
PHYSICAL REVIEW D VOLUME 46, NUMBER 5 1 SEPTEMBER 1992

Matrix elements of pseudoscalar Qq mesons
including relativistic and asymptotic-freedom effects

Roberto R. Mendel
Department of Applied Mathematics, The University of Western Ontario,

London, Ontario, Canada NBA M9

Howard D. Trottier
TRIUMF, $00$ Wesbrook Mall, Vancouver, British Columbia, Canada V6T 2A8

(Received 18 March 1991; revised manuscript received 2 April 1992)

We present a detailed analysis of effects on the decay constants fp and mixing parameters B of
the pseudoscalar Qq mesons, coming from two fundamental dynamical properties of this system:
relativistic dynamics and an asymptotically free Coulomb interaction. Our results derive entirely
from the short-distance properties of a Dirac wave function for the light quark in a pure leading-log
Coulomb potential. We obtain an analytical expression for the asymptotic behavior (r —+ 0) of
this wave function. We also make use of a @CD effective action model for Qq mesons, in order
to demonstrate that our analysis does not depend on any assumptions about the long-distance
properties of this system. We show that the short-distance effects of the relativistic wave function
with asymptotic freedom play an important role in the evolution of fp and B with meson mass Mp.
These corrections to fp, which vanish as n, (Mp) for Mp ~ oo, are to be superimposed on the
leading short-distance correction due to Voloshin and Shifman and Politzer and Wise, and are found
to be quantitatively more significant than the latter in the phenomenologically important region
M~ +Mp+Mg.
PACS number(s): 13.20.—v, 12.38.Lg, 12.40.@q

I. INTRODUCTION AND GENERAL
FRAMEWORK

The decay constants fp and mixing parameters B of
the pseudoscalar Qq mesons have been subject to consid-
erable analysis in recent years (see, e.g. , Refs. [1—11]).fp
gives the matrix element for decay of a pseudoscalar me-
son state ~M(K)), of definite four-momentum K, through
the axial-vector current As:

(M (V„—A„) M) = 4s fpMpB, (2)

where V„ is the vector current.
Phenomenologically, the interest in these matrix ele-

ments stems from the fact that they appear in many pro-
cesses from which we can extract quantities of fundamen-
tal importance to the standard model, such as the quark
mixing matrix, CP violation, the mass of the top quark,
and so on. Unfortunately, the available experimental in-
formation is scarce. f = 132 MeV and f~ = 168 MeV
are well-known, while a Mark III experiment provides
the upper bound f~ ( 290 MeV [12], and a recent AR-
GUS analysis [13] gives an average over fD and f~. of
(267 6 28) MeVx [2 7%/B(Ds+ —+ P. sr+)]~~2. Moreover,
there are large discrepancies between the various model
calculations of the matrix elements for heavy Qq mesons
(e.g. , f~, f~). This situation has been a major imped-

(0 A&(X) M(K)) =iK&fpe

The matrix element B for neutral-meson mixing (e.g. ,

Bd, Bd) is conv-entionally normalized in terms of fp2.

iment to attempts to extract reliable estimates of stan-
dard model parameters from experiment.

A scaling law for fp that is derived from the non-
relativistic (NR) quark model is frequently used as a
benchmark in theoretical calculations. For families of
Qq mesons with the same fiavor of light quark,

1
fNR(rnq ~ oo) oc

P
(3)

where my is the mass of the heavy quark and Mp is the
meson mass. The factor of 1/QMp has a kinematical
origin, coming from a density of states when a Fourier
transform is applied to Eq. (1). The mixing parameter is
identically equal to one in any nonrelativistic constituent
quark model [2]:

(4)

Vacuum saturation of a sum over intermediate states in-
serted between the operators in Eq. (2) also gives B:—1.

The question of the mass scale at which the NR scaling
law for fp becomes reliable has been hotly contested in
the literature (for a recent review see Ref. [1]).For exam-
ple, a variety of quark-model calculations (e.g. , Ref. [3])
suggest that fir & f~ & f~, while recent /CD sum rule

[4] and lattice [5] calculations suggest that fp is roughly
constant between the K and B mesons. The disagree-
ment on this basic property of the decay constant under-
scores the unsatisfactory state of our understanding of
the physics of fp Estimates of a. given decay constant
sometimes differ by factors of 3 or 4 from one model
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to another. Similarly, predictions for the neutral-meson
mixing parameters cover a wide range of values —for ex-
ample, calculations of B~ range at least from 1/3 to 1
(theoretical estimates of B~ are summarized in Ref. [6]).

In this paper we consider corrections to the NR scaling
laws for fI and B that are induced by two fundamen-
tal dynamical properties of the Qq system: relativistic
dynamics for the light quark and an asymptotically-free
Coulomb interaction. A very simple approach (which
we first proposed in Ref. [14]) is used to draw conclu-
sions that are as model independent as possible about
the effects of these dynamics. Our basic premise is that
for sufficiently large heavy quark masses mq, the light
quark wave function at short distances is adequately
described by a Dirac equation in a QCD leading-log-
corrected Coulomb potential.

This picture is in several ways a natural, and concep-
tually simple, extension of the NR quark-model descrip-
tion which leads to Eqs. (3) and (4). In particular, for
very large mg, our relativistic wave function leads to
the scaling limit Eq. (3) for f~, and exhibits the limit

B(mq -+ oo) = 1 [cf. Eq. (4)]. However, it will be seen
that relativistic dynamics and the short-distance QCD
running coupling lead to substantial corrections to these
scaling laws (which cannot be mocked up in NR quark
models) in the phenomenologically important intermedi-
ate regime Mri & M~ & M~. We believe that these
effects on the decay constants and mixing parameters
have either not been properly included, or understood,
in previous model calculations.

We note that Voloshin and Shifman (VS) [9] and
Politzer and Wise (PW) [10] have discovered an impor-
tant (leading) short-distance correction to the NR scal-
ing law, Eq. (3), for f~ Their c.orrection (which does not
modify the NR scaling law for the B parameter) is due
to a finite renormalization of the matrix element Eq. (1)
which defines fp, from the large momentum scale mq
at which the matrix element is defined, down to the soft
momentum scale ~ R i which characterizes the Qq wave
function. We will frequently refer to the nonrelativistic
scaling law of Eq. (3) with the understanding that we
actually include the correction of VS-PW when making
explicit calculations.

We are concerned here with a subleading (and there-
fore different type of) short-distance correction to the NR
scaling laws. We point out in this connection that VS as-
sumed a nonrelativistic quark model wave function when
estimating their effects on the decay constants. In their
heavy quark efFective theory, PW obtain the same result
without referring explicitly to the quark wave function
(see also Ref. [11]),as, to leading order, the wave func-
tion drops out when comparing fp for two states with
different Mp. The effects on fp analyzed in this paper,
coming from a relativistic wave function with an asymp-
totically free short-distance interaction, are in this sense
of subleading order, and should be superimposed on the
leading correction due to VS-PW. We note that the VS-
PW correction to fJ dominates in the limit M~ -+ oo,
with our efFects vanishing as o,,(M~) in this limit. How-
ever, we find that the efFects due to the relativistic wave
function are quantitatively more significant in the phe-

bs is the one-loop P-function coefficient,
1

bo = z(11 —st), (7)

and A»t, is the mass scale appropriate to the Qq poten-
tial. We derive a connection between Ap, q and the QCD
scale parameter AMs in Sec. IIIB, where MS denotes the
modified minimal subtraction scheme.

B.The light quark is a Dirac fermion with a small cur-
rent mass m. We expect its wave function in the ground
state to have the familiar form (as appropriate for a cen-
tral Qq potential)

—iy(r)
~()

where JV is a normalization constant.
C. Quantum-mechanical fluctuations in the position of

the heavy quark are accounted for in the overlap of the
Qq pair, and are assumed to be described by a nonrel-
ativistic wave function 4'q(r), which is "spread" over a
distance rq at least of the order of the Compton wave-
length 1/mq. Following Donoghue and Johnson [15], the
decay constant is then given by the overlap integral

f,' ( im) =
M

&' d'rl@'~(r)l'X'(r),
Mg

(9)

where 12 is a color-spin-Savor coefficient. We use the
notation f„~ to emphasize the relativistic dynamics.

f„~ depends on the "spread" rq in the heavy quark
wave function, but in the applications which we consider
in this paper, we find that it turns out to be essentially
independent of the exact shape of 4'g(r). Then Eq. (9)
for f„~ reduces to the (physically reasonable) expression

12
f-i(mq) = &X(rq) rq = o(I/mC). (10)

Mg

We have verified that using a given value for rq in Eq.
(10) gives essentially the same value for f„~ as is obtained
from the overlap integral in Eq. (9), using a variety of pos-
sible forms for the wave function 4q(r) (e.g. , Gaussian
and step function), when rq is taken as the rms radius
of the heavy quark probability distribution.

The mixing parameter B can likewise be expressed in
terms of an overlap integral [16]

nomenologically important region MD & M~ & Mgy.
Our analysis is based on the following three general

dynamical ingredients.
A. The light quark wave function is calculated in

a Born-Oppenheimer approximation, the recoil of the
heavy quark and effects due to its color-magnetic moment
being neglected in first approximation. According to per-
turbative QCD, the light quark therefore experiences a
leading-logarithm-corrected Coulomb potential Vc,„i in
the vicinity of the heavy quark

o,(r)Vc,„)(r)=-
r

where
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where the notation B«~ again emphasizes the relativis-
tic dynamics. Notice that the normalization A' of the
light quark wave function cancels in B„~. Approximat-
ing the overlap by the distance rq which characterizes
the "spread" of the heavy quark wave function, we obtain

Bre)(mq) = 1 —
~ rq = O(1/mq) (12)

P(rq)
y(rq)

We observe that Eqs. (9) or (10) for f«i imply (for
mq -+ co) the NR scaling law Eq. (3) for the de-
cay constant, up to the VS-PW correction, provi, ded
that the relativistic wave function at the origin is finite,
g(r ~ 0) = finite. We will show that this is indeed
the case for a Qq pair interacting through the asymptot-
ically free Coulomb potential. Moreover, we show that
P(r ~ 0) = 0 in this potential, so that B„~ also satis-
fies the NR scaling law, Eq. (4), in the limit mq ~ oo.
On the other hand, we find that the detailed behavior of
the relativistic wave function at short distances leads to
significant scaling violations at intermediate masses.

The main results presented in this paper all follow from
the dynamical ingredients A, B, and C. We note that
while quantum-mechanical Quctuations in the position of
the heavy quark will be accounted for when we compute
the Qq overlap (ingredient C), we will compute the light
quark wave function Q(r) with rnq = oo (ingredient A).
We expect that finite mq efFects on the wave function (in
particular, the recoil and color-magnetic moment of the
heavy quark), when treated as first-order perturbations,
will mainly result in changes to the normalization JV, due
to changes in the radii of the Qq triplet and singlet states.
We show in Sec. IV that neglecting these finite mq effects
only tends to suppress the corrections to the NR scaling
law for fp that are obtained from the wave function with
rnq = oo (the mixing parameter B is independent of the
wave-function normalization).

We also point out that the overlap radius rq
O(1/mq) in Eqs. (10) and (12) can, in principle, be de-
termined from a more complete model calculation of the
dynamics of the heavy quark motion than we will at-
tempt in this paper. i Instead, we here simply use the
fact that on physical grounds rq cannot be much smaller
than 1/mq, and we show in detail in Sec. IV that our
underestimate of rq again only tends to suppress the rel-
ativistic corrections to the NR scaling laws.

The rest of this paper is organized as follows. In
Sec. II, we analyze the Dirac equation for Q(r) in a
pure leading-log-corrected Coulomb potential, and we ob-

In Born-Oppenheimer approximation, one would account
for the recoil of the heavy quark by solving a Schrodinger
equation for 4'g in the potential due to the color-charge cloud
of the light quark. We thank R. L. Joe for several conversa
tions in this connection.

tain an analytical expression for the asymptotic behav-
ior (r ~ 0) of the wave function. The short-distance
limit of this wave function enables us, in principle, to
make model-independent calculations for the effects of
relativistic dynamics and asymptotic freedom on the evo-
lution of fp(mq) and B(rnq) for sufficiently large mq
[corresponding to distances r = O(1/mq) where Vc,„~(r)
should provide a reliable approximation]. However, we
must be sure to isolate genuine short-distance efFects from
possible spurious effects due to the failure of the leading-
log potential at long distances. In particular, as we go
below Mp = 1 GeV, we get dangerously close to the scale
at which the leading-log coupling blows up, and Vc,„~ be-
comes unphysical.

To demonstrate that our results are in fact indepen-
dent of the long-distance properties of the leading-log
Coulomb wave function, we also make use of a relativistic
model for the Qq system, based on a one-loop approxi-
mation to the effective action for QCD [17—24]. This ef-
fective action has been shown to provide a description of
mesons containing one or two heavy quarks (Qq and QQ
mesons) which has many of the qualitative features ex-
pected of exact QCD. In particular, this efFective theory
naturally includes both asymptotic freedom and linear
confinement [18,23].

In Sec. III we apply this QCD efFective action to Qq
systems with a light fermionic quark [25]. In particular,
we show that the light quark wave function in this model
has exactly the same short-distance behavior as in the
pure leading-log Coulomb potential. This model is also
shown to provide a well-behaved, and qualitatively cor-
rect, description of the long-distance physics of the Qq
system. We emphasize that although this model could be
used to make a complete analysis of the Qq system (in-
cluding the spectrum and transition matrix elements),
the QCD effective action is used in this paper only in
order to establish that our analysis does not depend on
assumptions about the long-distance properties of the Qq
system, and to extract results that are due explicitly to
the short-distance dynamical effects of interest.

In Sec. IV we compute the relativistic decay constant
f„~ using the light quark wave function in both the pure
leading-log Coulomb potential, and in the QCD efFective
action model (EAM). We find that these two descrip-
tions give essentially the same results for the evolution
of f„~(mq) with mq. Given that the pure leading-log
Coulomb wave function exhibits an unphysical singular-
ity at long-distances (compared to a well-behaved limit
in the EAM), we conclude from this comparison that the
evolution of f«~ that is obtained from these wave func-
tions is determined by their properties at short distances,
even for mg as small as —5AMS. We clearly correlate our
results for the evolution of f«i with the detailed short-
distance behavior of the asymptotically free relativistic
wave function.

In Sec. V we estimate the contribution of these short-
distance efFects to the ratio f~/fD, which is less model
dependent than the value of the individual decay con-
stants. We 6nd a sizable correction to the ratio that
would be obtained from the NR scaling law. We also
make estimates of these effects on the mixing parame-
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ters B in the region Ml & MD. In Sec. VI we con-
sider a possible extrapolation of our calculations down
to Mi - M~. To the extent that the application of
our methods in this regime can be trusted, we can use
the experimental value for fa as input to obtain lower
bounds for fD and f~ individually. Our results obtained
in this way are consistent with most recent QCD sum
rule [4] and lattice [5] calculations, and with experimen-
tal bounds obtained by Mark III [12] and ARGUS [13].
Finally, in Sec. VII we summarize our main results, and
describe some improvements that can be made to the
present analysis.

II. DIRAC EQUATION IN A "PURE"
LEADING-LOG COULOMB POTENTIAL

According to our dynamical ingredients A and B (see
the Introduction), the behavior of the light quark wave
function @(r) at short distances is given by the solution to
the Dirac equation in the leading-log Coulomb potential
Vc.„l [see Eq. (5)]:

which are identical in form to the usual set of radial Dirac
equations, except that ( is here set to zero:

d a(r)
XCoul = O'Coul Idr r

(15)
d 2 o(r)
dr r4'Coul = O'Coul + XCoul.r

The solution to Eq. (15) can be obtained in the form of
an (asymptotic) series expansion in powers of the running
coupling. This is very different from the usual series ex-
pansion for the Dirac equation in a Coulomb potential of
fixed strength (in that case, the expansion is in powers of
r, with fixed n appearing in the series coefficients). The
change of variables

Ap 1
y(rAp, t) —= n(r) = —. .. np —=

, (16)ln(r»g)' 3z p'

eliminates the explicit factors of r in Eq. (15), resulting
in equations in terms of y only:

&(«»t) ( —iyCoul(r) &~

r (~ roc. i(r) p
(14)

Note that the scale for Qc „l(r) is set explicitly by the
/CD scale parameter, since A»t oc AMs [see Sec. III B
below] is the only scale in Eq. {14). This is to be com-
pared with the situation in many /CD-inspired models,
where a connection between the scale for hadronic ma-
trix elements and the QCD scale parameter is missing.
Equation (14) implies that the scale for fI in our cal-
culation is correlated with other fundamental quantities
of hadronic physics, such as the observed slope of light
meson Regge trajectories [24].

To solve Eq. (14), we proceed in the usual way by sep-
arating it into two coupled, first-order radial equations,

[a (—iV) + Vc,„l(r) + pm] gc,„l(r) = (@co„l(r).

(13)

m is the current mass of the quark, and ( is the energy
eigenvalue of the stationary state Q(r, t) = e '~'Q(r)
Note that we have used Vc,„l as the zeroth component
of a vector potential in Eq. (13), as given by perturbative
/CD. We use the notation Qc,ul to emphasize that this
wave function is calculated in the approximation that
the qq pair interacts via a "pure" leading-log Coulomb
potential. The form of the ground state solution to Eq.
(13) is given in Eq. (8).

Since the normalization JV and energy eigenvalue ( de-
pend on the long-distance properties of the wave func-
tion, they cannot be determined from the short-distance
potential Vc«l. On the other hand, we show below that
the short-distance limit of Qc,„l(r), relevant to the over-
lap of the Qq pair, is independent of ( and rn, and we
will be able to draw significant conclusions about the be-
havior of the matrix elements without knowing the wave
function normalization.

It is therefore of interest to study the Dirac equation
with ( and m set to zero:

d cRp
XCoul = NCoul ~

dy y

d 2o,p Ap
/Coul =

Z 4'Coul + XCoul.
dy y y

(17)

Note that y, gC,ul, and /Coul are all dimensionless func-
tions of rA»t, . These difFerential equations can be solved
by the (asymptotic) series expansions

XC-l(y) = ).g y", PC-l(y) = ).f y" (18)

For the solution that is regular at the origin, the coeffi-
cients are obtained from the recursion relations

gp = arbitrary, fp ——0,
1 1-"f =2 fn-1 + gu —1 )2 Clp

Ap
g = f-—n"

(19)

These series expansions only converge asymptotically.
However, the first few terms in the series are sufficient
to compute the functions to arbitrarily high accuracy for
sufBciently small rAr t, [in any event, the long-distance
properties of the solution to Eq. (13) are not physically
meaningful].

It is important to note that our dynamical ingredients
A and B imply that the "true" light quark wave function,
with the correct long-distance physics (not contained in
Vc«l), will have exactly the same leading short-distance
behavior as the solution to Eq. {13).We therefore trun-
cate the asymptotic series to obtain the following model-
independent result for the short-distance behavior of the
true wave function [26]:
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P(r 0) = -X(0)
1 1

6~ho ln rAy
'

(20)

where y(0) is finite. Equation (20) can be written
schematically as y(r ~ 0) = y(0) [1 + O(a, (r))] = finite,
and P(r ~ 0) = O(n, (r)y(r)) ~ 0.

The leading corrections in ( and rn to Eq. (20) are
of order ((,m)r/lnr. Expressions for A„and Ay are
obtained by absorbing the 1/ln terms in Eq. (18) into
the scale factor A~, i in the leading logarithms [up to truly
higher order remainders of O(1/ ln )]

A~ = Ap, texp[ —(as+1)/4],

A4, = Ap, t., exp[ —(no + 1)/2].

(21)

III. THE Qq SYSTEM IN A +CD
EFFECTIV'E ACTIGN APPROXIMATION

A. Formalism

We now describe a QCD effective action approximation
for the Qq system that exhibits the correct short-distance
limit for the light quark wave function, Eq. (20), and
which also provides a well-behaved description of the sys-

We stress that the Dirac i've function at the origin
in the leading tog Cou-tomb potential i8 finite, unlike the
more familiar case of the wave function in a Coulomb
potential of fixed strength a, , which is singular [e.g. , for
fixed n « 1, we would have P(r ~ 0) oc o;y(r

— 2 20) ar ~~ —+ oo, to be compared with the above
limits]. This result has apparently not been realized in
earlier studies. The finiteness of the wave function in
the leading-log potential is evidently due to the fact that
the running coupling constant o.,(r) tends to zero suffi-
ciently rapidly as r ~ 0 [22]. We have also found that the
Klein-Gordon wave function in the leading-log Coulomb
potential is finite at the origin [23]. This differs from the
singular behavior found by Durand for a nonlocal rela-
tivistic spin-0 equation in the same potential [27] (the
spin-0 equation analyzed by Durand was used to calcu-
late fJ in Ref. [28]).

As described in the Introduction, the analysis leading
to Eq. (20) enables us, in principle, to determine the in-
fluence of relativistic and leading-log Coulomb dynamics
on the decay constants and mixing parameters. However,
we must be sure to isolate genuine short-distance effects
from possible spurious effects due to the failure of the
leading-log potential at long distances. Note in partic-
ular that the solution to Eq. (13) will exhibit a form of
Klein paradox as r approaches A ut, where the potential
Vco ~ blows up, causing unphysical pair creation effects.
On the other hand, the rapid changes in y(r) and P(r)
as r —+ 0, due to the logarithms in Eq. (20), are genuine
physical effects, and will induce significant logarithmic
departures from the NR scaling laws for fp and B.

where

1——2( 1/ayvga )yayv/a (22)

Faijv gpgav gvgap + gabcgbpgcv (23)

and where the running coupling g here runs with the
field strengths. p is the subtraction point. To leading-
logarithm order
—-2( lFapvFa

)

= g [1+ 4ibog ln( —~~E'""E„;/p )], (24)

where g = g(y„p4) and bo is the one-loop P function
coefficient [Eq. (7)].

The total effective Lagrangian density i:&'i for the Qq
system is the sum of the effective Lagrangian for the
gauge fields plus a fermionic Lagrangian i:+:

efF

We take i:F to have the usual form

ignoring the kinetic term for the heavy quark (consistent
with our dynamical ingredient A). QM is a Dirac wave
function for the heavy quark of (bare) mass M', and g is
the wave function for the light quark of current mass m.

We assume that the action corresponding to i:&& is
minimized by an Abelian configuration of fields and cur-
rents [18—24]. This amounts to dropping the color in-
dices in Eqs. (22)—(26) and assigning equal and oppo-
site Abelian charges of magnitude /4/3 to the quarks.
The equations of motion which minimize the resulting
Abelian action are similar to the usual Maxwell equa-
tions for (Abelianized) color-electric and -magnetic fields
E and B plus an Abelian Dirac equation for the light
quark (the heavy quark is treated as an external source).
However, the fields and sources appear to be embedded
in a "medium, " characterized by a nonlinear dielectric
e(P), which measures the response of the QCD vacuum
to an applied field P [18,23]. In the leading-log model
for i:sa"s', Eqs. (22)—(24), we have

e(P) = 4boln —,P—:E —B .2 2

K

tern at long distances. The application of the EAM to a
system containing a dynamical fermionic quark, summa-
rized here, is very similar to that for a system containing
a dynamical scalar quark, which we analyzed in detail in
Refs. [23] and [24].

The efFective action model (EAM) we use is defined
by an effective Lagrangian -density for the gauge fields,

which includes leading renormalization-group
corrections to the Lagrangian of classical chromodynam-
ics [18,23]:

i gauge(+ 1 papv~a )
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V (.(E')E) =

E(r) = —VA (r),

&'(r)4(r) —~'(r).

(28)

and a nonlinear Dirac equation for the light quark wave
function,

4a (—iV) + -A (r) + Prn Q(r) = (@(r). (29)3

The scale parameter eiiz is related to the subtraction
point p [18]. The zero of the dielectric e(E = z2) = 0 im-
plies that a vacuum electric field (condensate) Ez, = ~z

is spontaneously generated by one-loop radiative correc-
tions [17, 18].

Because of the nonlinear dielectric, the equations of
motion are highly coupled and nonlinear. A considerable
simplification is obtained by neglecting ~B~ compared to
]E]. The efFective action is then extremized by the so-
lution to a set of nonlinear Mmovell equations for the
(Abelianized) color-electric field E,

guarantees that the light quark current normal to the
soliton surface vanishes. Finally, the radius R at which
Eqs. (30)—(31) are imposed is determined by conservation
of the energy-momentum tensor at R (cf. Ref. [23))

—g(r)Q(r) = 0 at r = R.
Br

While our boundary conditions, Eqs. (30)—(32), are
similar to those in the usual MIT bag model [29], we
emphasize that confinement in the EAM is due entirely
to the nontrivial electric field generated in the one-loop
approximation to the /CD vacuum, E(r & R) = z. See
Ref. [23] for further analysis of boundary conditions for
relativistic matter fields in the EAM.

B. Light quark wave function

The EAM for the Qq system exhibits asymptotic free-
dom at short distances, due to the properties of the di-
electric e(E) in strong fields [18, 23]. In particular, the
Qq vector potential VEAM [cf. Eqs. (13) and (29)]

The coupled system, Eqs. (28) and (29), is solved
exactly. z The form of the ground state wave function
is given in Eq. (8).

In order to uniquely determine the solution to Eqs. (28)
and (29) we must impose suitable boundary conditions.
We find that a solitonlike solution exists, in which all
fields take on their vacuum values outside a sphere of
radius R surrounding the heavy quark:

@(r & R) = 0, E(r & R) = ~. (30)

The wave function is normalized according to
f„d rsgtg = 1.

Notice that the light quark wave function is identically
zero outside R. This avoids a Klein paradox that would
otherwise be induced by the vacuum electric field, since
the size of the soliton acts as an effective infrared cutoff.
A similar situation occurs in our model for the Qq system
with a dynamical scalar quark [23], and in the model for
the QQ system [18].

The boundary conditions on the light quark wave func-
tion at r = R are not unique, as expected from the chiral
invariance of the effective action (not including the quark
mass term). Following the usual MIT bag model [29], we
use the boundary condition

@(r)@(r)= 0 at r = R, (31)

which breaks chiral symmetry explicitly. Equation (31)

It can be shown that the approximation of neglecting ~B(r)
~

compared to ~E(r) [ becomes exact for r sufficiently close to
the point charge of the heavy quark [22]. This is precisely
the region where we evaluate @(r) in order to calculate the
matrix elements of interest. We also note that this approxi-
mation leads to a qualitatively correct description of the long-
distances properties of the qq system.

VEAM(r) = A (r),

has the correct short-distance limit

1
VEAM(r « Ap&&i) =

3 t l ( A )
) (34)

as given by perturbative /CD. We derived the mass scale
Ap„ in terms of zii 2 in Ref. [23], A»t ——e(v 3z box) ~ .
Adler has determined the connection between zizz and
the @CD scale parameter AMs [18, 19]. For three light
quark fiavors he found AMs ——0.959m i . We therefore
obtain

Apot = 2.23AMs [Nf = 3]~ (35)

This is close to the analogous result for the mass scale in
the quarkonium (QQ) potential, which equals 2.63AMs
for Ny ——3 (see Ref. [19] and references therein).

We conclude from Eq. (34) that our EAM gives a
model-independent description of the light quark wave
function at short distances, since the model has the cor-
rect perturbative @CD result for the short-distance Qq
interaction. The wave function at short distances is
therefore identical in the EAM and in the pure leading-
log Coulomb potential, and is given by our result in Eq.
(20).

Our EAM also gives a well-behaved (and qualitatively
correct) description of the long-distance properties of the
Qq system. In particular, the model exhibits linear con-
finement, due to the nontrivial vacuum electric field. For
example, excitations of the Qq system are found to lie
on linear Regge trajectories [23, 24]. Linear confinement
is also exhibited in the long-distance limit of the Qq
vector potential; we find VFAM(r —+ R) = or, where
o = (1.12AMs) for Nf = 3. The EAM therefore nat-
urally interpolates between asymptotic freedom at short
distances and linear confinement at long distances. This
is clearly illustrated by a plot of VE&M(r), shown in Fig. 1.
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FIG. 1. Qq interaction potential VEA~(r) =— y 4/3A (r)
in a one-loop QCD effective action model [Eqs. (28)-(35)], for
m = 0 and Nf ——3. The light quark wave function vanishes
outside the radius R = 1.16A, indicated by a vertical line
in the figure.

physical singularity that would be present if the running
coupling cr = sn, was nonzero at the origin. A strong
indicator to the contrary is the fact that P(r = 0) = 0.
To prove that there is no unphysical behavior, suppose
that n(r —+ 0) decreases to a small nonzero value, in-
stead of vanishing as 1/ln(rA~ q). Then we would have

y(r ~ 0) (rAMs) (o&~z (AMs being the only avail-
able scale). The singularity for a(0) g 0 would become
important only at a distance rAMs = e z~~ (o), where
the wave function would become of order unity or greater
[30]. Even if we take cr(0) as large as 0.5, this corre-
sponds to a very short distance, rAMs = 10, which
is much smaller than the radius rq I/mq at which
we evaluate the wave function in order to calculate the
matrix elements of the D and B mesons, for example.
We therefore conclude that the behavior of g and P at
short distances in the leading-log Coulomb potential is a
physical efFect.

IV. COMPARISON OF f„i IN THE
LEADING-LOG POTENTIAL AND IN THE EAM

1.0

O. S
y{rAMSj

0. 2

&{r~MS)

0. 00. 0 0. 2 0. 4 0. 6 0. 8

I

1.0
rA—MS

1. 2

FIG. 2. Wave function components in the QCD efFective
action model, for m = 0 and Nf = 3. y and P are the upper
and lower components, respectively [see Eqs. (8) and (29)].

We solve the system of coupled Mmcwell and Dirac
equations, Eqs. (28) and (29), subject to the boundary
conditions Eqs. (30)—(32), using an iterative numerical
method similar to the one we described in Ref. [23]. For
rn = 0 and Nf = 3, we find that the soliton radius is
R = 1.16A . The wave-function components are plot-
ted in Fig. , where the efFect of the running coupling
at short distances is clearly demonstrated. Note espe-
cially that for a fixed coupling n, we would have had
P(r ~ 0) oc a.y(r ~ 0) ~ oo. Instead we have y -+ finite
and P(r -+ 0) oc cr, (r)g(r) -+ 0, as given in Eq. (20). The
rapid changes in g and P at short distances, due to the
logarithms in Eq. (20), are also evident in Fig. 2.

We show below that the rapid rise in y(r ~ 0) to a
finite limit determines the main features of the evolu-
tion of f„i(mq). It might be argued, however, that this
'behavior is some kind of a "residual" efFect of the un-

We now have two relativistic descriptions of the short-
distance physics of the Qq system: (i) the "pure" leading-
log Coulomb potential, and (ii) the /CD effective action
model (EAM). Both descriptions lead to the same short-
distance limit for the light quark wave function, which
we claim is an essentially model-independent property of
the Qq system (implied by our dynamical ingredients A
and B, see Sec. I).

On the other hand, these two descriptions are to-
tally different at long distances. The EAM gives a
well-behaved (and qualitatively correct) description of
the long-distance physics, while the pure leading-log
Coulomb potential is completely unphysical at long dis-
tances. Nevertheless, we find below that both the EAM
and the pure Coulomb potential give essentially identi-
cat results for the evolution of f„~(mq). Furthermore, it
is easy to correlate the short-distance behavior of these
wave functions [Eq. (20)] with the corrections that we
find to the NR scaling law. We think that a compar-
ison of the decay constant as computed in the "pure"
leading-log Coulomb potential and in the EAM demon-
strates that the short-distance efFects of interest can be
isolated in a model-independent way.

To make specific calculations, we must provide a def-
inite connection between the overlap radius rq and the
heavy quark mass mq. On physical grounds we do not
expect rq to be much smaller than 1/mg, rq & I/mq
Furthermore, since we do not know the connection be-
tween the quark mass mg and the meson mass Mp with-
out a complete model calculation, we make the additional
approximation mg = M~ (which should hold in the limit
of sufficiently large mg). We therefore take rq = 1/Mz.
Finally, since we have computed the wave function with

mq = oo, its normalization JV is independent of mq, and
does not contribute to the evolution of the decay con-
stant. We show below that all of these approximations
only suppress the effects we are interested in.

We therefore compare the Mp dependence of the "re-
duced" decay constants
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and

(AMs1 1 t' 1
fEAM(MP) lx xEAM I

(36a)

/AMs'1 1 t' 1

(
fNR(MP) ~

M I M I
~

P (&s P
(36c)

Notice that we have included in all three functions fEAM,

fc,„l, and fNR a correction to the NR scaling law Eq. (3)
due to a finite renormalization of the matrix element put
forward by Voloshin and Shifman (VS) [9] and Politzer
and Wise (PW) [10]. Their correction corresponds to the
power of as(Mp) in Eqs. (36a)—(36c), where

1
4vr2bo (37)

We use gEAM and gg, „l to denote the wave function as
computed in the EAM and in the leading-log Coulomb
potential, respectively. The scale for the evolution of
these wave functions with meson mass MP is set ex-
plicitly by the /CD scale parameter AMs. We observe
that both fEAM and fc«l approach the NR scaling law
(including the VS-PW effect) Eq. (36c) for sufficiently
large MP, since our relativistic wave functions satisfy
y(l/MP) -+ 1 for MP » AMs.

In order to study the mq evolution of the decay con-
stant, we fix the light quark mass; we take m = 0 (cf.
m„,g « AMs). We take Ny = 3 in the rest of this paper.
Note that yc,„l is computed from Eq. (13) with ( also set
to zero (we cannot compute ( and the wave-function nor-
malization JV in the pure leading-log Coulomb potential,
since @c«l is not normalizable at long distances).

To compute gEAM we solve the coupled equations of
motion in the EAM subject to the full set of boundary
conditions [cf. Eqs. (30)—(32)]. In contrast, the wave
function gg, ul in the leading-log Coulomb potential is
obtained by integrating Eq. (13) with ( = 0 outwards
from the origin, subject only to the condition that the
wave function is normalizable at the origin. Of course,
this wave function develops a singularity as r ~ A,~.
We use Eq. (35) to express the potential scale mass Ap r,

in terms of AMs, when solving Eq. (13) for yc „l. We use
AMs for the scale mass in the VS-PW correction [that is,
as the scale for the running coupling n, (MP) in Eqs.
(36a)—(36c)]. For reasonable values of AMs, in the neigh-
borhood of 200 MeV, this corresponds roughly to the
scale mass used by VS in Ref. [9].

To compare the evolution of fEAM~ fc«l~ and fNR it
is appropriate to normalize them to have the same value
at a large "reference" mass M,ef.

(36b)

It is also instructive to compare these functions with the
scaling law that is obtained in the extreme nonrelativistic
quark-model picture (cf. Ref. [3]):

fEAM(Mref) = fC«l(Mref) = fNR(Mref) = I,

M«r » AMs (38)

The precise value of Mref is unimportant. We take Mref
to be large since all calculations for the evolution of the
decay constant should agree in the limit mq ~ oo, where
the physics is well understood. The three "reduced" de-
cay constants are plotted in Fig 3, with M«r = 60AMs.
The three functions approach the same asymptote at
large meson masses Mp.

We see that the curves for fEAM and fc „l are very sim-
ilar, all the way down to small masses MP = 5AMs. The
outstanding feature of the relativistic curves is that they
both possess a maximum. This maximum is due entirety
to the relativistic dynamics of the light quark at short
distances. These dynamics cause g(r = 1/MP) to in-
crease as MP increases, which "temporarily" overcomes
the decrease in the kinematical factor I/gMP. Thus, f„l
rises with MP before it falls. The location of the maxima
in fEAM and fc«l differs only by = 15%. Although we
must treat an extrapolation to small meson masses with
caution, the occurrence of a maximum in the relativistic
decay constant is a physical effect.

We conclude from this analysis that fEAM and fc«l are
determined almost entirely by the short-distance prop-
erties of the relativistic wave function in the leading-log
Coulomb potential, even at masses as low as MP = 5AMs.
This conclusion is supported by the fact that gEAM
and gc«l exhibit such different behaviors at long dis-
tances (gc«l is completely unphysical, while yEAM is
well-behaved), and by the fact that the main features in

the evolution of fEAM and fc,„l are directly correlated
with the evolution of y(r) at short distances, due to the

3.0

fNR

fCoul

2,0
/

1.0
10 20 30 40 50

Mp/AM,

60

FIG. 3. Reduced decay constants in the effective action
model fEAM (solid line) snd in the leading-log Coulomb po-
tential fo „l (dashed line) versus meson mass Mp. The
extreme nonrelstivistic scaling lsw fNR is also illustrated
(dashed-dot line). The functions sre defined in Eqs. (36s)—
(36c). All three curves include s correction due to Voloshin
and Shifman, and Politzer and Rise. The curves are normal-
ized to 1 st MP = 60AMs [cf. Eq. (38)]. The value of A~M in
these curves is arbitrary.
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leading-log Coulomb interaction.
The only significant qualitative difference between the

two relativistic functions in the region M~ 5AMs

is that the maximum of fc«~ is somewhat more pro-
nounced. This is due to the increasing effects of the un-
physical Klein paradox on y«„&(l/Mp) as Mp ~ A~, t
(from above). As there is no Klein paradox in gEAM, we

use fEAM to extract quantitative results throughout this
paper.

A practical use for Fig. 3 is that if one is given a value
for fp at a particular mass M~, then one can read off the
value for the decay constant that would be predicted by
extrapolating to another meson mass. In this connection,
we observe that the NR scaling law (including the cor-
rection due to VS-PW) substantially overestimates the
decay constant at small Mp. Alternatively, if the NR
scaling law is used to extrapolate from the known value
of fp for a light meson (such as f~), then one will signif-
icantly underestimate the value of fJ for heavier states.

The reduced decay constant fEAM gives the following
lower bound on the meson mass M~, q at which fp is
maximal:

pe8» ~ 6'7AMs (39)

V. COMPARISON WITH THE NR SCALING
LAWS FOR THE D AND B MESONS

In order to minimize the model dependence inherent in
a calculation of the decay constants of individual mesons
(which requires a complete calculation of the Qq over-

We obtained AMs 240 MeV in a 6t to the slope of the light
meson Regge trajectories [24], based on our leading-log EAM
for Qq mesons with a dynamical scalar quark [23]. Adler and
Piran obtained A~M 220 MeV in a Bt to the quarkonium
potential in their EAM for the QQ system [19]. A somewhat
smaller value of AMs in the same model was obtained in a 6t
to the spin-averaged quarkonium spectrum by Hiller [31].

The reason why we obtain a lower bound for M~„k is
that we underestimated the overlap radius rq (i.e. , we
took rq = I/M~, while we expect on physical grounds
that rq ) 1/rriq ) 1/M~). To see what efFect this has
on f«~, suppose for the sake of illustration that the cor-
rect overlap radius is given by rq = p/Mp, where we
expect that p ) 1. Then (neglecting the correction due
to VS-PW for simplicity) if the "reduced" decay constant

fEAM =—y(1/Mp)/v'Mp is maximal at Mp = M«g, the
"true" decay constant f„~ = JVg(rq)[12/Mp]i~z has its
maximum at Mp ——pM„g, which follows from a simple
rescaling.

With the reasonable value AMs
—220 MeV, Eq. (39)

gives M~„k & 1.5 GeV, near the D meson mass. Note
that the development of a maximum in f„~ is evident
at even larger meson masses. For example, our results
show that f„~(M~) changes concavity at Mp & 12.9AMs
(=2.8 GeV for AMs ——220 MeV).

lap, including the wave-function normalization and heavy
quark recoil), it has become customary to compute ratios
of decay constants (see e.g. Refs. [9—ll]). Using the re-

duced decay constant fEAM, we place the following lower
bound on the ratio between the decay constants of the B
and D mesons4:

fa ) Ma t'~. (MD)r'
x 1.32 = 0.86M. & .(M )&

(AMs ——220 MeV), (40)

where we now use rq = 1/rnq for the overlap radius
(with m,, = 1.6 GeV and mb = 5.0 GeV). The fact that
we obtain a lower bound for this ratio is again due to a
systematic underestimate of the overlap radius [see the
paragraph following Eq. (39)]. This can be readily veri-
fied from the curve for y in Fig. 2, by using rq = p/mq,
with p) l.

We have written our result in terms of a correction
to the NR scaling law, with the renormalization correc-
tion due to Voloshin and Shifman (VS) and Politzer and
Wise (PW) also factored out separately. We note that
while the correction due to VS-PW dominates in the limit
Mp ~ oo, the effects due to the relativistic wave function
are quantitatively more significant in the subasymptotic
region Mp Mg. For example, their correction to the
NR scaling law for f~/f~ amounts to a factor = 1.09 [9],
while our eKects give a correction of at least 1.32.

We also compare the evolution of the relativistic mix-
ing parameter B„~(rnq), with the corresponding NR scal-
ing law, BNp, = 1 [Eq. (4)]. It is important to note
that, unlike the case of the decay constant, to leading
order there is no renormalization of the matrix element
which defines B [9, 10]. On the other hand, we find that
the eKects of a relativistic wave function with asymptotic
freedom are quantitatively as important for B as for the
decay constant.

Since the lower component of the Dirac wave func-

tion in the leading-log Coulomb potential goes at short
distances like P(r ~ 0) o:,(r) [cf. Eq. (20)], we find

that B«i(mq) ~ 1 only for rnq -+ oo [cf. Eqs. (11)
and (12)]. Figure 4 shows B„~(rnq) as computed in our

EAM, using Eq. (12) to approximate the overlap of the

Qq pair. We take rq = I/mq for the overlap radius. We
see that our efFects cause B to decrease extremely rapidly
for mq + 10AMs. Unlike the decay constant, the mix-

ing parameter therefore depends strongly on the shape of
the heavy quark wave function that is used in the over-

lap integral. We thus require a better treatment of the

Qq overlap than we have used here. However, it is clear
from Fig. 4 that relativistic eKects are quantitatively sig-

nificant, making a correction of about 20Fo to the NR
scaling law at the D meson mass scale, for example.

We note that the ratios of decay constants obtained from a
two-loop approximation [19,24] to the @CD effective action
is roughly the same (to within —10%) as the ratios obtained
in the one-loop approximation used in this paper, for a given
value of AMS.
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FIG. 4. Relativistic neutral-meson mixing parameter
B„&(mq) versus heavy quark mass mg. The curve is com-
puted from Eq. (12) using an overlap radius rq = 1/mq and
the wave function in the efFective action model. We observe
that B„~(mg -+ oo) ~ 1. The value of AMs in this curve is
arbitrary.

VI. EXTRAPOLATION TO THE K MESON
AND ABSOLUTE NORMALIZATION

FOR fg) AND fs
In order to extract absolute values for the individual

decay constants fD and fB with as little model depen-
dence as possible, one may consider a possible extrapo-
lation of our calculations to the K meson. This would
enable us, in principle, to use the experimental value of
f~ as a normalization.

We recognize however that our methods for treating
finite my effects are of uncertain reliability when applied
to the s quark (although for the application to the K
meson, we use a constituent mass rn, = 500 MeV). Fur-
thermore, our model explicitly breaks chiral symmetry
On the other hand this extrapolation is, in our opinion,
more justified in the context of a "one heavy quark" ap-
proximation that in purely NR models where the extrap-
olation from f~ is frequently made.

In this connection, it is instructive to compare the evo-
lution of our relativistic decay constant with NR quark
model calculations (e.g. , Ref. [3]) which claim that the
NR scaling law is already valid for meson masses as small
as Mp - Ma. Indeed, we find

x 2.00 (AMs ——220 MeV), (41)

where the factor of 2.00 comes entirely from the relativis-
tic wave function.

We do not include the Voloshin and Shifman, Politzer
and Wise correction in our result for f~/fa, since their
(perturbative) correction cannot be reliably estimated in
the K to D region. We observe that the tendency of
their e6ect in this region would be in the same direction
as ours. We do however include their correction below in
going from f~ to fB, in a manner consistent with Sec.
V.

We clearly see from Eq. (41) that if the NR scaling
law is used to extrapolate from the value of fJ for a
light meson, such as f~, then one will significantly un-
derestimate the value of fJ for heavier states. We point
out that a constituent quark model based on the nonrela-
tivistic (or quasirelativistic) Schrodinger equation cannot
account for the significant relativistic effects described
here, which derive f'rom the short-distance behavior of
the Dirac wave function.

We can make a more complete estimate of these ratios
by accounting for the mq dependence of the light quark
wave function normalization (recall that we computed
the wave function in Born-Oppenheimer approximation,
with mq = oo). In typical potential model calculations,
finite mq effects on the wave function (due in particular
to the color-magnetic moment of the heavy quark) tend,
for example, to make the radius of the D meson smaller
than the radius of the K. As conservative estimates of
the resulting corrections to the wave-function normaliza-
tions, we take

AD/A~ (+~/+$7) (1 2)

(42)

/i/B/jV~ ~ (R$7/RB) / ~ 1.

These values for the ratio of meson radii are typical of
constituent quark model calculations that include the
perturbation due to the heavy quark magnetic moment
(see, e.g. , Refs. [7, 8, 32]).s

If we now assume that we can apply our calculations
to the K system, in order to use f~ as input to individ-
ually estimate fD and fB, we obtain the following lower
bounds, which now include our estimates of the above
finite mq effects:

x 2.00 x 1.3 w f~ & 225 MeV

(43a)

x 1.32 w fB & 195 MeV,
fB ) M~ Fa, (MD) t

D MB (&s B

(43b)

where we again used AMs
——220 MeV. If we use in-

stead AMs = 180 MeV, then these values are lowered by
about 10%. The first numerical factor in each line of Eqs.
(43a) and (43b) is the correction due to the relativistic
wave function; the second numerical factor in Eq. (43a)
comes from the wave-function normalization correction,
Eq. (42).

We note that in a full calculation of 6nite mg effects in our
relativistic EAM, we expect to obtain R~ somewhat smaller
than R~ (R~/Rs 1.10), as a result of an additional per-
turbation due to the recoil of the heavy quark. This vrill tend
to increase the value of fs relative to f~, further enhancing
our relativistic correction to the NR scaling law in this case.
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We must again stress that we consider results obtained
with fa as input to be rough, given the uncertainties in-
volved in our treatment of finite mg eEects when applied
to the K meson. However, it is obvious from Eqs. (43a)
and (43b) that the NR scaling law should not be used to
extrapolate from f~, due to substantial corrections from
relativistic and leading-log Coulomb dynamics. More-
over, our estimate for the ratio f~/f~ in Sec. V [Eq.
(40)], which does not depend on frt, demonstrates that
the NR scaling law should not be used to extrapolate
from f~

In this connection, we note that one measure of the
reliability of our Born-Oppenheimer approximation for
a heavy quark of given mass mq is the probability of
finding the light quark inside the Compton wavelength
rq 1/rnq If .the probability is very large, then we
expect that finite mq efFects on the wave function cannot
be neglected. However, even inside a distance as large as
r = (2AMs) i, we calculate (using our EAM) that the
total probability of finding the light quark is only about
20Fo.

A phenomenlogically interesting check of the consis-
tency of our extrapolation to the K meson is to consider a
more complete model calculation of f~ within our /CD
effective action approximation. The absolute value for
frt is obtained from the wave-function normalization in
the EAM, JV oc (AMs)s~z [cf. Eq. (10)]. We parametrize
the overlap radius of the Qq pair using rq = A/mq in
Eq. (10) and fit A from the experimental value of fJi
Although such an application must again be viewed with
caution, we think that this example lends support to our
results —this fit to f~ is obtained with an overlap radius
that is consistent with the Compton wavelength of the
constituent s quark, rq = 1.50/rnq (rn, = 500 MeV),
and with a reasonable value for the /CD scale parame-
ter, AMs

—220 MeV.

VII. SUMMARY AND OUTLOOK

We have found substantial corrections to the well-
known nonrelativistic scaling laws for the decay constants
and mixing parameters of the pseudoscalar Qq mesons,

due to two fundamental dynamical properties of this sys-
tem: relativistic dynamics for the light quark and an
asymptotically free Coulomb interaction. Our analysis
is based on very general, model-independent, features of
these dynamics. An important element of our analysis
is that the scale for the matrix elements is set explic-
itly by the /CD scale parameter. This implies a direct
correlation between our calculations of the matrix ele-
ments and the values of other fundamental quantities
of hadronic physics. Our quantitative estimates in the
regime MJt & Mp + M~ [cf. Eqs. (39)—(43)] have im-
portant consequences for phenomenology. We note that
while the short-distance correction due to Voloshin and
Shifman [9] and Politzer and Wise [10] (coming from a
finite renormalization of the matrix element which de-
fines fp) dominates in the limit Mp ~ oo, we find that
the effects due to the relativistic wave function are quan-
titatively more significant in the subasymptotic region
Mp & Mg [33].

The analysis presented in this paper can be made more
complete by improving our treatment of finite rnq efFects
in the Qq overlap integral, and in the normalization of
the light quark wave function. We note, for example, that
the corrections we found to the NR scaling law will be en-
hanced by using a realistic connection between the over-
lap radius rq and the heavy quark mass mq. The overlap
radius would be uniquely determined by computing the
wave function for the heavy quark in a full treatment of
the Born-Oppenheimer approximation. It would also be
interesting to analyze the inHuence of an asymptotically
free relativistic wave function on other hadronie matrix
elements of current interest, such as those required in set-
ting limits on possible extensions to the standard model.
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