez to get the

Uo(cos8) =
—,'po(1+aocos8)

distribution, where

Po= f '"dEz(()o(E2 }

(2.17}

(2.18)

(2.19)

The two-dimensional ap(E2 Ef ) asymmetry function is
defined by

(e, v, h, a, and P denote the electron, neutrino, hadron, a,
and P asymmetries, respectively).

(2) Simple expressions can be obtained for the
ap(E2 Ef ) asymmetries at the above boundaries, if the
electron mass is neglected (mz =0 limit).

(a) At the lower boundary,

a()'(Ez, Ef )= —1 .

(b) At the upper boundary,

(2.24)

(e)ao' (Ez,Ef )=
fi+gi

(2.25)

III. RADIATIVE CORRECTIONS

We would like to emphasize that in the m2=0 limit
Eqs. (2.24) and (2.25) hold exactly, for arbitrary m;, mf
baryon masses and f„fz, g „and gz form factor values
(see Appendix A). It has been shown numerically that
they are also good approximations for neutron decay
(where the electron mass cannot be neglected).

There is an important consequence of Eqs. (2.24) and
(2.25} for the Ef dependence of the ap(E2 Ef } asym-
metries. For g, /f, &0 the ao"(Ez,Ef ) asymmetry func-

tion changes sign when Ef goes from Ef (Ez) to

Ef (Ez ) . The —2f,g, /( f, —g ) ) ratio is rather close
max

to +1 for the A~pev and n~pev decays. Therefore
the ao"(Ez) asymmetry is small for these decays, and its
measurement is rather sensitive to the proton-energy
dependence of the detection efticiency. On the other
hand, the ao"'(Ez, Ef ) and ao"'(Ez) neutrino asymmetries
are everywhere close to 1, and are not sensitive to the

g, /f, form factor ratios.

is the total decay rate, and
E2

dE~a0 E2
CL0

Po
2

+X
(2.20)

The theoretical framework and our technique of com-
puting the bremsstrahlung (BR) correction for unpolar-
ized quantities was outlined in Ref. [54]. We present
below our method to obtain the radiative corrections to
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=—,'(W„;„+A„;„cos8) . (3 1)

Dependences on the E2 and Ef energies have been omit-
ted. W~ is the virtual correction to the JRO amplitude
(see Appendix B), g, , means summation over the finalSy, $2

baryon and electron polarizations, and the ii mark refers
to the (pjs )~—

pii (j =1,2,f) substitutions, as explained
in Sec. II.

To calculate Q&R, we start from the

VaR(Ez, EI,cos8, Q,K, Pk, P )

{3.2}
2'mm, &o s&s2

distribution. Here we sum over the polarizations of the
final baryon, the electron and the BR photon (see Appen-
dix B). Q=iQI, Q=pz+pI= —(p, +k), K =ski is the
photon energy, Pk is the azimuthal angle of the k three-
momentum of the photon around Q. KD =+K +m ~
and m is the infrared cutoff.

The 8 and P angles are those introduced in Sec. II. In

polarization quantities. Some results for the virtual and
BR integrals may be found in Appendix B.

We start by computing the 5Q(Ez, EI,cos8) correction
to the Qo(Ez, E&,cos8) distribution [Eq. {2.9)].
5Q=Q„;„+Q&R, where 0„;~ denotes the virtual correc-
tion and QBR the BR correction. Q„;„can be expressed
as

g 2Re(JRyJKO)
1

128m;m.
Sg, $2

the presence of BR photons, however, we define the n,
unit vector not with the antineutrino three-momentum,
which is not measurable if the BR photons are undetect-
ed, but with the measurable Q vector:

(3.3)

For K =0 the definitions (2.4) and (3.3) are equivalent.
The 8 and P angles represent the spatial direction of the
decay triangle with sides ipzi, ipIi and Q, and do not de-

pend on the p, and k three momenta.
We integrate first over P (with the other variables kept

fixed). The s dependence of VnR is linear:

Va„=B+ g B,(p s)+Bk(ks);
j =1,2,f

therefore

1 2m.

dPVn„=B —g Bjpji+Bkki cos8,
277 0

p =p'n k =k n.jll j '
ll

(3.4)

(3.5)

(ps) —+ —piicos8= pn —cos8 (p =p„pz,pI, k)

replacements.
Integrating over the BR photon phase space we get

(3.6)

B,BJ (j =1,2,f) and Bk in Eq. (3.4) depend on the scalar
products of the p&,pz, p;,pf, and k four-momenta. The

pjll and kll quantities can also be expressed by these scalar
products. The method is the same as in the zeroth-order
case: the integration over the P angle is obtained simply
by making the

=
—,'( WaR+ Anacos8),

Sy, $2, $

(3.7)

where ii refers to the (3.6) substitutions.
Let us denote the total radiative correction by 5Q:

5Q(Ez, EI,cos8)=Q„;„+QnR

,'[5W(Ez, EI)+5—A(Ez,EI)cos8] .

(3.&)

5a(Ez, E&)=a(Ez,EI) ao(Ez, EI) . — (3.11)

Similar definitions hold for the corrections to ao(Ez}
and ao..

for events with cos8 & 0 and cos8 (0, respectively.
The correction to the zeroth-order asymmetry function

is defined as

We introduce the a(Ez, EI ) asymmetry function as

A (Ez,E~) N+ (Ez,EI ) N(Ez, EI)—a(Ez, E~}= =2
W(Ez, EI) N+(Ez, EI)+N (Ez,EI)

5a(Ez ) =a(Ez )—ao(Ez },
ao

where

(3.12)

(3.13)

where

{3.9) fdE~A(Ez, EI) N (E )—N (Ez)
a(Ez) = =2

fdEIW(Ez, EI) N+(Ez)+N (Ez)

A (Ez,E~)= Ao(Ez, E~)+5A (Ez,EI),
W(Ez, EI)= Wo(Ez, EI)+5W(Ez,EI) .

N+(Ez, EI) and N (Ez,EI) are the Dalitz distributions

fdE, f dE~ A (E„E~)

fdEz fdEI W(Ez, EI )

N+ —N=2
N+ +N

(3.14)

(3.15)
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The corrected Q(Ez, EI,cos8), co(Ez, cos8), and
u (cos8) distributions may be written as

A(Ez, E&,cos8)=—,
' W(Ez, EI )[1+a(Ez, EI )cos8],

100asR(Ez, El ) asymmetries are presented, where

ABR(Ez, EI)
asR(Ez, El) —

(E E )~BR 2~

(4.4)

~(Ez, cos8) =
—,
' w (Ez ) [ 1+a(Ez )cos8],

u ( cos8) =
—,
'
p [ 1+acos8],

where

(3.16}

(3.17)

(3.18) 5A(Ez, EI }

5W(Ez, El)
(4.5)

(in this region there are only BR events: the minimum of
the BR photon energy is nonzero in each point).

We have studied the behavior of the

w(E, )=fdEIW(E„EI) .

p= f dEzw(Ez) .

(3.19)

(3.20)

W(Ez, EI },w(Ez), and p are the corrected Dalitz distri-
bution, electron energy spectrum and total decay rate, re-
spectively (corrected means zeroth order + radiative
correction). In our previous paper [54] we published rela-
tive corrections to the unpolarized quantities
Wo(Ez, EI),wo(Ez), and po. This work is devoted to giv-

ing numerical results for the asymmetry corrections
5a(Ez, EI),5a(Ez), and 5a.

IV. NUMERICAL RESULTS

We present the numerical results of our order-a radia-
tive correction calculations in Tables I—V. The MI part
introduced by Sirlin in Ref. [42] has been used for the vir-
tual correction [see Appendix B, Eqs. (Bl)—(B12)]. For
the BR matrix-element the pointlike hadron approxirna-
tion has been employed [Appendix B, Eqs. (B13)—(B18)].
The particle masses are those given in Ref. [65]. The fol-
lowing values for the form factor ratios have been used in
our computer programs:

~nev: g, If, =0.34, fzlf, = —0.97;
A~pev: g& lf, = —0.72, fzlf &

=0.97;

n ~pe v: g, lf, = —1.261, fz If, = 1.97 .

(4.1)

E Ex= , y=
E2

'
m;

where

Pl( my+tfl 2
2 2 2

E2m
l

(4.2)

(4.3)

The y;„numbers are the minimum values of y for
zeroth-order decays (without BR photons). The
5a(Ez, EI ) corrections [see Eq. (3.11)],multiplied by 100,
are tabulated in the y &y;„points of the (x,y) plane. In
the y &y;„,x & Ezz /Ez points [see Eq. (2.22)] the

The q dependence of the form factors and the contri-
bution from the f3,gz, and gz form factors have been
neglected. We have not included the q dependence of
the form factors in the zeroth-order calculations, either.

Tables I and II contain radiative corrections to the
two-dimensional electron, neutrino and hadron asym-
metries for the X ~nev and A~pe v decays. The x and
y dimensionless quantities are those defined in Ref. [54]:

distributions and the 5a(Ez, E&) asymmetries near the

EI=EI (Ez) and the El=El (Ez),Ez)Ezh boun-

daries. We have found that Eqs. (2.21) and (2.23)—(2.25)
are valid for the as(Ez, E&) asymmetry distributions, too.
As a consequence, the 5a(Ez, E&) asymmetry corrections
approach zero at these boundary curves.

The L and S parts of the virtual corrections [see Ap-
pendix B, Eqs. (B9)—(B12)] are negligible for hyperon de-

cays. Therefore

W„;„-ZWo, A„;„-ZAO (for mz «m; —mI),
(4.6)

implying that the deviation of the 5a(Ez, EI} asym-
metries from 0 is mainly the hard BR effect (the soft BR
matrix element is also proportional to the zeroth-order
matrix element).

In Tables III and IV the one-dimensional asymmetry
distributions [100ao(Ez) and 1005a(Ez)] and the totally
integrated asymmetries (100ao and 1005a, last column)
are tabulated. Table V contains the 100ao(Ez) and
1005a(Ez ) results for the neutron decay. The asymmetry
corrections here are remarkably small.

The order-a MI correction to the triple correlation
asymmetry have been found to be exactly zero, if real
form factors are assumed. This is in agreement with the
results of Refs. [66,67].

In order to check our calculations we have made the
following tests.

(1) All our REDUcE outputs for the matrix elements
squared have been checked by numerical computations
(see Appendix B).

(2) All our analytical integral formulas (even the in-
frared divergent ones) have been checked by numerical
integrations. Two different integration methods have
been used, and the results have been compared.

(3) We have calculated the order-a radiative correction
to the electron energy spectrum and the 5a"(Ez ) elec-
tron asymmetry correction for the muon decay, with

m2 =0.01 MeV electron mass. For the virtual correction
the formulas of Ref. [68] have been used. Very good
agreement has been found with the analytic formulas of
Kinoshita and Sirlin [38].

(4) Our corrections to the electron energy spectrum
and the electron asymmetry of the neutron decay are in
excellent agreement with the analytic formulas of Sirlin
[42] and Shann [44].

(5) Different computer programs have been used for
the charged baryon decays and for the neutral baryon de-
cays. It is easy to show that in the m; —

m& —+0 limit the
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corrections do not depend on whether the initial baryon
is charged or neutral, provided that the Coulomb correc-
tion is omitted. This has been checked in the case of the
neutron decay.

Finally, we compare our results with those of earlier
publications. As mentioned above, our calculation of the
electron asymmetry for neutron decay agrees with the an-
alytic result of Ref. [44]. The MI radiative correction to
the neutrino asymmetry of the neutron and hyperon
semileptonic decays was found exactly zero in Refs. [47]

and [56]. Our result (see Tables III—V) is small, but
different from zero. The reason of the disagreement is
the following: the authors of Refs. [47] and [56] defined
the n, vector as the antineutrino three-momentum, while
our definition (suitable for experimental analyses) is Eq.
(3.3). These two definitions are not equivalent if hard BR
photons are present. The situation here is similar to the
case of the electron-neutrino correlation [53,54). The 5a
corrections to the az" electron asymmetries of the
X ~net and A~pev decays published in Ref. [56] are

TABLE I. 5a(E2, E&) corrections and a&R(E2, E&) for the (a) electron asymmetry, (b) neutrino asymmetry, and (c) hadron asym-

metry of the X ~nev decay.

1005a{E&,E&) and 100aQQ{E2 Ef )

(a)

0.8067 —0.2
0.8044 16.2
0.8020 —45.0
0.7997 —45.5
0.7974 —46.8
0.7951 —48.8
0.7928 —51.8
0.7904 —56.1
0.7881 —62.2
0.7858 —71.1

—0.1
—0.2
—0.2

0.8
—56.2
—56.2
—59.1
—63.7
—70.5
—80.7

—0.0
—0.1
—0.1
—0.1
—0.0

0.6
4.4

—69.0
—75.2
-85.5

—0.0
—0.1
—0.1
—01
—0.1
—0.1

0.1

0.6
—82.0
—88.8

—0.0
—0.0
—01
—01
—0.1
—0.1
—0.1
—0.1

0.1

0.7

—0.0
—0.0
—01
—0.1
—0.1
—0.2
—0.2
—0.2
—0.2
—0.1

—0.0
—0.0
—0.1
—0.1
—0.2
—0.2
—0.2
—0.3
—0.3
—0.1

—0.0
—0.1
—0.1
—0.1
—0.2
—0.3
—0.3
—0.3

—0.0
—0.1
—0.2
—0.2
—0.2
—0.2

—0.1
—0.3

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Vmin 0.8043 0.7978 0.7925 0.7884 0.7857 0.7847 0.7854 0.7884 0.7939 0.8023

0.8067 —0.8
0.8044 —50.6
0.8020 —59.7
0.7997 —61.3
0.7974 —62.3
0.7951 —62.8
0.7928 —62.2
0.7904 —59.5
0.7881 —52.0
0.7858 —28.8

—0.1
—0.6
—1.8
—6.2

—40.5
—48.9
—49.0
—45.3
—34.2

2.8

—0.1
—0.3
—0.6
—1.1
—2.1
—4.6

—16.0
—20.2
—9.4
39.2

—0.1
—0.2
—0.4
—0.7
—1.0
—1.4

202
—3.9
32.6
60.3

—0.1
—0.2
—0.4
—0.6
—0.7
—0.9
—1.0
—1.1
—1.2
—2.1

(b)

—0.1
—0.2
—0.4
—0.5
—0.6
—0.6
—0.5
—0.2

0.1

0.2

—0.1
—0.3
—0.4
—0.5
—0.5
—0.3

0.1

0.4
0.7
0.3

—0.1
—0.3
—0.4
—0.4
—0.1

0.3
0.8
0.8

—0.2
—0.4
—0.3

0.3
0.9
0.8

—0.4
0.7

0.05 0.15 Q.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

Vmin 0.8043 0.7978 0.7925 0.7884 0.7857 0.7847 0.7854 0.7884 0.7939 0.8023

0.8067 0.6
0.8044 50.7
0.8020 60.7
0.7997 62.4
0.7974 63.7
0.7951 64.5
0.7928 64.5
0.7904 62.8
0.7881 57.1
0.7858 39.8

Q. 1

0.3
1.2
5.4

47.3
56.7
58.7
58.1
53.6
37.8

0.0
0.1

0.2
0.6
1.4
4.0

18.4
45.1
45.7
33.6

0.0
0.0
0.1

0.2
0.4
0.8
1.7
4.4

11.1
25.1

(c)

0.0
0.0
0.1
Q. l
0.2
0.3
0.6
1.0
2.4
8.2

0.0
0.0
0.0
0.1

0.1

0.2
0.3
0.4
0.7
1.4

0.0
0.0
0.0
0.1

0.1

0.1

0.2
0.2
0.2
0.1

0.0
0.0
0.1

0.1

0.1

0.1

Q. l
0.1

0.0
0.1

0.1

0.2
0.2
0.1

0.1

0.2

Vmin

0.05 0.15 0.25

0.7925

0.35

0.7884

0.45

0.7857

0.55

0.7847

0.65

0.7854

0.75

0.7884

0.85

0.7939

0.95

0.8023
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in satisfactory agreement with our results. The theoreti-
cal framework of the radiative correction calculations
used in Ref. [55] is substantially different from ours;
therefore, the comparison of our results with those of
Ref. [55] is meaningless.

L" =T [x"P r P' ll r—l] H. =roH'. l'o.
Then

lA2)

APPENDIX A

Let us introduce

T(I ) = Tr[H„(p;+m; )I H„tpf +mf )]L"',1

32

where

(A1)

So=T~rdl

Lo+So= g [Jato[ (A3j
16G

The coefficients of the different form factor combina-
tions occurring in Lo and So are (q =p; —

pf )

TABLE II. 6a(E2,Ef ) corrections and aBR(E2,Ef ) for the (a) electron asymmetry, (b) neutrino asymmetry, and (c) hadron asym-

metry of the A~pev decay.

100'5+(E2 Ef ) and 100+gR(E2 Ef )

(a)
0.8530
0.8518
0.8505
0.8493
0.8480
0.8467
0.8455
0.8442
0.8429
0.8417

2.8
22.2
15.8
2.3

—10.9
—23.5
—35.5
—46.9
—57.8
—68.2

0.4
1.3
2.6
4.8
9.7

—33.2
—43.8
—55.5
—67.2
—78.5

0.1

0.4
0.7
1.0
1.5
2.3
3.4

—64.7
—74.1
—85.4

0.1

0.1

0.2
0.2
0.3
0.5
0.7
1.0
1.4

—90.7

0.0
—0.0
—0.1
—0.1
—0.1
—0.1
—0.1

0.0
0.1

0.3

—0.0
—0.2
—0.3
—0.4
—0.5
—0.5
—0.5
—0.4
—0.3
—0.1

—0.1
—0.3
—0.5
—0.6
—0.7
—0.7
—0.7
—0.6
—0.4
—0.0

—0.1
—0.5
—07
—0.9
—0.9
—0.8
—0.6
—0.3

—0.3
—0.8
—1.1

—1.0
—0.7
—0.2

—0.9
—1.0

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

3 min

0.8530
0.8518
0.8505
0.8493
0.8480
0.8467
0.8455
0.8442
0.8429
0.8417

0.8516

—0.2
—2.0
84.3
78.4
71.8
64.6
57.0
48.6
39.5
29.9

0.8480

—0.1
—0.3
—0.6
—1.1
—1.9
77.8
70.6
63.4
56.9
57.0

0.8450

—0.1
—0.2
—0.4
—0.6
—0.8
—1.0
—1.3
81.3
75.9
83.6

0.8428

—0.1
—0.2
—0.3
—0.5
—0.6
—0.7
—0.8
—0.7
—0.6
95.1

0.8415

(b)

—0.1
—0.2
—0.3
—0.4
—0.5
—0.6
—0.6
—0.4
—0.2
—0.1

0.8410

—0.1
—0.2
—0.4
—0.5
—0.5
—0.5
—0.4
—0.2
—0.1
—0.0

0.8417

—0.1
—0.3
—0.4
—0.5
—0.5
—0.3
—0.1
—0.0
—0.0

0.0

0.8434

—0.1
—0.4
—0.5
—0.5
—0.3
—0.1
—0.0

0.0

0.8464

—0.2
—0.5
—0.4
—0.1
—0.0

0.0

0.8509

—0.5
—0.0

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

3 min 0.8516 0.8480 0.8450 0.8428 0.8415

(c)

0.8410 0.8417 0.8434 0.8464 0.8509

0.8530 0.2
0.8518 1.9
8.8505 —84.2
0.8493 —77.6
0.8480 —70.5
0.8467 —62.8
0.8455 —54.4
0.8442 —45.2
0.8429 —34.5
0.8417 —20.2

0.1

0.4
0.8
1.4
2.4

—72.1
—62.2
—51.7
—39.5
—23.1

0.1

0.3
0.6
0.9
1.3
1.7
2.3

—64.6
—47.8
—27.1

0.1

0.3
0.5
0.8
1.1
1.4
1.8
2.2
2.8

—35.2

0.1

0.3
0.6
0.8
1.1
1.4
1.7
2.0
2.5
3.2

0.1

0.4
0.6
0.9
1.2
1.5
1.7
2.0
2.2
2.3

0.1

0.5
0.8
1.1
1.3
1.6
1.7
1.7
1.5
0.1

0.2
0.6
1.0
1.3
1.5
1.5
1.3
0.8

0.3
1.0
1.3
1.4
1.1
0.3

0.9
1.1

0.05 0.15 0.25 0.35 0.45 0.55 0.65 0.75 0.85 0.95

3 min 0.8516 0.8480 0.8450 0.8428 0.8415 0.8410 0.8417 0.8434 0.8464 0.8509
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TABLE III. 5a(E2) and 5a corrections to the ao(E2) asymmetry distributions and the ao total asymmetries of the X ~nev de-

cay. Notation e: electron asymmetry; v: neutrino asymmetry; h: hadron asymmetry; a: a asymmetry; P: P asymmetry; 0:100ap(Ez)
and 100ao (last column); 5:1005a(Ez ) and 1005a (last column).

e 0.
5.

v 0:
5.
0:
5

a 0:

P 0.
5:

0.05

—55.1
1.8

—46.9
—4.1

48.7
4.0

—67.0
0.6

—4.2
4.9

0.1

—55.9
0.3

—46.2
—17
49.8

1.7
—67.4
—0.0
—5.2

1.7

0.2
—57.4
—0.1

—44.6
—0.7
52.6
0.7

—68.1
—0.1
—7.4

0.6

0.3

—59.1
—0.1

—42.7
—0.5
56.0
0.5

—68.7
—0.1
—9.7

0.3

0.4
—60.8
—0.1

—40.4
—0.4
60.4
0.4

—69.3
—0.1

—12.2
0.3

0.5
—62.6
—0.1

—37.9
—0.4
66.2
0.3

—69.7
—0.1

—14.9
0.2

0.6

—64.4
—0.1

—35.0
—0.4
73.0
0.1

—69.9
—0.1

—17.9
0.2

0.7
—66.4
—0.1

—31.7
—0.4
75.4

—0.0
—70.0
—0.1

—21.1
0.2

0.8

—68.4
—0.0

—28.0
—0.4
75.1

—0.0
—69.9
—0.1

—24.5
0.2

0.9

—70.5
—0.0

—23.8
—0.5
73.9

—0.0
—69.6
—0.1

—28.2
0.3

—63.2
0.1

—36.5
—0.7
66.7

—0.0
—69.5
—0.1

—16.1
0.5

Io[f i ) =(ppz)(pipf )+(ppi )(pzpf) mim f(plpz)

Io[fiSi]=2{(p;pz)(pip f ) (P'P 1 )(P2Pf )]

1~0[flfz) {mi[(Pzq)(PIPf )+(Pl q)(PzPf )+(Pfq )(P1P2))™f[(Pz'q )(PiPi )+(Piq )(PiPz)+(P'q)(P 1Pz))]
l

m;+mfIo[fzgi ) = Io[figi )
m;

1Io[fz]=, {(p;q)(pzq)(ptpf )+(p;q)(piq)(pzpf ) —(pzq)(ptq)(p;pf )
l

+ (Pzq )(Pf q )(PiP1 ) + (P 1 q )(Pfq )(PiPz ) f(Pz'q )(P i ''q )

q'(p;pz)(ptp—f) q (P Pl)(PzPf)+ 'q (P Pf)(Plpz) 'q m;mf(PIPz)]

= 2Lo[fzgz)=, {(pgf)(piq)(p q) —(pipf)(pzq)(p;q)+(pipz)(piq)(pfq) —(p pi)(pzq)(pfq)]
l

So[fi ]=(pzs)[m;(p, pf ) —mf(p pi)) —(p, s){m,.
(pzpf )™f(pp, )l

0[fig 1]=;[(pzs)(p 1Pf )+(pis)(m~f )],
1

So[f,fz]= {(pzs)[(p;q)(p,pf)+(pfq)(pipi) —2mimf(piq)]
l

—(pts)[(p/q)(pzpf )+(pfq)(pipz) —2m;mf(pzq)]+(pfs)[(p pz)(pipf) —(p pi)(pzpf)]],
1

So[fzgi ]= {(pzs )[2(p q )(p ipf ) (p i q)(p pf ) m mf (p i q ) ]
l

+ (p, s )[2(p;q )(pzpf )
—

(pz q )(p,pf ) m, m f(p zq )—]
+(Pfs )[(Pzq )(PiPi )+(Piq )(PPz ) —(P;q )(PiPz )

+2(PiP2)(plPf )+2(PiP1 )(PzPf ) (P Pf )(Pipz )+m'mf (PiPz )) ]

TABLE IV. 5a(E ) and 5a corrections to the ao(E2) asymmetry distributions and the ao total asymmetries of the A pev decay

(see Table III for notation).

e 0:

v 0:
5.

h 0:
5.

0.05

24.8
—5.7
96.1

—6.6
—96.5

7.1

0.1

22.7
—2.2
96.3

—2.6
—96.8

3.1

0.2

18.2
—0.9
96.8

—0.9
—96.5

1.5

0.3

13.6
—0.5
97.1

—0.5
—94.1

1.2

0.4

8.9
—0.4
97.5

—0.4
—88.1

1.2

0.5

4.1
—0 3
97.8

—0.4
—74.8

1.3

0.6
—0.8
—0.2
98.0

—0.3
—50.5

0.9

0.7
—5.8
—0.2
98.2

—0.2
—28.0

0.6

0.8
—10.8
—0.1
98.4

—0.2
—9.0

0.3

0.9
—15.7
—0.1
98.6

—0.2
7.0
0.2

2.2
—0.0
97.8

—0.4
—58.6
—0.1
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TABLE V. 5a(E2) corrections to the ao(E2) asymmetry distributions of the n ~pev decay (see
Table III for notations).

e 0:

v 0:

0:

0.4

—1.66
—0.03
98.82

—0.01
—98.36

0.01

0.5

—6.55
—0.01
98.82

—0.02
—83.61

0.04

0.6

—8.08
—0.01
98.81

—0.02
—51.97

0.06

0.7

—8.90
—0.01
98.81

—0.02
—25.53

0.04

0.8

—9.41
—0.01
98.81

—0.03
—9.11

0.03

0.9

—9.76
—0.01
98.81

—0.03
2.30
0.02

1
So[f2 ]= 2 [(p2s )[m;(p, q )(pfq )

—mf(p, q )(p;q )]—(p, s )[m;(p2q )(pfq ) mf—(p~q )(p;q )]
m;

+(pf»[m;(p2q)(p)pf) m;(piq—)(p2pf)+mf(p2q)(ppi) —mf(piq)(p pz)]]

So[f2g2]= [(p~s )[(piq )(pfq ) —q'(pipf )]+(pis)[(p2q )(pfq )
—

q (p2pf ]= 2 2 2

m,

+ Pf [ ,'q' Pa 2)-(P1q P2'q P2'q P 1pf (Plq)(P2Pf )]]

The other terms in Lp and So may be obtained by the

f ~g» fz~ g2, mf—~ mf

substitution [69] (only the f„f„g„and g2 form factors
are taken into account here).

The above expressions obey the p, ~p2 interchange
theorem of Weinberg [70]. They have been checked by
numerical trace computation. We have calculated the
coefficients of the various form factor combinations for
several totally integrated quantities. Our results agree
with the numerical results and approximate analytical
formulas of Refs. [64, 71—73].

For m2 =0 there exist interesting relations between the
form factor coefficients of Lp and Sp at the lower and
upper boundaries of the Dalitz plot.

(a) At Ef =Ef (E, ),

m =mf, p =pf, m'= —mf

(Ez+Ef )
—m2 —mf —

Qo

2mf

Moreover,

p, =QE,' m,', —p= ', 8'=in
2

E +p

(B2)

(B3)

where

'ZWo+-Jt,y 2 P (B4)

czZ=— 1——2—ln
2 p

m2 3+—ln
2m mr

11
8

The model-independent part of the virtual correction
(with the definition of Ref. [42]) can be written as

L, = —S,'ii . (A4)

I o[f i l =I o[gf 1
= ,'So" [f

hagi

1——

and all the other form factor coefficients are zero.

(A5)

This is true for every form factor coefficient, separately.
So~~ is obtained from So by the (2.13) substitutions.

(b) At Ef =Ef (E2 ),

2P

P P P 1+P

E2 E2+P2—2, ln
m m

(here m is the infrared cutoff), and

+ZCb (B5)

APPENDIX B

G a m2
8'[ufH u; ][ugly~(1 —ys)v, ] . (B6)

mp2

Let us denote

Q =m E E——
0 i 2 f

L is the Spence function defined as

I ( ) y-d, »ll —
rl

0 t
(B7)

It is useful to introduce the following notation.
If the initial baryon is charged,

The Zcb Coulomb term is zero for charged-baryon decay,
and

m =m;, p =p;, m'=m;, 22=E2 .

If the initial baryon is neutral,

(B1) am
ZCb (B8)
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for neutral-baryon decay.
A good approximation is

2 g Re(JKJII, O )=—,'(2+8),
32G

2

L = —— mg(pp, )(ff+3g, ),
7T p

(89)

For charged-baryon decay (such as X ~ne&),

H „"„=—,'Tr [I f„(P,. —1|,'+ m; )y~r;y ~(gf;
—k'+ m; )],

(817)
HI = ,'Tr—[rf„.(P; g—+m, )y -r, ],

For neutral-baryon decay (such as A~pev),

mS= m~8'(p, s)(g f f,g—, ) .
7T p

The MI virtual corrections to I.p and Sp are

ZI.p+I. and ZSp+S,

(811)

(812)

H„"„=—'Tr[I „'„(pf+g+ m f )y~(pf +m f )

Xy (pf+k+mf)],
HI„='Tr [r „'—„(11f+mf )y (pf +k +mf )],
I „'„=H„I;H, p=pf .

(818)

Sf~$2~/

I~aRI'=—
62~2 1 1

Re 2T + 2T~
(p2k ) (pk)'

T, ;
(p 2k )(pk)

(813}

T, =H'gi'",
T'» =H,"Atl"

respectively.
For the BR amplitude (JkaR) the pointlike hadron ap-

proximation is employed in our work (the BR photon en-

ergy is small compared to the baryon masses). The BR
matrix element squared is decomposed into three terms:

H„ is taken from (2.1), assuming f&=g&=g2=0, and
with constant form factors (q dependence neglected}.
We have also omitted in our calculations the k depen-
dence of the f2 term and the corresponding direct emis-

sion term mentioned in Ref. [54].
The trace calculations and index summations have

been carried out by the help of the REDUCE symbolic
algebraic software. The output of these computations
has the general form [after the (3.6) replacements]

Tj= g C(n&, n2, n, )(p, k) '(p2k) '(p, k) '

(j =e,h, I), (819)

TI =H pg'"

Lp =Tr[(11,+g+, )y~(p, +m, )

Xy (/2+k+m~)y"p, y"(I —ys)],

LP=Tr[P2r"Pir "(I rs)]—
Lg"&=Tr[(gf&+ g+ m&)y (gf&+ m&)

Xr"Ar "(I ys }]—
H„', =—,'Tr[I f„l;],
I f,=H„(pf +mf }H„,
I',.= (gf,.+m, )(1+y ss') .

(815)

(816)

where the C(n„n2, n;} coeScients depend on

E2,Ef,cos8, the m;, mf, m2 masses and the form factors.
We checked the REDUCE outputs by numerical compu-

tation of T„Tz, and TI for a few sets of the p&,p2,p;, k
four-momenta. A general FORTRAN subroutine package
has been worked out for this purpose. The REDUCE re-
sults and the numerical computations coincided with
each other by more than 8 digits. We would like to em-

phasize the importance of this type of numerical control
in order to get reliable results for complicated matrix ele-
ments occurring in perturbative calculations.

In order to obtain Qua [see Eq. (3.7}] we have substi-

tuted the (p&k) '(peak) '(p, k) ' factors in (819) to their

phase space integrals:

i~a«'ni n2 n )=f dQf(Q}f dK f dp» „(p~k) '(p, k) '(p;k)"',
min min &p

(820)

where

pw pa- p2 p. or pf

K;„=—,'(Qo —Q), K,„=—,'(Qo+Q),
(821}

Our general method of evaluating these integrals has
been explained in Ref. [54]. We show here another
method which is applicable for integrals without infrared
divergence (n&+n2+n, )0). In order to integrate T'„
we have to calculate the

Q;.= I lp~l
—Ipf I I, Q .„=min(QO, I lp~l+ 1pf I I ),

Q =m. E E- —
P i 2 f &

f is a general function of Q .

G&„(K)=fdK f dP»
2n 0 (p~k)~

(1=2,1,0, —1; n =0, 1,2, 3) (822)
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indefinite integrals. (peak ) can be expressed as

(peak ) = A —8 cos({}k,

A =E~K —~pz~Klcosg,

8 = ~p, ~K,sing,

I
1

&~ d0k
2m. "o A —8 eosPk

where

l

&~'—8' '

1
1

&~ d4'k

2~ "o (g 8—cosp„)~ (A —8 )
(B24)

p~
—pf+Q'
2IX»IQ

Q2 Q2

2Q

(B23)

The

—8 =aE —bK+c,

E"
dK

(aK bK+—c)'

(B25)

K, =+K' K', —.

Integrating first over ({}„,

integrals may be found in standard integral tables.
%'e mention that all our analytica1 integral formulas

have been checked by numerical computations.
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