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Higher-order corrections to jet cross sections in e+e annihilation
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A general method to calculate next-to-leading-order multijet cross sections is presented. The
emphasis is on how to isolate the soft and collinear divergences in multiparton matrix elements at
all orders in the number of colors. As an example, the method is used to isolate the divergences
in e e -+ qq+ n gluons and e+e -+ qqqq+ n gluons, where, for simplicity we keep only the
terms at leading order in the number of colors. The usual algebraic complexity of calculating next-
to-leading-order corrections in @CD is avoided, especially the d-dimensional squaring of the real
matrix elements and the hard phase-space integrals. Some remarks about the stucture of the virtual
contributions are made. As a first application, and to examine the feasibility of the approach, explicit
Monte Carlo programs are constructed which contain the complete next-to-leading-order corrections
to e+e -+ 2 jets and e+e ~ 3 jets. It is demonstrated that the method works and can be readily
applied to a variety of processes.

PACS number(s): 13.87.Ce, 12.38.Bx, 13.65.+i

I. INTRODUCTION

By the use of a suitable experimental jet definition, it
is possible to classify experimental data in terms of the
number of observed jets. For example, the processes

~~n& jets,

pp ~ W/Z+nz jets,

aild,

e+e ~ n3 jets,

(1.2)

(1.3)

have been observed for ni & 6 [1], nz & 4 [2] and ns & 5

[3]. It is then a theoretical challenge to compute exclu-
sive jet cross sections with sufficient precision to compare
with the data. Moreover these multijet final states of-
ten are a background to new physics. Therefore a good
understanding of multijet final states is of the utmost
importance.

One immediate problem is that perturbative @CD pre-
dicts parton cross sections, while experimentally one ob-
serves only hadrons. As yet the hadronization process
is only known phenomenologically and, therefore, one
cannot directly relate theory and experiment. Although
there is an approximate correspondence between the un-
derlying parton configuration and the hadronic structure
of the event, one must always bear hadronization efFects
in mind when computing multiple-jet cross sections at
the parton level.

The lowest-order matrix elements for (1.1)—(1.3) have
been computed for ni & 5 [4—10], nz & 4 [ll—14) and
n3 & 5 [15,16, 12, 13, 17] by making use of helicity ampli-
tudes [18], color decompositions [7, 8, 19] and recursion
relations [20, 10] to control the rapid increase in the num-

ber of contributing Feynman diagrams as the number of

partons involved grows. The cross section is obtained by
Monte Carlo integration over all the final-state partons,
and, at this order, the individual partons are identified
as jets. The experimental acceptances and jet algorithms
are then directly applied and, since the jet four-momenta
are known, one can study any distribution such as the av-
erage transverse jet momentum or the two-jet invariant
mass. Comparisons with the data have proved reason-
able, bearing in mind the fact that one is comparing
a parton level calculation with hadronic data. In gen-
eral, the lowest-order matrix elements predict shapes of
distributions reasonably well. However, because of the
uncertainties related to the scale choice p at which we
evaluate the strong coupling constant n, (pz), the overall
normalization is uncertain.

In principle, the normalization is better predicted once
higher-order /CD corrections are included since the scale
dependence tends to cancel amongst the contributions at
difFerent order in the coupling constant. On the other
hand, as higher-order corrections are included, more and
more partons are admitted into the final state. In con-
trast with the lowest-order interpretation, the partons
may be soft and/or collinear and cannot be directly iden-
tified as jets. The question then arises of how to define
a jet cross section at higher order. Clearly this should
be done in such a way that the parton shower is pertur-
batively reconstructed and each jet should contain more
and more partons. By doing this, the average energy How

around the jet will be correctly modeled and the jet cross
sections will be sensitive to the jet-de6ning algorithm.

Since the jet is made up of partons, it is also necessary
to define a parton in higher orders. A natural definition
is to introduce a parton resolution criteria to define when
a parton is resolved either as a single hard parton or as
a cluster of partons. A practical consequence of this is
that divergences associated with the soft and/or collinear
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partons can be isolated and analytically canceled against
the divergences from the virtual graphs. In dimensional
regularization [21,22], which entails working in d = 4 —2e
dimensions, these divergences are associated with poles
in 1/e~. After the analytic cancellation, the resolved
parton matrix elements contain no poles in 1/e and may
therefore be evaluated in the 4-dimensional limit. Simi-
larly, the phase space is 4-dimensional but restricted by
the parton resolution criteria.

As in lowest order, one can then directly apply Monte
Carlo methods to compute the jet cross section. For ex-
ample, at next-to-leading order, the n-jet cross section
receives contributions from the n-parton and (n+ 1)-
parton final states. In each case, the experimental jet
algorithms can be applied to the parton momenta to ob-
tain jet momenta, which may or may not be the result
of clustering partons together. The next-to-leading-order
jet cross section is therefore fully differential.

It is important to note that the parton resolution crite-
ria is totally unrelated to any experimental jet definition.
Furthermore, although the n-parton and (n+ 1)-parton
cross sections depend logarithmically on the resolution
criteria, the physical jet cross section does not.

In Sec. II we will define the exclusive jet cross sections
to all orders in perturbation theory and discuss the physi-
cal picture behind the introduction of a parton resolution
criteria. We use this parton resolution criteria to isolate
the divergences which occur when one of the partons is
either soft or collinear with one of the other partons [23]
and is therefore unresolved (Sec. III). As we will show,
these divergences have a universal structure and multiply
the lowest-order matrix elements in a nontrivial way. Al-

though our scheme is applicable to partons in the initial
state, for now we will focus on final-state partons alone.
In particular, we will isolate the singularities at leading
order in the number of colors for

e+e —+ qq+ ng, (1.4)

and

e+e ~ qqqq+ (n —2) g, (1.5)

In order to calculate exclusive jet cross sections it is
necessary to define the cross section up to all orders in

when one of the partons is unresolved In Sec.. IV, we

will show how to extract the most singular (1/e ) poles
from the virtual one-loop graphs contributing to (1.4)
and (1.5). These poles arise when a virtual gluon within
the loop becomes soft, and ultimately cancel against the
real soft gluon contributions of Sec. II. As an explicit
example, we will apply our results to e+e -+ 2 jets at
0(a,) and e+e ~ 3 jets at 0(n~) in Sec. V, where we

show some numerical results from the next-to-leading-
order Monte Carlo calculation. In particular, we will

demonstrate that distributions of jet observables are in-

dependent of the parton resolution criteria. Finally, we

summarize our results and indicate possible extensions
in Sec. VI. Helicity amplitudes for the relevant matrix
elements are collected in the Appendix.

II. DEFINING EXCLUSIVE JET
CROSS SECTIONS

perturbation theory. Of course we define only the per-
turbatively calculable part of the jet which is the parton
shower. The subsequent hadronization is not in the realm
of perturbative /CD.

In lowest order, it is clear how to define the jet cross
section since the whole parton shower is modeled by a
single parton and we must therefore identify each outgo-
ing parton as a jet and this implies that we must apply
the jet-defining cuts to each individual parton. In other
words, there is only one parton in each jet cone which
carries all the jet energy and momentum; the jet axis
is thus identified with the parton four-momentum. Any
sensible experimental jet algorithm should reproduce the
lowest-order results in a global way.

A simple example of an exclusive jet cross section,
which we will use throughout the paper, is e+e anni-
hilation into three jets, for which the lowest-order contri-
bution is the order-n, process e+e ~ qqg. One possible
jet definition is a minimum mass cut such that the invari-

ant mass of any jet pair is larger than an experimentally
defined minimum s«q..

s~„, = (P,, +P,, ) ) s,„t, (2.1)

where P&, is the fou. r-momentum of jet i. This translates
down to the parton level by demanding that the three
possible invariant masses that can be constructed from

the parton momenta are all larger than the minimum

invariant mass s«t, . This more or less ensures that the
subsequent hadronization of these partons will result in

three distinct showers which are experimentally identified

as jets. This means that the thr""-jet cross section is

given in lowest order by

doq(e+e ~ 3 jets) = 8 doq(e+e ~ qqg), (2.2)

where 8 contains the experimental jet definition for a
three-jet final state,

( ae s«t) j~ (sea s«t)~(sag s«t) ~ (2 3)
with s,~ the invariant mass of partons i and j and
dog(e+e ~ qqg) is the 0(o:,) leading-order cross sec-
tion for e+e -+ qqg. The step function 8(z) is 1 for
z & 0 and 0 otherwise.

It is clear that it is necessary and desirable to ex-
tend the above scheme to include higher order -correc-
tions. This gives two distinct improvements. The first
one stems from the fact that by increasing the order of
perturbation theory the dependence on the scale choice p
at which we evaluate n, (p2) is reduced. The second im-

provement results &om the fact that a jet is a relatively
"fat" object in phase space and may contain more than
one parton. In fact, by increasing the order in n„we
begin to reconstruct the parton shower. In other words,
instead of modeling the shower by one hard parton we de-

scribe the shower by more partons. This will improve the
predictive power of the calculation because it becomes
more and more sensitive to the details of the jet find-

ing algorithm. Eventually, adding all orders, this scheme
describes the full parton shower.

Let us 6rst look at what happens in our example
e+e —+ 3 jets. We saw that in lowest order all the
contributions to the jet cross section come from the par-
ton process e+e —+ qqg. At next-to-leading order, there



1982 W. T. GIELE AND E. %.N. GLOVER 46

= e der& (e+e -+ 3 partons)

+ ~~ e+e- ~ 4 p~t;ons, (2.4)

where, do&+(e+e ~ 3 partons) is the divergent virtual
O(n2) cross section and do2(e+e -+ 4 partons) is the
tree level e+e -+ qqgg and e+e -+ qqqq cross section.
The integration represents the projection of four-parton
phase space onto three-jet phase space. In practice, this
is a very difficult and probably impossible calculation be-
cause of the severe phase space constraints on projecting
the contributions from the four-parton matrix elements
onto the three-jet phase space. So one is restricted to
integrating out the final state without defining the jets
(such as event shapes [16, 24]). Alternatively, we could
have chosen jet-defining cuts and clustering algorithms
and analytically computed the thr""=jet cross section [25,
26]. However, often one wants to change the jet algorithm

are two contributions. One contribution comes from the
real diagrams (i.e. , the tre"-level four-parton processes,
e+e -+ qqgg and e+e ~ qqqq [15,16]). There are two
distinct possibilities in which the four-parton processes
will not contribute to the lowest-order four-jet cross sec-
tion but to the 0(a, ) correction to the three-jet cross
section. First of all, we can have two almost collinear
partons within one jet. Depending on the clustering al-
gorithm they will be combined to reconstruct the jet axis
and energy. The other possibility is a soft parton outside
the jet cones. This will model the energy flow between
the jets. Each of these contributions gives a divergent
contribution to the three-jet cross section. However, at
the same order in n„ the virtual graphs also provide a
divergent contribution which precisely cancels the diver-
gences arising from the soft and collinear regions [16].
Finally, after coupling constant renormalization, a finite
three jet cross section is obtained.

The above scheme has clear disadvantages since we
must integrate out the collinear partons within a jet ac-
cording to the clustering algorithm to obtain the contri-
bution to a given three jet configuration. Also the soft
radiation has to be integrated out. The resulting O(oz)
differential three jet cross section is then given by

d cry(e+e ~ 3 jets)

or try several of them and this would require redoing the
calculation. Furthermore, the detector often has some
difficult acceptance cuts which can have serious effects
on the measurements. It is impossible to include these
constraints in the analytic calculation.

At tree level we did not have these problems since the
parton momentum was directly identified with the jet
momentum. Therefore the jet definition and phase space
integration can be performed numerically with the aid
of Monte Carlo techniques. We want to do this for the
higher-order corrections as well. Therefore we will define
higher-order parton cross sections instead of jet cross sec-
tions. With these parton cross sections we can then (us-
ing the same Monte Carlo techniques as in lowest order)
obtain the physically measurable jet cross sections. So,
instead of interpreting the lowest order as a jet cross sec-
tion, we view it as a parton cross section and generalize
from that viewpoint. Of course the parton cross section
has no physical meaning and only after defining the jets
and performing the numerical integration to obtain the
jet cross section do we obtain a physically meaningful
result.

In order to obtain a parton-level higher-order cross sec-
tion, we have to define the concept of a parton in higher
orders. To do this we will envision an experiment with
a parton detector (i.e. , a detector which detects individ-
ual partons). This will guide us to the right concept of
a higher-order (or dressed) parton. Any detector has a
finite resolution, and our parton detector can resolve two
partons as individual partons if and only if the invariant
mass of the parton pair is larger than the quantity s
If the invariant mass of the pair of partons is smaller than
s;„the partons are unresolved and detected as a single
parton. No matter how small we choose sm;„, if we in-

clude all orders there will always be an infinite number
of partons within this invariant mass. The quantum cor-
rections will always render the final answer finite. Note
that this resembles a jet, the shower is replaced by a sin-

gle parton to model the behavior of the unresolved parton
shower

To see exactly how this works, let us return to our
example of e+e ~ 3 jets (2.4). In this case, the four-
parton phase space splits up into a part where all four
partons are resolved, one where only three are seen and
one where only two are observed. Schematically,

dog(e+e ~ 4 partons) = 8(sij smin) + 8(smin Sij ) d oz(e+e ~ 4 partons)

8(Sij Smin) + ) 8(smin Ski) 8(Sij Smin)
kl ijgkl

+ ) 8(Smin —Ski) 8(Smin —Skm) 8(sij —Smin)
kl, km ijgkl, km

+ ) 8(smin Ski) 8(smin Skin) 8(smin Skn) 8(Sij Smin)

kl, km, kn ijgkl, km, kn

+ d oq(e+e ~ 4 partons),
(2 5)
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where the sum (product) runs over the difFerent parton
pairs. In this equation, the first term represents the con-
tribution to the four-parton cross section when all four
partons are resolved, d ag(e+e -+ 4 partons). The sec-
ond and third terms represent the divergent contribu-
tions when one of the partons is either collinear or soft
respectively, d og(e+e t 3 partons) and d og(e+e
3 partons) and only three partons are resolved. Partons i
and j are collinear when a;g ( a»», while parton k is soft
when at least two invariants are unresolved, a~i ( a»;„
and ai, (a;„.The fourth term also represents config-
urations when parton Iq is soft while the three remaining
partons are resolved. However, as we will see later, in
the soft limit the matrix elements contain double poles
in any pair of invariants ah, i, al,», and ag„but never in all
three simultaneously as follows directly from the matrix

I

elements. This term therefore generates a contribution of
O(a;„) and is negligible. The terms not shown are when
two partons are unresolved, either two collinear pairs or
two soft partons or one soft and one collinear pair, and
therefore contribute to the O(case) two-parton cross sec-
tion.

Since all we have done is to divide up the phase space
in an arbitrary way, the jet cross section cannot depend
on a»;„. However taking the a»;„—t 0 limit simplifies
the calculation considerably, since now we can neglect
terms which disappear as a;„-p 0. Furthermore we can
make use of collinear and soft factorizations of the matrix
elements which are only valid in this approximation.

By relabeling the hard partons and integrating out the
unresolved partons, the full O(ci;d2) cross section for three
resolved partons is given by

dos (e+e p 3 partons) = e(a;g —a;„)[dos (e+e t 3 partons) + do2 (e+e -+ 3 partons)
e a 4 ~

~ ~

+ d o2 (e+e ~ 3 partons)]. (2 6)

Because of the Bloch-Nordsieck [27] and Kinoshita-Lee-Nauenberg [28] theorems, the soft and collinear poles cancel
against the virtual contributions to yield a finite result after the usual coupling constant renormalization. A somewhat
stronger theorem for the cancellation of the mass divergences was given in [29] where the divergences were shown
to cancel on a point-by-point basis between the phase space for physical particles and loop momentum space for
virtual particles. In fact, M we will show in the ne~ sections, the divergences are all proportional to the lowest order
three-parton cross section and may be explicitly isolated in d dimensions and analytically canceled, so that,

do2 (e+e ~ 3 partons) = ~(aij a»in) K(aqqt aqgt aqg) d o'i (e+e ~ 3 partons) + Q (2.7)

where P is the finite virtual contribution. The dynamical factor K multiplies the lowest-order three-parton cross
section and depends on both a;„and the invariant masses of the hard partons. Combining (2.5) and (2.7) yields the
full O(o,z) three-jet cross section

des(e+e 3 jets) = 8 des (eee 3 portent) +f des (eee 4 portent) (2.8)

Formally, (2.5)—(2.7) are evaluated in d dimensions; how-
ever, we see that (2.7) is, in fact, finite and the 4-
dimensional limit may now be taken. In particular,
doi(e+e —p 3 partons) may be evaluated in 4 dimen-
sions. Furthermore, the resolved four-parton cross sec-
tion is also finite and one can set d = 4 with impunity.
It is now straightforward to apply Monte Carlo tech-
niques to numerically estimate the cross section —three-
and four-parton events are generated and tested accord-
ing to the experimental jet definition e to see whether or
not three physical jets are observed. Note that this ap-
proach is closely related to that developed in /ED [30].
Recently, a similar cutofF approach to isolate the phase
space divergences for initial-state partons has been im-
plemented by Owens and collaborators [31].

III. THE DIVERGENT CONTRIBUTION
PROM ONE "UNRESOLVED" PARTON

In the previous sections, we have used the concept of a
parton resolution parameter to define finite resolved par-
ton cross sections for e+e —t n partons at leading and
next-to-leading order. In this section, we will first isolate
the soft and collinear divergences in the matrix elements
and then use the parton resolution criteria to derive the
divergent contribution to the cross section when one par-
ton is unresolved. For simplicity, we will work only at
leading order in the number of colors. The method is, of
course, easily extended to include the subleading terms
[32] (for a brief discussion of the subleading color terms
for the case of e+e ~ qqg see Sec. III J). First of all, we
must de6ne some notation.
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For e+e collisions at ~s = Q, the leading-order cross
section for n-jet production according to some experi-
mental jet definition 8 contributes at O(o(", ~) and has
the form

der„~(e+e -+ n jets) = 8 do„z(e+e -+ n partons).

(3.1)

The resolved parton cross section is given by

d o„2(e+e t n partons)

where the flux factor, C = 1/SQ~, contains the averaging

factors over the initial particle spins, M(1, . . . , n) are

the leading order matrix elements for n-parton produc-
tion while the resolved n-body phase space dP+ is eval-
uated numerically in 4 dimensions with the constraint

dP (Q;1, . . . , n) = 1

+g l lf +v i if &q

x 8(s;~ —s;„)dP(Q;1, . . . , n),
~ ~

(3.3)
where the identical particle factor for n resolved glu-
ons and nz~ (nq) resolved quarks (antiquarks) with flavor
f has been included. With this choice for the resolved
phase space, we define the statistical factor that must be
included in the matrix elements due to unresolved par-
tons.

As discussed in Sec. II, the next-to-leading-order n-jet
cross section receives contributions from both the next-
to-leading n-parton cross section and the lowest-order
(n+ 1)-parton cross section:

that all the partons are resolved according to the parton
resolution parameter s

de r(e+e n jets) = 8 do„r(e+e n psrtons) +fdo„r(e+e n+ t psrtons) (3.4)

where

2
do„~(e+e ~ n partons) =C JH(l, . . . , n) dP (Q;1, . . . , n),F

(3.5)
2

do+ ~(e+e ~ n+1 partons) =O' JH(l, . . . , n +1) dP (Q;1, . . . , n+1).

The efFective next-to-leading order matrix elements for n-parton production are defined by

2 2 2 2

JH(l, . . . , n) = JVt(l, . . . , n) + M(l, . . . , n,) + JH(l, . . . , n,) (3.6)

where subscripts indicate the contributions from the unresolved soft or collinear portions of phase space or from the
2 2

virtual contributions. We will now derive the structure of M and JH
S C

A. Tree-level matrix elements

The lowest-order matrix element for (1.4) is given by

M(Qy, 1, . . . , n,; Q~) = 8„(Qg, 1, . . . , n; Q2) V,
while, for (1.5),

M( Qg, Q~, Q,sQ4, l, . . . , n —2) ='T„( Qg, Q~, Qs Q4l, . . . , n —2)V . (3 8)

In these expressions, V)' represents the lepton current, while 8„and Z„are currents containing quarks and gluons.
These currents depend on the momenta of the partons which we denote by Kq, . . . , K„ for the outgoing gluons and
Qgt Q3 (Qz, Q4) for the outgoing quarks (antiquarks). Similarly, the gluon color is denoted by aq, . . . , a„while that
of the quark 1s cy, . . . , c4. Finally, the flavor of quark (antiquark) is denoted by f~

The current 8„may be decomposed according to the color structure [20, 33, 13]

8„(Qg, l, . . . , n;Q~) = ieg" ) (7 '. . .T ")„„S„(Qg,l, . . . , n; Q2),
P(x, ...,n)

(3.(j)

where 8„(Q&,1, . . . , n; Qz) represents the colorless subamplitude where the gluons are emitted in an ordered way from
the quark line. By summing over all permutations of gluon emission, all Feynman diagrams are accounted for. Note
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that the color factor associated with each 8„ is also ordered according to the color index of the gluon.
Similarly, the four-quark current may be decomposed as

7„(Qi)Qsj Qs) Q4j 1) ~ ~ ~ ) n 2) = A„(Qi) Qsj Qs) Q4j 1) ~ ~ ) n 2) Ai (Qi) Q4j Qs) Qsj 1) ) n 2)

+A„(Qs, Q4, Qi, Qsj 1).. . ) n —2) —A„(Qs, Qs j Qi, Q4, 1, . . . , n —2) ) (3.10)

where

Ai) (Qi, Qs, Qs, Q4', 1, . . . , n 2)

.eg"= i bfsf2

n-2

) ) (T" T'*)„„('T'+' T'" ')„„-A„' '(Qi, l, . . . , ~;Q4~Qs, i+1, . . . , n —2; Qs)
P(1,...,)),—2) )i=0

aq a, a +g a~a a

x8„' '(Qi, 1, . . . , i; Qs~Qsj i + 1, . . . , n —2; Q4) (3.11)

This amphtude represents Feynman diagrams where quarks Qi, Qs are coupled to the lepton current, while the QsQ4
pair is attach& ma a virtual gluon. Other configurations are obt&ned by permuting the quarl and antiquarks M
in (3.]0). By summing over the colors of the internal gluon, two color structures are generated. At leading order in
the number of colors, quarks Qi and Q4 (and Qs and Qs) are color connected and gluons 1, . . . , i (i + 1, . . . , n —2)
are emitted in an ordered way from each colored line respectively. This is represented by the ordered subamplitude
A~'~'. The second, color suppressed term is @ED like and is described by 8~'~' where now Qi and Qs (and Qs and

Q4) are color connected. Summing over i allows any number of gluons to couple to each colored line, and, as before,
all permutations of gluon emission are summed over.

B. Squared matrix elements

At leading order in the number of colors, the squared matrix elements for (1.4) are given by

n=0,
2 2

S„V" =e N 8„V"

&2) E
(3.12)

Strictly speaking, at leading order in N, we should replace (N —1)/N by N. However, it is an overall factor, and by
including it, we keep all terms to O(l/N ).

In the four-quark process, (1.5), we may neglect the contribution from Bi),
' ', (3.11), at leading order in the number

of colors. The squared matrix elements are then given by

7V~

). ). &„'(Qi)QsjQs)Q4)V" + '&„'(Qi Q4'Qs)Qs)V" + o
l N I

(3.13)

where,

+p(Qi)QsjQ»Q4) =A~' '(Qi'1 " ~'Q4IQs'&+1 " n —2'Qs)

+A„' '(Qs, i+ 1, . . . , n —2;Q2~Qi, l, . . . , i;Q4). (3.14)

Depending on the Havors of the quarks, not all of these
terms will contribute. For example, if pair QiQ& has a
different flavor from QsQ4, then the second term in (3.13)
vanishes according to the flavor b function in (3.11). It is
interesting to note that within the function Z, the order

of gluon emission with respect to the quarks is fixed.
This is enforced by the color structure, and, as we will
see later, determines the soft gluon behavior of the four-
quark matrix elements.

Note that, the two-quark process (3.12) and the four-
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quark process (3.13) generate the first two terms O.~i&

and 0'!zl, respectively, in the color expansion of the
e+e —+ jets cross section:

e„=N"+' ~~'l+ —~&'&+ O
IN ¹) (3.15)

We see that the terms neglected in the color expansion of
the two processes (3.12) and (3.13) are of both O(1/Nz)
in the jet cross section. Adding another term in the
color expansion involves contributions from the six-quark
process, e+e -+ qqqqqq+ (n —4)g, in addition to the
O(1/N2) terms of (3.12) and the O(l/N) terms of (3.13).

C. The soS behavior of the matrix elements

The soR gluon behavior for an ordered subamplitude
is very similar to the soft photon behavior of /ED am-
plitudes. In /ED, the soft photon couples to a charged
fermion line, resulting in an eikonal factor multiplying
the hard process [34]. For example, for a process with n
photons (with momenta K, and polarization vectors s, ,
i = 1, . . . , n) coupled to a charged fermion pair (with mo-
menta Q and P), the matrix element JH(Q;1, . . . , n; P)
factorizes when photon n becomes soR:

JH(Q; 1, . . . , n; P) ~ e e(Q; n; P)JH(Q; 1, . . . , n —1;P),
(3.16)

where

.(Q;n;P) ="„I K„K„Pp
(3.17)

The only Feynman diagrams that contribute in this limit
are those where the soR photon couples to the external
charged fermion lines.

In @CD, the gluons are themselves colored and there is
not an overall factorization of the matrix elements in the
soft gluon limit. However, the ordered subamplitudes do
exhibit a factorization of the soft gluon singularities as
in (3.16) [35,32]. This is because the partons are ordered
and form well defined color charge lines to which the
soft gluon can couple [36]. As in the /ED case, we ob-
tain an eikonal factor (which may depend on hard gluon
momenta) which contains the singular soft behavior. To-
gether with the factorization of multiple soft gluon emis-
sion, this was proven in Ref. [32] to which we refer the
reader for a more detailed discussion. The soft gluon
behavior depends only on the momenta of the external
color charged lines to which the soft gluon couples, and
is independent of the number and type of other partons
in the process. Similarly, the soft factor is independent
of whether or not any color singlet particles such as elec-
troweak bosons are participating in the hard scattering.

We will now examine the soft gluon behavior of pro-
cesses (1.4) and (1.5). If we take gluon s soft, the colorless
ordered subamplitude 8„(3.9) factorizes into an eikonal
factor multiplying the ordered subamplitude for n gluon
emission. Depending on the position of the soft gluon
with respect to the hard partons, we find

8„(Qi,l). . . , ,ns;Q )z~e(n;s;Qz) 8„(Qi, l, . . . , n;Qz),

8„(Qi, 1, . . . , m, s, m + 1, . . . , n + 1;Qz) -+ e(m; s; m + 1) 8„(Qi, 1, . . . , n; Q~),

8„(Qi,s, 1, . . . , n + 1;Qz) ~ e(Qi, s; 1) 8„(Qi, 1, . . . , n; Qz),

(3.18)

where e(a; s; 5) is given by (3.17). It is important to note that in /CD, a and/or b may be either a hard gluon or a
quark. Using these relations, the leading color contribution to the squared matrix element for e+e -+ qq+ (n+ l)g
with one gluon soR is

8„V" -+ e
I I I )&2) & N )F(, „)

2 ( 1
sF(Q1) 1, , n; Qz) 8„(Q»1»n; Qz)& + O

I »q¹y (3.19)

where

sF(Qi;1, "., n;Qz) =
I

2 I fa, i(s)+fiz(s)+" +f„g,(s),/'g'N)-
2

(3.20)

and where
2

f g(s) = e(a; s; 5)
8as ash

(3.21)

Note that compared to tree level (3.12), each term in the summation is now multiplied by a function sF which contains

all the soft gluon singularities. Furthermore, the soft factor sF depends on the order of the hard parton momenta and

is different for each gluon permutation. Clearly, the squared matrix elements do not exhibit an overall factorization

in the soft gluon limit.
Since the gluons are identical, we could have chosen any of the (n + 1) gluons to be soR resulting in a factor of

(n+ 1). On the other hand, the identical particle factor (3.3) for the remaining n gluons is 1/n! rather than 1/(n+ 1)!,
so that the factors of (n+ 1) cancel. The net result is that we can choose one of the gluons to be soft and ignore the
identical-particle factors of (n+ 1).
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For e+e ~ qqqq+ (n —1)g, the derivation of the soft gluon behavior is completely analogous. We find

2 t'g2N) (N2 —1

2y N2 )

x ) ) sP(Q1, 1~. . . ~~iQ41Qsiq+ ], . . . , ~ —2; Q2) +„(Ql,Q2, Q3, Q4)v"
P(l, ...,n —2) &=0

(1'i
+s&(Q1 1 ' ' ' i @21Qsi i + 1 ~ ~ ~ & 2i Q4) +~(Q1 Q4I Q3 Q2)+~ + 0

1
(3.22)

where, because the order of gluon emission with respect to the quarks within & is fixed,

sF(Q1, 1," &'Q41Q3'&+ I " rl —2, Q2)

= sP (Qs, i + 1, . . . , n —2; Q21Q1, 1, . . . , i; Q4)

(g2&1
fqg1(3) + f12(S) + + fg (3) + fq„+1(S)+ + f„zg (3)

= 3&(Q» 1» '~ Q4) + 3P (Q» i+ 1»& —2i Q2) (3.23)

«before, we obtain a structure where each term in the sum over gluon permutations is tree level (3.13) multiplied

by a permutation-dependent function containing the soft gluon singularities.

D. The soft behavior of phase space

Having isolated the soft behavior of the matrix elements, we need also to derive the soft behavior of (n+ 1)-particle
phase space in d dimensions. As we will show, the phase space factorizes into an n-particle phase space multiplied

by sn integral over the soft momenta. In d dimensions, n-particle phase space of a particle with mass QQ2 decaying
into n massless particles with momenta P, and energy E, is given by

dd —1P,
(2s) 6~"l(Q —Pl — —P„)

i=1
= (2 )" "~" ldR"(Q; P, . . . , P„).

dP (Q; Pl, . . . , P„)=

For example, the two-body phase space factor dR is given by

(3.24)

dR (Qj Pl) P2) = s12 ~ 1 ds126($12 —Q ))
2 (3.25)

where we have transformed the integration variables to an integration over the two-particle invariant mass 312 and
the (d —1)-dimensional orientation angle.

Similarly, the three-particle phase space is

d-2

(Qi Pl) P2) P3) g 2 (Q ) 3123133232r("-,2)

d-4
dAg 1 2ds12dslsds236(312 + 313 + 323 Q ). (3.26)

Since we will take momentum P3 to be unresolved, we have integrated out the angular orientation of P3 with respect
to the observed momenta Pl and P2. We define the region when Ps is soft to be

sos & 3;„((Q (i = 1, 2), (3.27)

where 3;„is the parton resolution parameter discussed in Sec. II. In this limit, we ignore momentum Ps in the
numerator of (3.26) and the three-body phase space factorizes:

where

(Q j Pl & P2) P3) ~ dR (Q i Pl i P2)dRsnft (Pl ~ P2 y Ps) ~ (3.28)

d 2 2-d
dRSQft, (P1 & P21 P3) =

g 2 312 ds13ds23 313323
2I'( 22)

d —4
2

e(smin 13)g(smin 323). (3.29)
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Specializing to the case d = 4 —2t, the soft phase space factor is

( )
(4K) ds 13dS23 313323

16m' I'(1 —t) 312 „312 e(s; —313)e(s;„—323). (3.30)

It is straightforward to generalize this factorization for (n + 1)-particle phase space by splitting off a three-body
phase space, taking the soft limit and then recombining the resulting two-body phase space. For example, when P,
becomes soft, we have

dR (Q; Pl). . . , P„2,P)s) P3) P, ) = dR (Q) Pl ). . . , P„2,P~) dPH dR (P~, P)s) P3) P, )
—+ dR" (Q; Pl, . . . , P„2,PH ) dPH dR"(PH, P, P3)dR"„f~(P,Ps, P, )
= dR (Q; Pl, . . . , P„2,P, Ps) dR," (P„P3,P,).

(3.31)

We can therefore @ways fetor out a soft phd space fetor Msoclated with the unresolved gluon which regularizes
matrix element singularities in 3, and ss3. As can be seen in (3.20) and (3.23), the matrix elements never have
overlapping divergences with more than two singular lnvarlant mMses. Therefore, by suitably f~torhing the soft
phMe space for e~h ordered subamplltude we obtain a completely reg lar cross section

E. The soft behavior of the cross section

In the previous subsections, we have shown how the matrix elements and phase space factorize when one of the gluons
become soft. We will now combine these results to obtain the soft behavior of the cross section for e+e -+ qq+(n+1)g
and e+e -+ qqqq+ (n —1)g. Omitting the overall flux C in the intermediate steps, the cross section contribution
from a single ordered subamplitude, 8„,when gluon 3 is soft is

do „+1= 8„(Q1,1, . . . , a, 3, b, . . .~; Q2) V" dP (Q; Q 1,Q2, 1, . . . , a, b, 3)

2N 2

l fa3(s)d&;,&(a, b, s) 8( Q',lI, . . . n; Q2) V" dP"(Q;Q»Q2, 1, . . . , n)

(g2N 'i
l fats(s)dP, '„,(a) b) 3) da„.

2 )
(3.32)

All of the dependence on the soft gluon momenta has factorized and multiplies the cross section for a single ordered
subamplitude for e+e -+ qq+ ng where now all the partons are resolved. We can now integrate out the soft gluon
behavior for this subamplitude using (3.21) and (3.30) and leaving all other phase space integrations over the resolved

partons undone:

dssb

W —1—6
sasssb

Sab

) I (I &) & smin J & (smin)
(3.33)

where p, is an arbitrary scale introduced to keep the strong coupling constant, o;, = g2p 2'/4m, dimensionless in d

dimensions.
By choosing the correct soft phase space factor to integrate for each subamplitude, this procedure can be extended

to include the full soft behavior of the cross section:

(3.34)

Note that this factor is dependent on the gluon permutation and multiplies the cross section for each ordered subam-

plitude. At leading order in the number of colors, the effective squared matrix elements for e+e —+ qq+ ng with one

unresolved soft gluon are, therefore,

s q 2 ) i, N
&11

Ss(Q1, 1, . . . , n;Q2) 8„(Q1,1, . . . , n; Q) 2"V+ 0
l

(3.35)

As discussed in Sec. III J, the subleading color terms have a similar structure, see (3.83)—(3.85).
Similarly, the soft behavior of the cross section for e+e —+ qqqq + (n —2)g is obtained by integrating out the soft

gluon in (3.22) to yield
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, ((g''I, 2) I, ~
n-2

2) ) Sg (Qq, l, . . . , i; Q4~Qs, a+ 1, . . . , n —2;Qz) Z„'(Qg, Q2; Q3)Q4)V"
a(Z, ...,~—2) i=0

t'1l
+Sg(Qy, 1, . . . , &;Qz~Qsj&+1 & 2 Q4) +p(QlyQ4jQ3&Qz)+ + O

~ p
(3.36)

where

Sy(Qg, 1, . . . ) c;Q4~Qs) s+ 1, . . . ) n —2; Q2) = Sp(Qy', 1, . . . , a; Q4) + Sg (Qs) a+ 1, . . . , & —2, Qs). (3.37)

F. The coBinear behavior of the matrix elements

In addition to being singular in the soft gluon region,
the matrix elements are also singular when partons a
and b become collinear and cluster to form a new parton
c such that

I

der the exchanges a ~ b, z ~ (1 —z),

Pab c(z) = Pbn c(1 —z),

and, under charge conjugation,

Pb,-(z) -= P,b, (z),

(3.43)

(3.44)

P, + Pb = P, . (3.38)

Unlike the soft gluon case, the matrix elements exhibit
an overall factorization in the collinear limit,

2 2
M(. . . , a, b, . . .) ~ cp ' &(.. . , c, . . .), (3.39)

zN
QAg tg

~

g
~

fgg~g
)

zN If" ' (3.40)

-qq-g
~

&'"~~~ fqq-g

where the collinear factor c~&b ' is defined by (3.39) and
is singular as s,b ~ 0. Removing the parton-dependent
color factor,

(1+z2 —e(1 —z) r

Pqg q(z) = 2
Iqg~q ( ]. —z

(3.45)

so that there are only three independent splitting func-
tions: Pgg g, Pqg q, and Pqq g. In defining these func-
tions, there is some scheme dependence since one can
treat the hard parton c in either d or 4 dimensions. (The
collinear partons are, of course, strictly d dimensional to
regulate the collinear singularities. ) The first scheme is
the conventional prescription for /CD higher-order cor-
rections where all particles are treated in d-dimensions,
while the second follows the 't Hooft —Veltman philoso-

phy [21] of keeping observable particles in 4-dimensions.
In the conventional scheme, the splitting functions are
given by

I'1 + z4 + (1 —z) l
Pgg g (z) 2

z(1 —z)

yields the color-reduced collinear factor

fabric

1
P,b ,(z).

Sab
(3.41)

The 't Hooft —Veltman splitting functions difFer from
these by terms of order e:

P~ = zP„ Q = (1 —z)P, . (3.42)

The Altarelli-Parisi splitting functions are symmetric un-

Note that in the gg -+ g case, a factor of 1/2! is included
because the gluons are identical. In deriving (3.39)—
(3.41), we have implicitly averaged over the azimuthal
angle of a and b relative to c. This suppresses spurious an-
gular correlations between unresolved partons. The func-
tion P~b, (z) is trivially related to the Altarelli-Parisi
splitting function [37] in d-dimensions for partons a and
5 with momentum fraction z clustering to form parton c,
such that

P ~ (z) Pgg~g (z) 4EZ(1 z) y

P (z) Pqg q (z) &

qq-'g(') = ( —) qq-g(z) + 2'

(3.46)

Since the collinear pole is O(1/e), this will lead to difFer-
ent constant terms in the total n-parton cross section.

The behavior of the ordered subamplitudes for e+e —+

qq+(n+1) g in the collinear limit is quite straightforward.
First of all, there is only a singular contribution when
the collinear partons are adjacent. For example, if two
adjacent gluons are collinear and form gluon m then
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2 2

8„(Qi, l, . . . , m —l, g, g, m+1, . . . , n;Qz)V~ ~ f~g 8„(Qi, l, . . . , m —l, m, rn+ 1, . . . , n; Qz)V"

Similarly, there is a contribution when one of the gluons is collinear with either the quark or antiquark:
2 2

8„(q;g, l, . . . , n; Qs)V" f ' 8„(Qi, l, . . . , n; Qs)V"

,
2 2

8„(Qi, l, . . . , n, g;q)V" ~ fsq ~& 8„(Qi, l, . . . , n;Qs)VI'

(3.47)

(3.48)

On the other hand, if the two collinear partons a and 5 are not adjacent in the ordered subamplitude, there is no
singular contribution:

2
8„(.. . , a, . . . , 5, . . .)V" ~ 0. (3.49)

In particular, there is no contribution when the quark-antiquark pair is collinear.
However, the four-quark current e e ~ qqqq+ (n —1)g is singular when a flavor-singlet quark-antiquark pair

becomes collinear. For example, if Qs and Q4 are collinear and form gluon j, then, keeping only terms that are
singular, a two-quark current results:

2

&„'(Qi~Qs)Qs~Q4)V" ~f ' ' ' 8p(Qi~l " & i &+1 n —1'Qs)V"

2
&„'(Qi Q4'Qs Qs)V"

(3.50)

In this limit, the full matrix elements squared summed over the ny flavors of the collinear quark-antiquark pair yield

a contribution to the two quark matrix elements at next-to-leading order in the number of colors of

2
(3.51)

where the sum over i has been absorbed into the sum over gluon permutations which now extends up to n.

Summing over all possible collinear combinations, we find that the leading and next-to-leading color contribution
to the full squared matrix element for the two-quark final state when two partons are collinear is, therefore,

where

2 2

) p(i )

(3.52)

and

f'gsN
c,(Q„l, . . . , n;Q ) =

~

'
~

Pg-~ +P'-'+ +f"-'+ fnf" '
i

Af
Af N

(3.53)

(3.54)

Note that this is exactly the same structure as that obtained in the soft gluon limit (3.19) and (3.20) and is similar
to tree level (3.12), where each term in the sum over gluon permutations is now multiplied by an ordered collinear
factor c~ containing all the collinear singularities.

As in the soft gluon case, since all gluons are identical, we could have chosen any gluon to be collinear resulting in

an additional factor of n + 1. However, the identical particle factor (3.3) again cancels this factor and we can just
treat one gluon as collinear. On the other hand, when two quarks become collinear the identical particle factor for

gluons changes from 1/(n —1)!to 1/n! leading to the factor of n in (3.53).
For the four-quark final state (1.5) we find a very similar structure:

2 ) q ¹

n —2 2
x ) ) cy(Qi, l, . . . , i;Q4~Qs, i+ 1, . . . , n —2;Q2) Z„'(Qi, Qs;Qs, Q4)V"

P(x, ...,n —z) ~=0

+ F(Q;1, , ';Q, (Q; +1, . . . , —2;Q ) &„'(Q,Q;Q, Q )V" + & l(p ~

(3.55)
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with

cF(Q1) 1, . . . , b) Q4~Q3) b+ 1, . . . , rb —2;Q2) = cF(QS , 5'+ 1, . . . , A —2; Q2IQ~ 1 ". i + 1;Q4)
g2N f99~q) + f99~~ +.. .+ f99~@4 + A if«~9

2

+f" q'+ f" '+'+ + f '-&~+ A (n —2 —i)f«-9

= cF(Qg, 1, . . . , i; Q4) + cF(QS, i + 1, . . . , n —2; Qz).

Note that the Ay terms appearing in (3.56) are generated by the six-quark process e+e ~ qqqqqq+ (n —3), when
two of the quarks are collinear and form a gluon. The first (second) term proportional to Ay is generated when the
extra qq pair is attached to the color charged line joining Qq and Q4 (Qs and Q2). Strictly speaking, these terms are
subleading in the number of colors and could be neglected (3.15).

G. The collinear behavior of phase space

Having isolated the collinear singularities in the matrix elements, we now need to obtain the collinear behavior
of the (n+ 1)-particle phase space in d dimensions. In particular, we will derive a phase space factorization into
an n-particle phase space and a collinear phase space factor which will regulate the collinear poles. We start with
3-particle phase space for Q -+ Pq + P + Pb where P and Pb will be collinear and form momenta Pz = P~ + Pb, and
integrate out the azimuthal angle between the plane containing P~ and Pb relative to Pz.

dR (Q;Py, P, Pb) =
8 z (Q ) sy, s,baby'I ) ) 21)(s z) 0 ))'

ct-4
dAs g

dslcdsabdsb16(81s + 8))b + Sbl Q ). (3.57)

In the collinear region defined by

Sub & Sm)n « Q,2

we can ignore terms of order s b and find

S12 Sla + 8yl

(3.58)

(3.59)

We therefore choose to define z by

Syz = ZS].2& Sbl = (1 —Z) 812. (3.60)

Note that in the exact collinear limit, this leads to the usual definition of z, (3.42). In this limit, the three-particle
phase space factorizes:

dR" (Q; Pg, P~, Pb) ~ dR"(Q; Pg, Ps)dR,",i(P„Pb) z),

where

(3.61)

dR,",&(P„Pb, z) =
4 2 ds, bdz 8 bz(1 —z)4-2 8(s ;„—a,b). (3.62)

Choosing d = 4 —2e yields the collinear phase space factor

dP;,&(P„Pb., z) =
z )

ds, bdz s,bz(l —z)
(4n)'

16szl' 1 —8
8(s;„—8 b). (3.63)

The generalization to (n+ 1)-particle phase space is again straightforward. Taking P + Pb -+ P„, we have

dR" (Q; Pg). . . ) P„g)P~) Pb) = dR (Q) Pg). . . ) P„z)PH) dPH dR (P~) P„g)P~) Pb)

~ dR"(Q; Pq). . . ) P„2)PH) dPH dR"(PH, P„q) P„)dR~&(P„Pb, z) = dR (Q; Pq). . . ) P„)dR„&(P~) Pb, z). (3.64)
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As in the soft limit, we can always factor out a co11inear
phase space factor associated with the unresolved two-
parton cluster which regulates the matrix element singu-
larities in s~b (3.41) and z (3.45).

Sa 1a —ZSa —1c 0 Sm&n,

sbb+i ——(1 —z)s,g+i ) Smmi

(3.66)

H. The collinear behavior of the cross section

In order to determine the collinear contribution to the
cross section, we must integrate out the unresolved par-
ton so that the collinear region does not overlap with the
soft region; we must match the collinear region precisely
on to the soft region so that there is no double counting
and that no singular region is omitted. In other words,
we must ensure that only one s,~ ( sm;„and that all
other invariant masses are larger than s;„. In general,
this is a very complicated constraint, however, using the
ordered subamplitudes resolves this problem.

If we consider the clustering of partons a and b, we
must ensure that the resulting parton c is resolved from
the other partons in the event. This requirement will
avoid the soft region and determine the upper and lower
integration boundary for z. To see how this works, let us
consider a general ordered sub amplitude which has the
st ruct u re

2
8„(.. . , a —1, a, b, b+ 1, . . . , d, . . .)V"

Sa—1a SabSbb

(3.65)

If the collinear pole is given by s~b ( s;„,then we can
fall into the soft region when either sq i, ( sm;~ (corre
sponding to parton a being soft) or spy~i ( sm;„(parton
b soft) ~ The collinear region is therefore determined by

where we have used P = zP, and P~ = (1 —z)P, I.n
other words,

Smin

Sa—1c

Smin
Zl ( Z & 1 —Zg = 1

Scb+1
(3.67)

With this ordering dependent boundary, we neatly match
onto the soft region. On the other hand, this does not
force c to be resolved from other non-neighboring par-
tons, such as parton d. However, the ordered subampli-
tude does not contain poles in s~ and the relative error
induced by such "accidental" overlaps is of order s
and therefore negligible.

As in the soft gluon case, (3.32), the contribution to
the cross section at leading order in the number of colors
from a single ordered subamplitude in the collinear limit
ls

dz„+i =
~

~ f' '(z» z&)dP~~ (P, P&, z) do'
(g~NI

2 )
(3.68)

where the z integration boundary, zi ( z ( 1 —zg, has
been made explicit. All of the dependence on the unre-
solved collinear partons has been factorized and multi-
plies the cross section for a single ordered subamplitude
where now all the partons are resolved We c.an now in-
tegrate out the collinear behavior for this subamplitude
using (3.41) and (3.63) and leave all other phase space
integrations over the resolved partons undone:

(n, N) 1 (4mp2) '
1

) ~(1 ~) 4 smm j
In the conventional scheme, the integrals over the splitting functions, I, are given by

z, ' z ' 3(1 —e)(4 —3e) I' (1 —~)

2,(3 —2,) r(~ ~,)
(z,-' + z,-' - 2& 11 ( 67+

/

——+ —
)
s+ O(e'),

6 ( 18 3 )
zz

' (1 —e) (4 —c) I'z (1 —e)
4, r(2 - ~ )

t Z2' —13(7+ i

——+ —
i
~+ O(e ),4 ( 4 6 )

1 —e I' (1 —e)

(~ - )

+ —+ O(e ),
1 Ge

3 9

(3.69)

(3.70)

where, since zi, z2 oc s;„we have neglected terms of 0(zi) and 0 (zz) . Note that I is finite as e —+ 0.
These integrals I are directly related to the Altarelli-Parisi splitting functions, so we also have the relations

Igq~q(zi & zz) =
Iqg~q (zp& z] ) & Iqq +g(zi & zz): Iqq~g(zz, zi) ) (3.71)
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and

Iqg~q(z]» z2) Iqg~q(zl » z2)» Igq~q (zl » z2): Igq~q(zl » z2) ~ (3.72)

The divergences of the splitting functions are reflected in the behavior of the integrals with respect to zl and z2. For
example, the qg —» q splitting function is finite when the gluon carries ofF all of the momentum (z ~ 0) but diverges
when the gluon is soft (z ~ 1). Therefore, Iqg q(zl, z2) depends logarithmically on z2 but not on zl. Similarly, the
gg -+ g integral depends on both zl and z2 while that for qq —» g depends on neither.

By choosing the correct collinear phase space factor to integrate for each subamplitude, this can be extended to
include the full collinear behavior of the cross section:

4s' 1

Smin \ ~ Smin Smin l Sminx Iqg~g» l 0»
l +Igg~l l » l

+ '''+I q~g»0 +AAfIqq~g(0»0)
Speal ) i», sq»l S12 )

fn, N) 1 t'4n. p,2)' 1

( 2qr ) I'(1 —s) (s;„)
~l +l ~

+".+l~
E Smin ) E Smin ) ( Smin )

1 —s 2- I'2(1 —~)+ 12(n+ 1) —(9n+ 11+2nAI)s+ 2e (3.73)

In this equation, the trivial z integration boundaries have been replaced by 0. Note that this factor is dependent on
the gluon permutation and multiplies the cross section for each ordered subamplitude. The effective squared matrix
elements for e+e » qq+ ng with an unresolved collinear pair are, therefore,

S„V" = e
l l

l
l ) Cs(Q1, l, . . . , n;Q2) 8„(Q1,1, . . . , n;Q2)V" + 0

l

, i'g2N&" (N2-1& (11
(3.74)

As discussed in Sec. III J, the subleading color terms have a similar structure, see (3.83)—(3.85).
Similarly, the efFective squared matrix elements for e+e » qqqq+ (n —2)g with an unresolved collinear pair are

given by

2 &g2NI" f'N2 —1 t

n-2
x ) ) cs(Q1, l, . . . , i; Q4 lQsa +1, . . . , n —2;Q2) z„'(Q1, Q2, QS, Q4)v"

P(1,...,n-2) i=o g

+ C&(Q» 1» ' ' '
» 1» Q21Qs» &+ 1» ' ' '

»
rl 2» Q4) +p(Q1» Q4» Qs» Q2)V

+01 N I

t'1 )
i,N)

where

Cs (Ql, 1, . . . , i; Q4 lQs, i + 1, . . . , n —2; Q2) = Cs (Ql, 1, . . . , i; Q4) + Cy (Qs, i + 1, . . . , n —2; Q2).

(3.75)

(3.76)

I. The full contribution from unresolved phase space

We may now combine the results of the previous sections to calculate the full contribution from e+e —+ qq+ ng
with one unresolved parton. The efFective matrix elements may be written

s " c ~, 2) ( N )
x ) R(Q1, 1, . . . , n;Q2) S„(Q1,1, . . . , n; Q2)V" + 0

l

(»
P(Z, ...,n)

gN2)
(3.77)
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(3.78)

Combining the results for S~ and C~, we have

where R(Qq,. 1, . . . , n,; Qz) is ordered and contains all the divergences associated with the unresolved parton and is
given by the sum of the ordered soft and collinear factors (3.34) and (3.73):

R(Qi. 1, . . . , n; Q2) = Sz(Qi 1, . . . , n; Qz) + CF (Qi, 1, . . . , n; Qz).

R(Qi;1,",&'Qg) =
I

(o4N ii 1

~(sq, y )~

( Smin )

(4xiij,2)' 1

( Smin )
I("' )+.. . +( "&'(
(Smin J ( Smin p

1 —E I'z(1 —s)+ 12(n+ 1) —(9n+ 11+2nAf)c+ 2s
2 3 —2s I' 2 —2s

(o.,NI 1 )- 1 (4~p'li'
l z ( s,, 'l

+—
I I

+3 (4ny, 'i' 63+ 67n —lonny n (n+1)
2~ (smin) 18 3

a,nbp 1 ~(4z'y,
l~ O( )I'(1 &) & smin )

(s.79)

where the sum is over the color charged lines, i.e. , ij = Qq1, 12, . . . , nQz. The one-loop /CD beta»«io»0 is given

by

0

2

+R(Qli I» ~i Q2IQsi & + I» & —2i Q4) &~(Q~ ~ Q4~ Q» Qz)I "

b (s.80)

It is important to note that terms of order s;„have been neglected so that this equation is only valid in the small
s;„limit. For n = 1, we have checked that (3.79) reproduces the result of [38].

An analogous result holds for the four-quark process (1.5) when one of the partons is unresolved. Explicitly we find

2 2

s " c i, 2p q N' )
n —2 2) ) R(Q, ;I, . . . , i;Q4[Qs;i+I, . . . , n-2;Q, ) Z„'(Q„Q„Q„Q,)V

P(1,...,n —2} &=0

(3.81)

where, because of (3.23) and (3.56),

R(Qi, 1, . . . , 2; Q4~Qs, z + 1, . . . , n —2; Q2) = R(Qi, 1, . . . , s& Q4) + R(Qs, e + 1, . . . , n —2; Qz). (3.82)

Once these phase space contributions are combined with the virtual corrections, and coupling constant renor-
malization is performed, all the poles in e must cancel. On the other hand, the virtual corrections cannot give

any contribution proportional to sm;„and R(Qq, 1, . . . , n; Qz) therefore contains the full dependence on the parton
resolution parameter s

J. The terms subleading in the number of colors

As we have shown in the previous sections, the key to isolating the soft and collinear divergences lies in the soR
and collinear behavior of the color ordered subamplitudes S„and Z„. The terms subleading in the number of colors
can also be expressed in terms of S„and Z„[32]. For example, for e+e —+ qqgg, the squared matrix elements are
given by

2 1 2
Sp&" =e'I

I I I ). S,(Qi;1, 2;Q2)&" —,S~(Qi 1»Q2)&"

where the second term has been symmetrized with respect to the two gluons:

(3.83)
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8~ (Qi, 1, 2; Q2) = 8~(Qi) 1,2; Q2) + 8~(Qi, 2) 1)Q2). (3.84)

In this subamplitude, there is no contribution from the triple gluon vertex and the gluons behave as photons [32].
There is efFectively only one color line connecting the quark and antiquark. The soft and collinear behavior is then
straightforward,

2
8„(Qi;1,2;Qs)V" ~ (Sz(Q1', Qs) + Cz(Q1', Q2)) Sp(Q1', 1;Q2)V"

2
-+ R(Qi, Qs) 8„(Qi,1;Q~)V" (3.85)

The virtual diagrams follow a similar structure and the full next-to-leading order matrix elements for e+e -+ qqgg
are given by (A41). In general, however, the subleading terms depend on the number of partons and no general form is
available. Nevertheless, these terms do not present any significant difficulties and the dynamical R factors associated
with them are given by the leading-N R factors for processes containing fewer partons.

IV. VIRTUAL CONTRIBUTIONS

At leading order in the number of colors, the complete next-to-leading-order cross section is obtained by adding the
one-loop virtual contribution to the single parton unresolved cross section of the previous section. In this section, we
will discuss the process e+e -+ qq+ ng in detail, while we will only make a few remarks on the four-quark process.

The virtual graphs for e+e ~ qq + ng are formed by attaching an internal gluon (with color z) in
all possible permutations to the tree level amplitude (3.9) which generates color structures of the form,
(T ' T* T T~ T "),, When the color matrices T* are adjacent (which corresponds to emission and

absorption of the virtual gluon on the same color charged line), this gives an additional factor of (N —1) /2N relative
to tree level. On the other hand, if color matrices associated with the hard partons are inserted between the internal
color matrices, only terms subleading in the number of colors are generated. Keeping only the leading N contribution

yields the next-to-leading-order current 8+ ) which may be decomposed according to the color structure as in (3.9):
2

8„')(Qi, 1).. . , n;Qs) = ieg"
l l ) (T ' T'")„„8&'&(Q il, . . . , n)Q2)+ 0

l
(4.1)

The next-to-leading-order ordered subcurrent S„may be written as a part proportional to the lowest-order current
S„containing all of the virtual soft and collinear singularities, and a part that is finite as c -+ 0 and can have a—(i).
difFerent structure from tree level, 8„:

(Qi,'I, , n;Qs) = fv Sq( Qi; I, , n; Q2) +8„(Qi,l, . . . , n;Q2). (4.2)

It should be noted that there is always some arbitrariness between the assignment of the finite pieces between the
two terms.

By multiplying the one-loop contribution by the lowest-order matrix element, we obtain the virtual next-to-leading-
order efFective matrix elements at leading order in the number of colors:

E2) E N )

V(Qi, , . . . , n;Q2) 8( Q,i, . . . , n; Q) " +P(Qi, , . . . , n;Qs)+ Ol 2 l, (4.3)
t' 1 'I

e(z, ...,n)
(¹y

where

sN
+(Ql ~, ",~ Q~) =

l
12 ~ (~~(&~' " "'&~~~ ) (~. ~&~' " "&~~~) ) (4.4)

is finite. The ordered virtual factor, V, has the structure

V(Qi 1 ''' n Q2) =
l I

2 ~(fv)(g'N l
)

(~,N) r(1+.)r'(1-.)-
Vq, i+Vi2+ "+V„g( 27r ) I'1 —2e tL (4.5)
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where Voq represents the divergent virtual contribution
which arises when the internal gluon is attached to the
color-charged line joining hard partons a and b V. b will,
of course, contain precisely the right soft and collinear
singularities to cancel the contributions from the single-
parton unresolved cross section.

Let us first consider the soft contributions and return
to our @ED example of n photons attached to a charged
fermion line (Sec. III C). The one-loop corrections to this
process are obtained by the emission and subsequent re-
absorption of a photon from the charged fermion line. In
the soft limit, off-shell photon emission is characterized
by the gauge-invariant factor

E (Q P.E) 1I
QP P

gEz+2Q E Ez+2P E) ' (4 6)

where E& is the momentum of the soft off-shell photon
[34]. Note that in the on-shell limit, this reduces to the
eikonal factor of (3.17). As in the on-shell photon case,
only virtual soft photon radiation from external lines con-
tributes to the pole in 1/e .

Since the emission of a soft photon cannot change the
correlation between the hard particles, the soft virtual
contribution is proportional to tree level:

JH rt(Q; 1, . . . , rt; P) = fqED M(Q; 1, . . . , tt; P),

(4 7)

where

ffEjD = —f )~E„(Q,P;E)P"'E (Q, P; E)—
(4 8)

The factor 1/2 is due to Bose statistics of the emit-
ted/absorbed photon. In principle there is some depen-
dence on the loop momenta remaining in Pt; however,
this disappears in the soft photon limit. In the light-

cone gauge, the internal photon propagator P"" is given
by

—t ( „(bI'E"+E"b")
IE2(, bE (4 9)

soft
QP

Re (-1)' /4~ps &
'

(sqp)
1 t'4zp, 'l' + —+o(

(sqp j 2
(4.11)

As in the on-shell case, /CD has a completely anal-

ogous behavior to /ED, where now each color-charged
line (containing either gluons or quarks) yields precisely
the same virtual soft contribution:

Vsoft Vsoft Vsoft Vsoft
CQ 99 9 M (4.12)

The ordered virtual factor (4.5) is therefore given by

where b„ is a lightlike auxiliary vector. Since E„ is gauge
invariant, the gauge-dependent terms cancel trivially and
we only need to keep the terms proportional to g~".

Only the real part of f&~ErtD contributes and we define

the soft virtual contributions Vqsopt to be only the terms
associated with the pole of order 1/ez. To be explicit,

r(1+.)r (1-e)

r(1 —2.)
f xp'5t' 1

( sq~ ) 2e(l —2e)

(4.10)

where the soft factor depends only on the invariant mass
of the electron-positron pair, sq~ and the explicit 1/e
terms within the square brackets by definition contribute
to the collinear virtual part and have to be combined with
the other virtual collinear contributions. The soft factor
is given by

V(Q, „Q) 1&
.N')1 (+) '( — ) ) V- +V

(o(,N) 1"(1+&)r~(l—e) 1 )./4xpz))' 7rz(n+1)
)(, 2~ ) I'(1 —2s) tz, ,

- ( s;, ) 2
(4.13)

where the sum is over the n+ 1 color-connected pairs, Qql, 12, . . . , nQ2. The remaining virtual collinear divergences
Voo~ are of order 1/e and must contain precisely the right single poles in e to cancel those from the unresolved portion
of phase space.

At next-to-leading order, the unrenormalized full squared matrix elements for e+e ~ qq+ ng are obtained by
summing the real soft and collinear parts (3.79) with the virtual contribution (4.3):

S„V" = S„V" + S„V" + S„V"
F S C V

gzN) fN —1)
2~11& N

x ) K(Q)., l, . . . , n;Q2) 8„( Qg., l, . . . , n; Q)zV +P(Q)) l, . . . , n;Q2)+ 01 q 1, (4.14)
P{l,...,n)
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which has the structure of tree level, (3.12), where each subamplitude is now multiplied by a next-to-leading-order
ordered dynamical K factor and added to a finite non-tree-level ordered structure E determined by the one-loop
graphs. Using the relationship

I'(1+ e)I'2(1 —e) 1
I'(1 —2e) I'(1 —e)

we find the unrenormalized next-to-leading-order dynamical K factor to be given by

(4.15)

K(Q1, 1, . . . , ni Q2) = R(Q1 i 1& ~ ~ ~
& AiQ2) + V(Qli 1) ~ ) Ai Q2)

(nNi 1

2s ) I'(1 —s)

s (&+1) Vcoi 3 t'4~y, l' 63+ 67n —10nAf
x — ln

(Smin) 6 2c ( Sm;n p 18
i3

4vr 2

+ ' '
I

"
I +O(e)+O(s;„).

( ~min )
(4.16)

although the virtual collinear factors are undetermined, they must satisfy the relationship

V' ' = ——+ finite pieces,
26

(4.17)

which is necessaQ to ensure that 41 the collinear poles cancel. The finite pieces may be either single logmith~
or con~~ts Note that the divergent contribution ls independent of the number of gluom involved in the process
Furthermore, the —3/2S pole is associated with the fact that we take the fermions massless and is present in both
/ED and /CD. It is worth noting that in /ED, the K factor is simply given by (4.16) with n = 0 and the replacement
n, N/2 -+ n.

By calculating the virtual corrections for e+e ~ qq and e+e ~ qq+ g we can make a "natura&' choice of the
finite pieces in (4.17). First of all we rewrite the collinear factor to accommodate the ordered gluon structure of the
subamplitudes:

Vcol ) Vcol(s ) + geol (4.18)

where C~' is an arbitrary constant and the sum is over the ordered pairs.
Explicit calculation of the virtual corrections to e+e -+ qq using the methods of [39] yields

(,N)i I'(1+ )I' (1 — ) 1 (4 3 4

i, 2s ) I'(1 —2S) S2 Isq,q) 2 2S Is&,q)

P(Q1, Q2) =0,

—4 + O(s),

(4.19)

with the "natural" choice of the finite contribution equal to zero. Comparing this expression with (4.13) leads us to
make the following choice for V'o':

3 4vr 2
Vcol (s )

+0 4 geol 0Q 1UQ
(4.20)

so that

n N I'1+eI'21 —s
V(Q, Q ) ~

8
~

( (
~

V~'( ) V~1( )( 2s ) I'(1 —2e)
(4.21)

Combining this with the resolved phase space factor R(Q1, Q2) [(3.79) with n = 0] yields the two-quark K factor

K(Q1i Q2) R(Q1i Q2) + V(Q1i Q2)

) ( smin ) 6 2 ( smin
(4.22)

Similarly, calculation of the virtual corrections to e+e ~ qq+ g at leading order in the number of colors, leads to
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the expression

(
—

)
(n,N'I 1(l + e)I'2(l —e)

( 27r ) I'(1 —2e)

1 (47rii, ~ 1 (4+@~l
(Sq~i E (Sip j

3 (47rp' 3 (4vrp'&
4E i Sqii 4c ( sip j

—4 + O(e). (4.23)

An expression for the finite non-tree-level terms E(Qi, 1;Q2) is given in the Appendix. Again, comparing with (4.13)
leads us to the "natural" choice

Vcol{ ) Vcol( ) Vcol( ) ~

@
~

2 geol 02" 4s( s ) (4.24)

such that

(n, N& I'(1+ e)l'z(1 —s)&(Qi' &'Qa) =
l

2 l r() 2 )
&g"(&q, i) +) q'g" (Bq, i) + &gP'(*,q, ) + &g7'(*,c )) . (4.25)

Adding the resolved phase space factor R(Qi, 1;Q2) [(3.79) with n = 1] gives the dynamical iC factor «r e+e ~ qq+9:

iC(Qi, 1;Q2) = R(Qi., 1;Qz) + V(Qi, 1;Qz)

-ln
I

—ln ' ~+ —+ —ln ' ~+-ln~ ' ~+ ——rra+ ) 2 (sQgl) 2 sip, &, Ir' » q, i I 3 (sip l 29 5nf
~ ~) (smin j smin) 3 4 smin) 4 (smin) 9 9)V

cia&o 1 («p, 'l '
+ '

~{, l I +O()+O(-;.)si E smin ) (4.26)

~e see that the only remaining poles in (4.26) are ultraviolet in origin, and are proportional to the one-loop
@AD beta function 1)o, and are therefore associated with coupling constant renormalization. In the modified minimal
subtraction (MS) scheme [40], the coupling constant is redefined in terms of the coupling constant evaluated at the
renormalization scale (M, by

where

( z) ~(1 .(ii')&o

I,

= —+ ln(4vr) —p@ + O(~),
1 {4~)'
~ I'(1 —c) c

(4.27)

(4.28)

and p@ is the Euler constant. At next-to-leading order, the strong coupling constant at scale p, is defined relative to
the fundamental /CD scale AMs to be

I r 4 ln ln (p~/A~~q)
~ (@z),1 . Ms.

bo ln p,2
~

~q ln p,~ A~
(4.29)

34Nz —1»Any + »nf /N
48m~

As discussed in Sec. III J, the subleading color terms have a similar structure; see (3.83)—(3.85) and (A»9) —(A41).
It is now straightforward to generalize the iC factor of (4.26) to include more gluons. By inspection of (4.16), we see

that Vs's" cannot be singular as s ~ 0. Therefore, by choosing C"' = 0 and Vco'(s) = 0 we can uniquely defme V9'9
A.ny additional finite terms are thereby assigned to E, and the dynamical iC factor {4.16) is fully defined. The only
remaining poles are the ultraviolet poles proportional to bo Since the lowe.st-order squared matrix element (3.12)
is proportional to oP, , the coupling constant redefinition (4.27) precisely cancels the ultraviolet poles in (4.].6). The
finite, renormalized iC factor for any number of gluons is, thus,
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(V )N~ 2 ~ '' ~ (A+1) 3l ~~ q 1 ~

ij
3 &st, ) 67n —9 —10niy+-ln] " ' (+

Smin )

+n, (p, )biinin ~
~

+ O(e) + O(s;„).& p (4.31)
&Smin]

As might be expected from our earlier discussion of the soft and collinear limits of the real graphs, an analogous

result holds for the four quark process (1.5). After coupling constant renormalization

z &g2(p)N)i" (Nz —1&

n-2
x ) ) K(qg, l, . . . , i;Q4~qs, i+1, . . .

P(s, ...,~-a) 4=0

+~(Q„1,. . . , i;Q4~Q. ;i+ 1,

+K(q&, 1, . . . , i; Q, ~q, ; i+ 1,

2

, ri —2;qz) &„'(q»qz) qs~q4)&"

. , n —2; Qz)
2~-2 q.) ~;(q~, q.;qs, q, )I

+&(qi; I, "., i;Q.lq', i+ 1, . . . , ~-2;q, )+ O
~

—~,(1&
j

where the dynamical K-factor is now given by a sum of two two-quark K factors:

K(qi. ~ 1» it Q4~qs; i + 1, , & —2; qz) = K(Q» 1, . . . , i; Q4) + K(qs) i + 1).. . , n —2) qz).

(4.32)

(4.33)

It is important to note that the coefBcient of bo/e in

R(qi, , 1, . . . , i; Q4~qs, i + 1, . . . , n —2; qz) is equal to
the number of final-state gluons which is now (n —2).
The coupling-constant renormalization, however, gen-
erates a counterterm of —nba/e, making K apparently
divergent. This is not, of course, the case since, un-
like the two-quark virtual corrections, the four-quark
V(qq, l, . . . , i;Q4~qs, i+ 1, . . . , n —2;q&) contains ad-
ditional ultraviolet poles, proportional to 2bs/s, which
render the cross section finite. Any additional finite
terms associated with the virtual ultraviolet poles are
reassigned to E.

V. NUMERICAL RESULTS

With the methods described in the previous sections,
and using the matrix elements given in the Appendix,
we can construct a Monte Carlo program which gener-
ates resolved n-parton snd (n + 1)-parton events with
their corresponding (finite, but not necessarily positive)
weights.

By themselves these resolved parton cross sections have
no physical meaning and will depend strongly on our the-
oretical parton resolution parameter, s;„.However for
physical next-to-leading-order n;jet cross sections, both
the n-parton and the (n+ 1)-parton cross sections con-
tribute and are combined according to the jet cluster al-
gorithm, rendering the resulting n-jet cross section inde-
pendent of sm;n.

The cancellation of the sm; dependence is performed
numerically by the Monte Carlo program Although t.he
logarithmic s „dependence of the n-parton cross sec-

tion is explicitly shown in K, the counterterms from the
(n+ 1)-parton contribution are determined by the Monte
Carlo evaluation. For this reason we do not want to take
s;„too small so that we can avoid large numerical can-
cellations. On the other hand choosing s;„ too large
introduces a systematic error due to the fact that we use
the collinear and soft approximations to obtain factoriza-
tion and are forced to neglect term of order sm;„.

The Monte Carlo program written according to the
above philosophy allows one to keep all the correlations
of the event and allows for an easy numerical implemen-
tation of the jet algorithm, detector acceptance and any
additional cuts. In the next two subsections we will dis-
cuss two explicit examples of next-to-leading-order jet
production, e+e -+ 2 jets and e+e ~ 3 jets. For the
purposes of illustration, the beam energy is always cho-
sen to be the Z-boson mass, Mz, and no /ED initial-
state radiation is included. Furthermore, the factoriza-
tion scale p at which the strong coupling constant ci,,(iuz)
is evaluated is chosen to be Mz unless otherwise stated.

In most of the explicit examples we will choose a lim-
ited number of events generated in the Monte Carlo sim-
ulation in order to show the interplay between the statis-
tical and systematic errors. For a more phenomenologi-
cally orientated study one can easily increase the number
of events, thereby reducing the error in the Monte Carlo
simulation to the desired value.

To indicate the number of events used to estimate the
n-jet cross section, we will use the notation 2:(yq + yz)
which means zyq n-parton events and zyz (n+ 1)-parton
events are evaluated. In other words, the n-jet cross
section is evaluated x times with yq + yz terms. The
cross section is taken to be the average of the z results,
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Prec (Erec~ Prec) ~

where,

E„,= n(Ei+Ez),

c = P(Pi+ P2)

(5.1)

(5.2)

while the error is estimated by their standard deviation.
For differential cross sections, the estimate and error are
given on a bin by bin basis.

In order to illustrate the sensitivity of next-to-leading-
order jet cross sections on the jet algorithm (and the
adaptability of the Monte Carlo approach), we will use
several, more or less standardized, jet definitions which
are the E, EO, and P schemes. For each scheme, if the
smallest invariant mass of any pair of all possible final
state momenta is smaller than an experimental value sc«,
the corresponding two momenta are replaced by a recom-
bined momentum, thus reducing the number of momenta
in the final state by 1. This procedure is repeated until
all invariant masses are larger than s«i, the remaining
momenta are the jet axis momenta. The difference be-
tween the schemes is in how the parton (or hadron) mo-
menta are recombined to give a composite momentum.
The recombined momentum is given by

and where a and P are scheme dependent and are given
in Table I. As shown in Table I, the E scheme conserves
energy-momentum, while the EO scheme conserves only
energy and the P scheme conserves only momentum. On
the other hand, only in the E scheme is the recombined
Inomentum not massless.

A. Monte Carlo results for e+e —+ 2 jets

We will now discuss the results from the Monte Carlo
approach to the two-jet production at next-to-leading or-
der in n, and keeping all orders in the number of col-
ors. The order-n, two-jet cross section receives contribu-
tions from two sources. One is the resolved two-parton
cross section, while the other contribution stems from the
lowest-order resolved three-parton cross section where
two of the partons are clustered together to form the
jet axis according to the chosen jet algorithm.

Because of the low parton multiplicity in the final state,
some analytic results can be obtained for the two-jet cross
section as a function of the jet defining cut s,«. This
gives us the opportunity to compare the performance of
the Monte Carlo program with the analytic result.

The analytic two-jet cross section at order n, for any
of the jet schemes, is given by

3 ~ N —1 1 1
~~;.~(v-~) =~0 &+ —~.(y') &

8 u-~ —— +e ——y. ~) l(v-~) )8m
(5.3)

If y,« ——s,«/Q2 & s, it is no longer possible to generate three-parton events due to momentum conservation and
therefore the two-jet cross section is equal to the total hadronic order-n, cross section. The Born cross section, cro, is
the lowest-order contribution to the hadronic cross section. The function I(yc«) is given by

4 n' 1 . ry.„, 'l, & y,„t 3 & y.« 9
1(yc«) = — ————21i2

~ I

—»
I

—-(1 —2yc«)» I I
+3yc«+ -yc«

3 6 2 ((, I —yc«) (I —yc«2 '
& I —2yc«) 4 cU (5.4)

where the dilogarithm function I i2 is defined by

* ln(l —z)I iz(x) =- dz.
o Z

(5.5)

Note that in taking the limit y,« ~ y;„=s;„/Qz, and
thus ignoring terms of order ym;„, we recover the resolved
two-parton cross section (4.22). Furthermore, I(s) = 1,
so that the two-jet cross section is continuous over the

y,« ——s boundary. The total two-jet cross section is
independent of the chosen jet scheme at 0(a,). However,

specific distributions may exhibit scheme dependence.
As discussed earlier, s;„ is an arbitrary parameter

and any physically measurable quantity should not de-

pend on it. We therefore show the s~;„dependence of
the Monte Carlo estimate of the two-jet cross section in

Figs. 1(a)—1(c) where the ratio Kz = o2;«(yc«)/oo is
shown as a function of y;„/yc« for difFerent values of
the experimental cut y,„q. In order to show the inter-

play between the statistical and systematic errors clearly,
the cross section was evaluated with a limited number of

TABLE I. Values for the scheme-dependent recombina-

tion factors of (5.2) and 6, = (Ei + E2)/ ~Pi + Pq~.

F scheme
EO scheme
P scheme

Energy rescaling
factor o.

Momentum rescaling
factor P

1

1

events, 10 x (10000+ 10000). For comparison, the ana-

lytic result (5.3) is shown as a solid line while the Born
cross section is shown dotted;

In the Monte Carlo simulation we cannot take the limit

y~;„/yc« -+ 0 due to the logarithmic ym;„cancellation.
In fact, from the point of view of the statistical errors in

the Monte Carlo simulation we want to choose y; /y, „t
as large as possible in order to avoid large caneellations
between the two and three parton contributions. How-

ever choosing this ratio too large would induce a system-
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atic error due to terms of O(y;„) which are not included
in the Monte Carlo error estimate. This is clearly seen
in Figs. 1(a)—1(c), where at relatively large y;„ the sta-
tistical error is very small but the deviation from the
analytic result is large. So from the point of view of the
systematic errors we have to choose ym;„/y«t as small as
possible.

The compromise between these two conflicting require-
ments is that we must choose y;„/y, «such that the
statistical Monte Carlo error starts to dominate over the
systematic error. This implies that the right choice of
y;„/y«t, depends on the number of events used in the
evaluation of the parton cross sections. Increasing the
number of events will decrease the statistical error while
leaving the systematic error unchanged. To avoid becom-
ing sensitive to the systematic error, one should therefore
choose a smaller value of y;„/y, «. To demonstrate this
procedure, we choose y;„/y, « ——0.10. For y,« ——0.03
[Fig. 1(b)] and y«t ——0.01 [Fig. 1(c)]we are clearly within
the statistically dominated region. On the other hand,
for y,„t ——0.10 [Fig. 1(a)] we are on the borderline and
for y«t ) 0.10 the Monte Carlo simulation will make a

systematic error. This is shown in Fig. 1(d) where we
plot the two-jet cross section as a function of y,«with
y~t„= y«t/10 for 10 x (10,000+ 10, 000) events. Even
with this limited number of events, the Monte Carlo er-
rors for a practical application are quite acceptable. The
solid line is the analytic result (5.3). As can be seen for
y«t, (0.10, within statistical errors, the Monte Carlo es-
timate for the two-jet cross section agrees well with the
analytic result. However for y«t ) 0.10 a clear deviation
from the analytic answer develops due to the system-
atic error generated by our approximations. Of course,
choosing the ratio y~m/y«t smaller in this region, e.g. ,

y;„/y«t, ——0.01, removes the systematic error.
Since the integration over the jet momenta is done by

the Monte Carlo simulation, we can examine the next-
to-leading-order corrections to any variable in two-jet
events. To illustrate this flexibility, we show an assort-
ment of difFerential cross sections in Fig. 2, where we have
chosen y,« ——0.03, y;„= y,«/10 and 10 x (10,000 +
10,000) events. The leading-order results are given by
the solid lined histogram, while the next-to-leading re-
sult is shown as data points with statistical errors.
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FIG. 1. The next-to-leading-order K factor, Kq
o /o', for two-jet production as s function of y; /y, „t
for {s) y«t; ——0.10, (b) y«t ——0.03 snd (c) y«t; ——0.01 with
statistical errors. The analytic results of {5.3) are shown as
solid lines. Part {d) shows the y,„t, dependence of the next-
to-leading-order two-jet cross section for y;„/y«t ——0.1 with
statistical errors. The analytic result of {5.3) is shown as s
solid line while the lowest-order cross section is shown dotted.

0 I I I I I I I I I I I I I I I I I

0 50 100 150g(e, jet. )(')
FIG. 2. The transverse-energy distribution at next-tc-

leading order in two-jet production for the hardest Ez jet
{open points) snd the softest ET jet {solid points) for {s)
the E/EO schemes snd {b) the P scheme with statistical er-
rors. At lowest order the hardest and softest Ez distributions
coincide snd are shown as s histogram. Part {c)shows the
angular distribution of the jet with respect to the incoming
electron at leading {histogram) snd next-to-leading {points
with statistical errors) order.
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Figures 2(a) and 2(b) show the transverse energy dis-
tribution for the highest ET jet (open points) and the
lowest ET jet (solid points). Although the two jets bal-
ance in ET at leading order, this is not always the case
at next-to-leading order. For example, in the E and EO
schemes [Fig. 2(a)] the transverse energies of the jets are
not necessarily equal at next-to-leading order. This is a
result of the fact that when a three-parton event is clus-
tered to a two-jet event the energy of the "two parton"
jet is equal to ]pi]+]ps], while the energy of the "one par-
ton" jet has an energy equal to lpi+ps] which is smaller.
On the other hand, in the P scheme [Fig. 2(b)] the "two-
parton" jet energy is rescaled during the clustering (see
Table I) such that its energy is equal to the softer "one-
parton" jet. This also implies that the P scheme ET
distribution is equal to the soft ET distribution in the E
and EO schemes.

Figure 2(c) shows the angular distribution between the
jets and the incoming electron beam. We see that the
shape of the angular distribution is unchanged by the
next-to-leading-order corrections. Furthermore, there is
no jet scheme dependence. This is readily understood by
inspecting the jet algorithms of (5.2). Since the angu-
lar distribution depends only on the direction of the jet
axis momentum vector it is unaffected by the momentum
rescaling factor P and the two jet momentum vectors are
always back to back.

(5.6)

The next-to-leading order corrections have the canonical
form

I ! I I I III I I I I I I III ! I I I I I II

y,„, = 0.10 (a)

I I I I IIIII I I I I IIIII I I I I II!t

y,„, = 0.03 (b)

1.8—

at next-to-leading order using the E scheme (the dot-
ted line indicates the leading-order three-jet cross sec-

tion). As expected, the statistical error steadily grows
with decreasing y,„», due to the worsening cancellation of
the ym;„dependence between the three- and four-parton
cross sections.

One important motivation for calculating the next-to-
leading-order corrections to the three-jet cross section
is the expected reduction in the renormalization scale
dependence. This scale dependence, indicated by p, is
shown in Fig. 4 for several values of y,„». The dotted lines
indicate the leading-order behavior, generically described

by

B. Monte Carlo results for e+e —+ 3 jets

Just as in the two-jet Monte Carlo simulation dis-
cussed in the previous subsection, the next-to-leading
order correction to thr=-jet production is built up of
two contributions, the next-to-leading-order thr""-parton
contributions and the leading-order four-parton contribu-
tions. Both of these processes can also contribute to the
second-order two-jet cross section. This makes the next-
to-leading-order three-jet cross section sensitive to the
details of the jet algorithm, since the four-parton —+ two-

jet transition involves a double clustering, and is there-
fore sensitive to the cluster recombination scheme used

(see Table I).
First of all we have to determine the right y;„/y, „» ra-

tio such that we are in the statistically dominated region
and we show the y;„dependence of the next-to-leading
three-jet cross section in Figs. 3(a), 3(b), and 3(c) for
different y,„t values. The y;„behavior is clearly much

more complex than in the two-jet case of Fig. 1. This is
readily understood from the three-parton resolved cross
section of (4.26) where we see a complex interaction be-
tween the hard invariants and the cutoff ym;„. This is
absent in the two-jet case (4.22) since there the only hard
invariant mass, s& @, is equal to the center of mass en-

ergy. Nevertheless, we see that taking y;„= y,„»/100
ensures that we are in the statistically dominated region

while keeping the statistical error as small as possible
with 10 x (10000+ 100000) events.

In Fig. 3(d) we show how the statistical error depends
on the specific value of y«» for the three-jet cross section
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FIG. 3. The next-to-leading-order K factor, K3
o /o, for three-jet production as a function of y; /y, „»
for (a) y,„» ——0.10, (b) y«» ——0.03 and (c) y«» ——0.01 with
statistical errors. Part (d) shows the y, » dependence of the
next-to-leading-order three-jet cross section in the E scheme

for y;„/y, „» ——0.01 with statistical errors. The leading-order

three-jet cross section is shown as a dotted line,
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fractions for several schemes [42] as solid lines (with error
band) together with the hadronic jet fractions as tabu-
lated by the OPAL Collaboration in Ref. [3] (points).
As before, we choose y~;„= y«t/100 and generate
10 x (10000+ 100000) events.

From Fig. 5 we immediately see that not all jet al-
gorithms work equally well for comparing the hadronic
data with the fixed order calculation. In particular, the
E scheme [Fig. 5(a)] does very poorly. Note that this
is the only scheme which does not retain the massless-
ness of the recombined vector during the clustering phase.
The other three schemes do as well as can be expected
from an order-az comparison with the data. The EO
scheme [Fig. 5(b)] underestimates the three-jet fraction
somewhat, while the P scheme overestimates the three-
jet fraction by a similar amount. The PO scheme agrees
remarkably well with the data. Whether deviations be-
tween the data and the calculation are due to hadroniza-
tion efFects or higher-order effects is impossible to tell
from the calculation.

We notice that for y«t, ~ 0.02, the /CD calculationC

does not reproduce the data. This is not a surprise since
we expect a deviation from the experimental data for
small y«t in perturbative calculations. This is, in a sense,
associated with the growing five-jet contribution, which
is not included in a theoretical O(o,~) calculation. More
precisely, for small y«q, terms O(cP, ln " (y«t)) are no
longer small and have to be resummed [43].

Finally, in Fig. 6, we show all relevant angular cor-
relations of the three-jet system in the P scheme. The
jets are ordered according to their energies, jet 1 being
the most energetic jet and jet 3 the least energetic. As

before, we generate 10 x (10000+ 100000) events with
y;„= y,„t/100. The leading-order result is shown as
a solid histogram, while the next-to-leading-order results
are shown as points together with the estimate of the
statistical error.

Figures 6(a)—6(c) show the angular difFerential cross
sections amongst the three jets. Compared to leading
order, there are slight deviations in the shape at next-
to-leading order. For instance in Fig. 6(c) we see that
the distribution obtains tails, which were "forbidden"
at leading order due to energy-momentum conservation.
Similar changes are present in Figs. 6(a) and 6(b).

The angles of the three jets with respect to the incom-

ing electron beam are shown in Figs. 6(d)—6(f). The two
most energetic jets [Figs. 6(d) and 6(e)] retain a charac-
teristic "two-jet" shape [compare with Fig. 2(c)]. This is
understood by realizing that these jets are predominantly
formed from quarks, while the gluonic jet is usually the
softest jet. These effects seem to be maintained at next-
to-leading order, where the identification of a jet with a
particular parton is no longer clear.

VI. CONCLUSIONS AND OUTLOOK

The main motivation for this paper has been to set up
an explicit and general method of dealing with the final-

state infrared and collinear divergences contributing to
the next-to-leading-order corrections to multijet events,
while avoiding algebraic and combinatorial complexities.
Furthermore the method allows a numerical evaluation
of phase space, making it possible to implement jet algo-
rithms, detector acceptance, etc. , numerically resulting
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FIG. 6. The next-to-leacBng-order jet-jet and jet-e angular distributions in three-jet events with statistical errors. Jet
is the most energetic jet and jet 3 the softest jet. The jet-jet distributions are shown in the E scheme with y,« = 0.03 and

ym, ~/y«t ——0.01, while the jet-e distributions are shown in the P scheme. The leading-order result is shown as a histogram.
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in very flexible Monte Carlo programs, as was explicitly
shown in Sec. V.

The divergent soft and collinear factors are indepen-
dent of the hard process, which means they can be ap-
plied to any scattering process involving Gnal-state par-
tons. Because of the factorization of the singular contri-
butions of the matrix elements one obtains a cancellation
of the soft and collinear divergences against the virtual
divergences without specifying the hard process. In fact,
it is straightforward to extract the soft singularities from
the virtual graphs, as was shown in Sec. IV. Because
of the factorization we can avoid squaring the resolved
matrix elements in d dimensions altogether, which is a
valuable simplification of the calculation. We can simply
evaluate the resolved matrix elements using the standard
methods developed for tree level matrix elements, such
as helicity methods [18],recursivity [20, 10],etc. Further-
more, because of the factorization, the structure of the
next-to-leading-order corrections in /CD is now trans-
parent and systematic.

With the method described in this paper only the
virtual graphs remain to be calculated, although a lot
of the singular behavior of these graphs can be under-
stood. We have explicitly recalculated the one-loop he-
licity amplitudes for e+e ~ 2 and 3 partons [44]. It
was then straightforward to construct the Monte Carlo
programs for the fully difFerential e+e ~ 2 and 3 jet
cross sections. We found it unnecessary to write a so-
phisticated phase space generator, a simple importance
sampling over the final-state invariants being sufficient,
although this procedure might need to be improved upon
if we want to include more final-state jets at the next-to-
leading order.

The next obvious step is to include initial state par-
tons, which necessitates a careful treatment of the initial-
state collinear divergences in relation to the parton struc-
ture functions while keeping the hard process fully dif-
ferential. Once this is understood, we can extend the
method to processes involving multijet final states in deep
inelastic and proton-antiproton collisions. For example,
the processes

APPENDIX A: MATRIX ELEMENTS RELEVANT
FOR E+E -+2 AND 3 JETS

In this appendix we provide a representation of the
matrix elements for e+e -+ 2, 3, and 4 partons which
are relevant for e+e -+ 2 and 3 jet production at next-
to-leading order S.ince all poles in ~ have been canceled
we may evaluate these currents in 4 dimensions. A con-
venient method to evaluate matrix elements is using a
helicity basis based on Weyl —van der Waerden spinors
which is described in detail in [45, 7].

1. Weyl —van der Waerden spinor calculus

The basic quantity is the two-spinor gA or QA and its
complex conjugate QA. or g . Raising and lowering of
indices is done with the antisymmetric tensor s:

AB . . AB&AB=& =&MB=& =
l 10

Any momentum vector K„gets a bispinor representation
by contraction with o":

~ Kp + Ks Ki + iK2 'l!
AB AB & (KI iK2 Kp —K3 ) (A4)

where o' is the unit matrix and o; are the Pauli matrices.
Since

au ZvAB ~p, ~
AB (A5)

We define an antisymmetric spinorial "inner product, "

(41@2)= VIA& 02B VIA@2 0] 02A = (@241))

(A2)

aild

(4142) PIA P2 '

and

pp ~ ~j&+0, 1 jets ~ gg y 0, 1 jets

ep ~ E + 1, 2 jets,

(6.1)

(6.2)

we have

KABP =2K P.

For lightlike vectors one can show that

AB kAkB)

(A6)

(A7)

at next-to-leading order are obtained by crossing the re-
solved matrix elements given in Sec. V.

where

& (Ki —iK2)/QKp —Ks 5
!QKp —Ks (A8)
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such that for lightlike vectors (A6) becomes

2K P = (kp)(kp)' = ](kp)! . (A9)

We usually denote four-momenta by upper case and the
related spinors by lower case letters.

For massless spin-z particles the four-spinors ean be
expressed in two-spinors as
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u (P)=t-(P) =
I "0

I

I 0)'
t'0 l

u-(P) =~+(P) =
I

&& )
u+(Q) =0-(Q) = (» 'qA)

-(Q) = (Q) = ( q" o).
The p matrices now become

(
PAB 0

(A10)

(A11)

pV, fy fg
0

fi fi 0
(A16)

For the polarization vectors of outgoing gluons and
photons we use the spinorial quantities

Here, Qf represents the fractional electric charge, Is the
weak isospin, snd 8w the weak mixing angle. In the
Weyl —van der Waerden notation, the vertex I'„ f'f' be-
comes

so that, e.g. ,

u+(Q)p"v (P) = q„cr" p. ~ . (A12)

k„bg
e~~(K) = +2

(bk)
(A17)

The general electroweak vertex for vector boson V cou-
pling to two fermions is denoted by ie6;&I'vf'f', where i
and j are the color labels associated with tI1e fermions f1
and fz respectively. The vertex contains left- and right-
handed couplings:

fxf~ r1-
ff~

I 2 ~+ ff~

(A13)

(A18)

The gauge spinor b is arbitrary and can be chosen dif-
ferently in each gauge invariant expression. A suitable
choice can often simplify the calculation.

The following relation is often useful:

where, for a photon,

ff = ff = Qfi fif~~ ( 14)

0" rr = 2b bAB P A B (A19)

and, for a Z boson,

z Is' —sin 8wQf,
&

sin 8w cos 8w

z —sin 8wQf,
cos 8

(A15)

2. Tr""-level matrix elements for e+e —+2, 3,
and 4 partons

At lowest order, and including all orders in the number
of colors, the squared matrix elements for e+e -+ qq+ng
for n = 0, 1, and 2 are given by

2
Sp(Q1', Qs)V" = e N 8„(Q1,Q2)V"

2

~,(Q1;1;Q2)v" = e'
I I I I

~p(Q1;I; Qz)v"

(A20)

(A21)

and

~p(Q1 1, 2, Qz)v" = e'
I I I I ). S&(Q, ; 1, 2; Q2)V& —,S„(Q„1,2; Q, )V&z (gzN) (Nz —11 . — z 1

) ~(, ,)

respectively. In the two-quark two-gluon process (A22),

8~(Q1, 1)2; Q2) = 8~(Q1) 1,2; Q2) + 8~(Q1) 2) 1;Qz).

(A22)

(A23)

We can use the spinor calculus of the previous section to express the lepton current V in terms of the he)icities o
the incident e+ and e (with momenta P+ and P respectively). Exphcitly,

R„
(A24)



HIGHER-ORDER CORRECTIONS TO JET CROSS SECTIONS. . . 2007

Note that the full matrix element for any process is summed over both photon and Z-boson exchange.
The hadronic current 8„ is given by

8„(Q1+;lA1, . . . , nA„; Q3 —) = Rf,f, (y 2) o„8AB(Q1+;lA1, . . . , nA„; Q3 —),

8„(Q1—
) 1A1, . . . , nA„; Q3+) = Lf,f, (y 2) o„8AB(Q1—,1A1, . . . , nA„; Q2+).

(A25)

(A26)

We list here the quantities 8AB(Q1+; 1A1, . . . , nA„; Q3 —) for n = 0, 1, and 2. The currents with the quark helicities
Hipped follows from parity conservation:

8AB(Q1 1A1 rlA Q3+) = (8BA(Q1+; 1(—Al), ",rl(-A ); Q3 —))
Charge conjugation implies the following relations between currents with difFerent helicities:

8AB(Q1Aq, ) lA1, . . . , r1A„; Q3Aq ) = (—1) 8AB(Q3Ag, nA„, . . . , 1A1) Q1Aq, ).

(A27)

(A28)

(A30)

The following notation will also be useful:

(a~B+Ctd) = a&dp(B+C) = (ab)'(db) + (ac)'(dc), (A29)

where the last step only holds for lightlike vectors. All helicity amplitudes are related to the amplitudes with Aq, = +
and Aq, = —.First of all, at tree level, we have the trivial n = 0 result

8AB (Q1+ Q~2 ) ql Aq2B '

Secondly, the n = 1 result is

(Q+. 1+.Q )
(Q + )A q q

(q, k, )(k,q, )

Thirdly, for n = 2 we have three helicity combinations

8 (Q +;1+2y;Q —) = (Ql+ Kl+ K3)A'Dq2 q2B

(qlkl) (qlk2)(Q1 + K1)A'g)k3 q3B + (klqs) (k2q3)qlA'(K2 + Q3)cBkl
(ql kl) (Kl + Kx)3 (Ql + Kl + K3)3

(ksq3) '(Kl y K3) (Kl + K3 + Q3)

(Ql + Kl)Ag) k3 (K2 + Q2)gBkl
(qlkl)(k2qs) (Kl + K2)

(klq3)'qlA'(Kl + Q3)~Bk3 (qlk3)'(Ql + K3)ABkPq3B
(k,q, )(K, + K,)3(K, + K, + Q, )3 (qlkl)'(Kl+ K3)'(Ql+ Kl+ K.)'

+ (klq2)(qlk2) qlAq2B

(qlkl)'(ksq3)(K1 + K3)
'

Finally, the lowest-order matrix elements for e+e -+ qqqq at all orders in the number of colors are given by

(A31)

(A32)

2
+p(Ql) Qsi Q3~Q4)+ + p(Q1) Q4i Q3~ Q3)

, ~R (&,(Qi, Q, ;Qa, Qa)&"(&.(Qi, Q4, Qs &~)v") ) (A33)

where

+p(Ql& Qsi Q3~ Q4) = ~p(Q1~ Q4i Q3~ Q3) + ~p(Q3) Qsi Ql ~ Q4).

The leptonic current is given by (A24) while A& is given by

A„(Q1+Q4Aq„Q3Aq, Q3—) = Rf~ f,cr„AAB(Ql + Q4Aq, , Q3AQsQ3 ))

A~(Q1 —Q4Aq, , Q3AO, Q3+) = Lf,f,o~ AB(Q1 —Q4Aq,
'
, Q3AO, Q3+)

As in the two-quark case, the helicity amplitudes with Hipped helicities are obtained from the parity relation

(A34)

(A35)
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~AB(Q1 ~QxQ4 ~@~iQ3 ~Q3Q2 ~gg) (~BA(Ql~g&Q4~Q~I Q3~QsQ2~Qg))

while charge conjugation yields the relations

AAB(Q1~QgQ4AQ, & Qs'AQ3Q2AQg) = AAB(Q2~@g Q4~Qg i Qs~qs Ql~qg)

= JAB(Q1Aq, Q3Aq, , Q4Aq, Q2Aq, )

= AAB(Q2A@, Q3Aq„Q4&q, Qi &q, )

All helicity amplitudes are therefore determined by

(
— . —

)
(qiq3)" (Qi+ Q3)ABq4 q2B (q2q4)qiA(Q2+ Q4)CBqs

(Q3+ Q4)'(Qi+ Qs+ Q4)' (Q3+ Q4)'(Q, + Q3+ Q.)'
(A38)

3. Next-to-leading-order matrix elements for e+e -+2 and 3 partons

As described in Sec. IV, the next-to-leading-order matrix elements for e e ~ qq have the form

1 &

~p(Ql Q2)V" = e N
I

1 —
N, l &(Qi Q2) ~P(Q1 Q2)V + +(Qi Q2)F ( N2)

(A39)

where, because of our assignment of the finite pieces [46],

P(Q1, Q, ) = 0. (A40)

He»city amplitudes for V„and 8„(Q1',Q2) are given in the previous section. The dynamica]. K; factor K;(Qi, Q ) is
given by (4.22).

Similarly, the next-to-leading-order matrix elements for e+e ~ qq+ g are given by

2 t'g NI (N —1) ) 1
I &(Qi;1)Q2) —N2+(Qi, Q2) ~ S&(Qi, l;Q2)V~ +&(Q1, 1;Q )

(A41)

where K(Q1, 1;Q2) is given by (4.31) with n = 1. With this assignment of the finite contributions, we find

F(Q1 &;Qg) = &
l l Re((&g(Qi & Qa)& )(~. (Qi" Qa)& ) )E2i (A42)

The finite next-to-leading-order current S„satisfies (A25) —(A28) [47]. Explicitly, we find
-(~)

I~AB(Qi+ 1+;Q2—) =(g2N') —(1) (p )N a2 Q1ADQ2 g2B ( 02 ) KIADQ2 g2B

(qiki)(kiq2) & N'i (qiki)(~iq2)

Q1CBkl ~1A
/f2 q

The other helicity amplitudes are obtained from 8. (+;+;—) by the usual parity and charge conjugation relations,
while the coefficients o.;, P;, and p; are written in terms of the scaled invariant masses, y;~ = 3;~/Q:
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2(l —yK 'q ) 2(1 yK, Q, )
4 —SyK,qPo= —R(yQ Kg yKQ, )+ 2,1

' ', ln(yK, q, )+1+6o,
2(1 yK, 7J, )

yK,q, yK, g,"='2(1-, '
)

'"(" &)'2(l „'
)1 yK, ,

~s = —R(yQ,g, yq, K, )—,' '
R(y{J9,yK 9 ) — ' '

ln(y{l,@ )
~Qg Kg &qiKx

2

2(1 —yK & ) yq, K, (1 —yK g )) ' ' 2(1 —yK g )

(A44)

(yg, q, (I —yq, q, )ps= —R(y{l,g, yq, K,)+ ' '
2

' ' + R(yq, q, yK, q, )
yq, K,

+ ' ' + ' ' ~1(y, )+ '~' + '~'~ 1(, ,)+ "' +6
I-y l ( 4-&y y

I, (I —yq, q, )' yq K ) '
I, 2(I y, g, ) yg K ) ' (1 yq, 'q, )

r
e =+ 2 R(yq q, yK q )— ln(yq, g )

yg K, ((I yq, g, ) yq K $

KR4 + Kx'Vg
1 ( )

Kxgs Kggs

2(l yKq ) -yq K (I —yK, @ )~
' ' (1 —

y&,q ) 2(1 —yK, @ )'

where the function R(x, y) is defined in terms of the dilogarithm (5.5) as

7r2
R(x, y) = ln(x) ln(y) —ln(x) ln(l —x) —ln(y) ln(1 —y) + ——Li2(x) —Li2(y).

6

The coefficients 6, are given by

3 3 3
bp = ——ln(yg, K, ) ——ln(yK, @ ), 6z = ——ln(y&, @ ),

and are generated by our choice of V~'oi (4.20). For example, the choice

V'col P'co V'colI 1 3
ce

=
e0 =2 ec =

4~

corresponds to

6p =6s =0,

(A45)

(A46)

(A47)

(A48)

and with the appropriate changes in K(Q&, Qz) and iC(Q1, 1;Q2) reproduces the results of [16j when multiplied by
~p(Qi'1' Q2) ~
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