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Predictions are made for the photoproduction amplitudes of low lyin-g N2+ (Pqq) and b, ~+ (Pss)
resonances, using a quark model with relativistic corrections to the transition operator, and mixed
nonrelativistic wave functions which are correctly orthogonal to the ground states. These amplitudes
are also calculated using relativized model wave functions. The results for the Roper resonance

N(1440) are in marked disagreement with the data.

PACS number(s): 13.60.Rj, 12.40.gq, 14.20.Gk

I. INTRODUCTION

Recently Close and Li [1] and Warns, Schroder, Pfeil,
and Rollnik [2] have calculated the photoproduction (and
electroproduction) amplitudes of the nucleon and delta
baryon resonances in models which use the Isgur-Karl
(IK) model [3—5] wave functions for the resonances, and
which add relativistic corrections to the transition oper-
ator. One of these corrections had been applied to the
calculation of photoproduction amplitudes with unmixed
oscillator wave functions by Kubota and Ohta [6]. The
effects of hyperfine mixings on these amplitudes, calcu-
lated with the nonrelativistic operator, were calculated
by Koniuk and Isgur [7]. Forsyth and Cutkosky [8] also
performed a similar calculation using a more general op-
erator, and Sartor and Stancu [9] have calculated with
the nonrelativistic operator but with a more sophisti-
cated basis for the wave functions. References [7—9] used
wave functions for the ground states N(938) and 6(1232)
and their excited states which include mixings between
the N = 0 and N = 2 bands brought about by color-
hyperfine interactions. Note that the previously pub-
lished Isgur-Karl model [4] wave functions for the N = 2

band excited states with J'P = z~ and Jp = sz do notP 1+ P 3+

include mixings with the N = 0 band, and so are not or-
thogonal to the ground states. It is therefore incorrect to
use the mixed ground states [5] and these excited states
in the same calculation, as is done in Refs. [1, 2], and
doing so leads to invalid results for these excited states.

In this paper the Isgur-Karl model wave functions of
the ground and excited N&~ and b, s2states are formed
by diagonalizing an energy matrix which includes the hy-
perfine terms. The resulting corrected predictions with
IK model wave functions and using the Close-Li tran-
sition operator are calculated. Another possible source
of error is that this model ignores mixings between the

'Current address.

ground states and the radially excited states, brought
about by the presence of anharmonicities in the spin-
independent potential. For example, the IK model Roper
resonance has a large negative anharmonic perturbation
on its mass, but its wave function is unaffected; this
might lead to erroneous results. This possibility is exam-
ined here by estimating these couplings using the wave
functions which result from a relativized spectroscopic
model [10], along with the Close-Li transition operator.
In the relativized model the wave functions are expanded
in a large oscillator basis and the resulting Hamiltonian
matrix is diagonalized, with the result that (apart from
basis truncation beyond N = 6) the spin-independent
potential is treated without wave-function perturbation
theory.

There has been considerable interest in two of the
states considered here, the Roper resonance N(1440) and
the 6(1600), because of their relatively poor description
in spectroscopic modeh [4, 8—ll]. There has also been
some controversy about whether or not there are two
states in the partial-wave analyses [12] at the mass of
the Roper resonance, which now appears unlikely [13].
Models exist which describe one or both of these states
as hybrid baryons [14). For this reason it is crucial to
see whether or not their photocouplings calculated in the
conventional quark model are compatible with the data.

Ohta [15) has calculated the photocouplings of the
Roper resonance and the 6(1600), along with those of
the b, (1232) to normalize some of the parameters, and
gets good agreement with the data for the Roper reso-
nance and b, (1232). The results for the b (1600) are large
and incompatible with the recent data [16]. The model
is similar to that of Ref. [1],except that it carries out an
expansion to one higher order in p/rn, and includes ex-
plicit contributions from the vector potential. The efFects
of interband mixing on the amplitudes are neglected. It
has not been extended to the other measured photocou-
plings, so there remains a question about whether the
agreement for the Roper resonance survives in a model
confronted with all of the data. Gavela et aL [17] have
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also calculated the size of the two Pii resonance photo-
couplings using a sPs quark-pair-creation model to create
p and ~ mesons, which then couple to the photon (vector
dominance). Their model also gives good agreement for
the Roper photocouplings, although their other predic-
tion [for the N(1710)) is not as good when compared to
recent data. Similar questions remain about the model's
global applicability.

The next two sections describe the Isgur-Karl and
relativized-model wave functions used here, and the
CLose-Li corrected transition operator. These are fol-
lowed by a description of the results, and a discussion
and our conclusions.

II. WAVE FUNCTIONS

A. Nonrelativistic ~awe functions

To generate the mixed wave functions for the 2 nu-

cleon and 2 delta resonances we must diagonalize the3+

color-hyperfine interaction matrix in these sectors. There
are five nucleon states with J =

2 up to N = 2

in the nonrelativistic model, which we label Nzss2
(the N = 0 state), N Sg z, N SM 2, N DM2, and

N PA2 . Here the notation and conventions of Isgur
and Karl on the positive-parity excited states [4] are used.
The hyperfine energy matrix which results [4, 5] is

N~ss '
S2

Nzs S' 2

N SM&
2 1+

N DMz4 1+

NzP~
2

N'S -" N'Ss, -'+S'

~s
4

5
8

N2SM zi

~s
4

-~2
8

5
16

N DM2
~15

~io
16

1 9
8 40

%2PA—

0

0

0
3~10

40

0

where the matrix elements are in units of

4o'so'

3v'2vrm~z
' (2)

and the matrix is symmetric. The off-diagonal matrix elements involving the I = 2 state N4DM
2 (and the second

part of its diagonal matrix element) are due to the tensor interaction, whereas all the others arise from the contact
interaction. Similarly there are four delta states with JP = ~z up to N = 2, which are 64ss~& (the N = 0 state),
64ss 2, b4Dg &, and b, DM &, with the hyperfine energy matrix3+ 4 3+ 3+

~4s,.-"S'2

5
8

64' s
S2
1
2

64Ds s
S2

~30
20
~io
40
1

~is' )
20

~5
40

z s,-" I'
S2

b4ss 2 (3)
64D s ~zS2 20

Again the off-diagonal terms involving the D states are tensor interactions and all the others are contact interactions.
In order to extract the wave functions for these states we must also add in the diagonal energies which result in
the model from harmonic oscillator energies plus anharmonic perturbations. Since the original spectroscopy was
done [4] without the hyperflne mixings between the N = 0 and N = 2 band states, the resulting energies would
difFer from the results of Isgur and Karl. In order to obtain the best estimate of the hyperfine mixings in the
wave functions the following procedure is adopted here: the N2 matrix is diagonalized iteratively with floating
diagonal entries for the first three states, subject to the requirement that the lowest energy eigenvalues turn out to
be 938, 1440, and 1710 MeV, the physical masses of the states they represent. The last two diagonal entries are
set at E(70, 2+) + (1/8 —9/40)b = 1905 MeV and E(20, 1+) = 2020 MeV, where E(70,2+) and E(20, 1+) are the
spin-independent model energies of these last two states which couple weakly to 7t.N and so have no experimental
counterparts. The result is the eigenvector matrix

N~S -'

N2S8' 2

lV4DM 2
2PA 1+

A2

938
0.9246

1440
0.2958

1710
0.2035

—0.2901 0.9551 —0.0491
—0.2426 —0.0147 0.9015
—0.0459 —0.0006 —0.3697
—0.0030 —0.0001 -0.0849

1898
0.1218

—0.0319
0.3445

0.8030

0.4697

2058
—0.0423

0.0114
—0.0979
—0.4651

0.8787

1029 1399 1690 (1905) (2020)
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where the first row gives the eigenvalues, the eigenvectors are listed by columns, and the last row gives the final
diagonal entries. The resulting masses for the heaviest two states, and the N(938) wave function, are quite similar to
those of Refs. [4, 5]. The mixings of NzSM z into N(1440) and of NzSg z into N(1710) have changed substantially
(the former changing sign) relative to Ref. [4], due to interband mixings.

A similar process is carried out for the 6z matrix, with a fioating first diagonal entry constrained by the re-

quirement that the lowest eigenvalue is 1232 MeV. Since quark-model values for the mass of the first excited b, z
state are consistently higher [4, 8—10] than the mass of the two-star state b, (1600), and it is not possible to constrain
the third eigenvalue to its physical value (1920 MeV), the remaining diagonal entries are taken at their model values
E(56', 0+) + 5b/8 = 1788 MeV, E(56, 2+) + b/4 = 1925 MeV, and E(70, 2+) + b/8 = 1972 MeV. The corresponding
eigenvector matrix is

~4S,s' (Sg
b 4Ss—8' g

b,4Dg s
Sg

1232 1799 1946 1983
0.9667 —0.1601 0.1844 —0.0765

0.2192 0.9205 —0.3043 0.1098
—0.1094 0.3076 0.9238 0.2002

0.0740 —0.1802 —0.1416 0.9706
(5)

1275 (1788) (1925) (1972)

with masses and the b, (1232) wave function similar to
those of Refs. [4, 5].

These Isgur-Karl model wave functions are not deter-
mined without specifying the harmonic oscillator param-
eter n In w.hat follows we use n = 0.41 GeV, which is
the value adopted by Koniuk and Isgur [7] in their calcu-
lation of the photocouplings, and is consistent with the
spectroscopic model of Refs. [3,4].

B. Relativized-model wave functions

Details of determining the wave functions for these
states from the relativized model, and a description of
the model, can be found in Ref. [10]. The important
difFerence between this model and the Isgur-Karl (IK)
model, for the purposes of this work, is the more realistic
treatment of the spin-independent potential. The suc-
cessful spectroscopy of the nonrelativistic model in light
quark systems can be rationalized (given the obvious im-
portance of relativistic efFects in quark potential models
with p/m 1) by noting that the model uses efFective
values of the parameters, which are able to make up for
some of the deficiencies of a nonrelativistic treatment.
An example is the (constituent) quark mass which in the
nonrelativistic model is an efFective mass containing some
of the kinetic energy of the quark (as well as "dressing"
of the current quark mass from /CD). Another is the
strong coupling constant, which has a large size to com-
pensate for deficiencies in the treatment of the relativistic
dynamics of bound spinors and the perturbative solution
of the dynamical problem. In the IK model [4] the spec-
trum of the states considered here is determined mainly
by the spin-independent potential. This splits the N = 2
band states into a pattern independent of the form of the
potential, in first order in its anharmonic part. The next
most important eEect is the hyper6ne interaction.

The efFects on the wave function from the anharmonic
terms are not included in the IK model, although the ef-
fects of the hyperfine interaction (as calculated above)

are. The size of the anharmonic "perturbations" to
the spectrum, which for the Roper resonance, for exam-
ple, are larger than the zeroth-order oscillator splitting,
should warn us that the efFects on the wave functions may
be large. The relativized model deals with these eiFects
by diagonalizing the full potential in a large harmonic
oscillator basis (three bands above the ground state).
The spin-independent potential is that which results from
adding the lengths of a minimum-length Y-shaped string
between the quarks, and multiplying by (roughly) the
meson string tension. The hyperfine interaction is also
dealt with diiFerently. For details see Ref. [10].

The spectrum that results from this process is com-
parable to that of the IK model, which is encouraging
given the lack of freedom to fit band centers of mass,
etc. The spectroscopy of two of the states considered
here (compared to other nonstrange states in this band)
is perhaps the most problematic in both nonrelativistic
and relativized models. The Roper resonance is predicted
to be about 100 MeV heavier than experiment, although
it fits quite well into the pattern of splitting of the states
in its band (whose center of mass is about 40 MeV too
high). Also the mass of the lightest excited b, z is about
190 MeV too high (or it is 150 MeV too heavy relative
to the other members of its band), as in nonrelativistic
models [4,8]. Recent partial-wave analyses by Amdt, Li,
Roper, Workman, and Ford at VPI [18] and Manley and
Saleski at Kent State [19] have confirmed the existence
of the latter state, so it remains a problem for the quark
model. This work is motivated, in part, by noting that
the study of the photocouplings of these states is a par-
ticularly sensitive way to determine if there is a need for
new physics to explain their nature.

III. TRA.NSITION OPERATOR

The photon transition operator used here builds upon
the nonrelativistic operator by the addition of terms
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which must be included in an expansion to O(p/m),
which supplement the usual orbit-fiip (or convection)
plus spin-fiip terms with spin-orbit [20, 6] and two-body
[20, 15, 1] terms. The convection term is also rewritten
in order to avoid explicit dependence of the transition

operator on the vector-exchange part of the binding po-
tential [21,1]. Similarly, explicit dependence on the scalar
part of the binding potential can be avoided by including
kinetic and scalar-binding energies in the effective quark
mass m*. The resulting transition operator

3
egH=) —er, E +i (p, kr, A +r, Ap; k) —yicr;. B,

~
2m'i=1

1 eg cog 1 cr, cr)
2p, — —[E; x p, —p, x E,] + ) —— [e E x p, —e;E; x p ]2m* 2m* 2 . . 2MTm* 2 2

i&j
(6)

is then expanded to the same order as the spectroscopic
Hamiltonian in the IK model. Here m' is the the effective
light-quark mass, e;, cr, /2, and y„= ge;/2m" are the
charge, spin, and magnetic moment of the quark i, and
A;:= A.(r;). The baryon system recoils with mass M~.
Close and I i argue that it is necessary to add these terms
if one also considers the mixings in the wave functions
brought about by the strong-hyperfine interaction, which
is itself of O(p/m)2. They are also necessary [20] if the
electromagnetic interaction is to satisfy the low-energy
theorems in Compton scattering, and the Drell-Hearn-
Gerasimov sum rule.

For ease of calculation it is useful to write the transi-
tion operators to be used between quark-model states in a
slightly different form from those of Ref. [1].By insertion
of the usual radiation field for the absorption of a photon
into Eq. (6), and then integrating over the baryon center-
of-mass coordinate, the transverse photoexcitation am-
plitudes can be written as simple expectation values over
flavor, spin, and spatial internal coordinates

X„"= 3(X;JX~H, [X; —,
' X —1).

Here the initial photon has a momentum k~[z, the ini-

tial nucleon has a momentum P, [~z, and the angular mo-
menta are quantized along R. The exchange symmetry

of the IK model wave functions has been used to replace
a sum over quarks with three times the third-quark ex-
pectation value [22]. The operator Hs can be written
in the form Hs = Hg'+ HP + Hs + Hz~zb, with the
nonrelativistic (nr) operator

e, 1 ~~t'
m' +g ko

Here Ice is the 0 component of the photon four-momentum
(equal to A,

' = ~k[ for real photons), and the momenta p~
and pg are conjugate to the Jacobi three-body coordi-
nates p = (rq —rz)/y 2 and A = (r~ + rz —2rs)/v6.
The derivative operator here is that which arises from
the usual convection Hamiltonian

3
H"""= —) ', (p, A, +A, p,).

I=1

The difference H'r between the rewritten convection
term [the first two terms in Eq. (6)] and H'~"" is a rel-
ativistic correction to the transition Hamiltonian due to
the presence of the vector-exchange part of the binding
potential; it can be written in the form

vp 2x
H3 ——e3

ko

k
x + ———

6 3)
1 ~&-»+&(

m'I, +g) (10)

where P; = ~P, [. Similarly the spin-orbit (so) operator may be written

e,

and the two-body (2b) operator has the form

k+
6 3)

&sz

2
e ikv rA, —

Op+ Opg &)+
„Q&&0 ups — pp+ +»z +

2M' m'

where o ~
= (cr q

—o z) /v 2, and o q = (crq+crz 2os) /~6— '

The explicit appearance of P, in Eqs. (10), (11),
and (12), and the nonrelativistic kinematics (the sim-

ple dependence on A: = [k[), demonstrate that ampli-

tudes caclulated with these terms are frame dependent.
This lack of relativistic invariance is an inevitable con-
sequence of the nonrelativistic reduction used to arrive
at Eq. (6), and the lack of a strictly relativistic treat-
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ment of recoil efFects and the wave functions. We will

show, however, by calculating the amplitudes in both the
center-of-momentum (c.m. ) frame (where P» = —k) and
in the Breit (Br) frame (where P; = —k/2), that the
results are only weakly frame dependent. Breit frame
results are theoretically preferable, since in this frame

(P»( = ~Py~ and recoil contributions to the amplitudes
calculated with Eqs. (10), (11), and (12) vanish [1]. For
photoproduction we have

c.m. frame
ko=k=» 2M

Breit frame.
~ /2(MX+M~~)

(13)

XK. RESULTS

Table I shows the results of this calculation using
Isgur-Karl model wave functions, in both the center-of-
momentum and Breit frames. In all cases the results
are for mixed initial and final state wave functions from
Eqs. (4) and (5) with cr = 0.41 GeV. An efFective quark
mass of rn' = 0.336 GeV (along with g = 1) is adopted,
so that the results may be compared with those of Ko-
niuk and Isgur [7] and Close and Li [1]. This choice of
g/m' yields the correct nucleon magnetic moments in a
simple additive quark model. The Breit frame results are
shown decomposed into the pieces arising from H"' (ex-

pressed as a sum of two terms: the convection term and
the spin-flip term), H~, H", and H2b.

The signs of the photoproduction amplitudes for each
resonance are determined by taking the product of the
sign of the amplitude in Eq. (7) and the sign of the
X' ~ Nn decay amplitude. There is also an extra con-
ventional sign in the experimental amplitudes [16, 7] of
—1 (+1) for the photoproduction of an N' (b, '). The
simplest way to avoid miscalculating these signs is to cal-
culate the mN amplitudes in some model using exactly
the same wave functions used as input to the photopro-
duction calculation. This calculation has been done [23]
here using the sPc (quark-pair-creation) model and the
above wave functions. The signs of the resulting n N am-
plitudes are stable to changes in the parameters away
from those which best fit the pion partial-wave data. Ta-
ble I also includes predictions for the photocouplings of
states in Eqs. (4) and (5) predicted by the quark model,
which are unseen in the n.N and photoproduction anal-
yses ("missing" states). It is possible that evidence for
them will be discovered at CEBAF. The results here in-
dicate that they have rather small photocouplings and so
should be difficult to see in pion photoproduction (given
their implicitly small mN couplings), but they may be
visible in multipion final states like n.b„, pN, and uN.

As a test of the computer program used to calculate
these amplitudes, the calculation of Ref. [1] has been re-

TABLE I. Photoproduction amplitudes with the mixed Isgur-Karl model wave functions of
Eqs. (4) and (5) calculated with the transition operators H"', H"~, H", and H~b, with g = 1,

1m' = 336 MeV, M~ = 3m', and e = 410 MeV. Amplitudes are in units of 10 GeV

State
(energy)

N 2 (1440)

N 2 (1710)

N ~~ (1898)

N s+ (2058)

6 2s+ (1232)

4 s~+ (1600)

b s (1920)

(1983)

A1
2

A1
2

A1
2

A1
2

A1
2

AfL

2

A1
2

A1
2

APgfL
1
2

AP)fL
3
2

AP yfL

1
2AP'"
3
2

APgfL
1
2

APqfL
3
2

AP'"
1

AP'"
3
2

Anr

(Br)

0+26

0+67

1—45

2+42

—4—18

—8+16

1—90

-1-155

7—58

-5-112

—5+30

36+9
—21+27

A„p
(Br)

0

A

(Br)
—32

22

—29

16

15

41

20

A2b

(Br)

11

12

—19

20

—21

—22

Total
(Br)

5

—21

—17

14

—91

-159

Expt.

-69+7

37+19

5+16

—141+5
—258+19

—22+29

1+22

43+?

23k?

Total
(c.m. ).

—32

—15

12

—98

—170

-114

69
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produced, for the ease of unmixed IK model wave func-
tions in the c.m. frame, for every resonance for which
there exist data. The results agree in magnitude for all
states, and in sign (apart from the overall sign of the
Nsz(1720) amplitudes [24]) in the case of all states not
considered here. The signs of the N(1440), N(1710),
6(1600), and b, (1920) unmixed amplitudes all differ [17,
25] from those of Koniuk and Isgur. In their work [7], the
signs of three of these amplitudes are fit by the sign of a
reduced (vrN) amplitude Pc, in Ref. [23] there is no such
freedom, and the signs are predicted. In the case of the
b, (1600) the situation is complicated by a mN amplitude
which changes sign (in the sPs model of Ref. [23]) when
the initial and final states are mixed as in Eqs. (4) and
(5). None of the other signs arising from the Nx vertex
change because of mixing.

The amplitudes for the Roper resonance N(1440) show
a cancellation between a small nonrelativistic term and
the sum of the spin-orbit and two-body terms. The re-
sulting small amplitudes are quite insensitive to changes
in the parameters of the model, and significantly far from
the data. The Kubota-Ohta [6] calculation shows a sim-
ilar cancellation, as does that of Ohta [15] [in his am-

plitudes calculated to O(rn z)], although all of his am-
plitudes are larger due to a large quark anomalous mo-
ment. Similar small results (with the opposite sign) for
A~i z have been found in a light-cone model at Qz = 0i/z

for radial exeitations by Weber [26]. The situation for
the N(1710) is somewhat better, given the errors in the
data. However the N(1710) amplitudes are sensitive to
changes in the wave function due to the mixings of higher
bands into the wave functions, and are in better agree-
ment with the data in the relativized model (as shown
below).

The amplitudes for the ground state A(1232) are essen-
tially unchanged from Ref. [1], as expected; those of the
first excited state 6(1600) are larger and in poorer agree-
ment with the data. This is due to a large nonrelativistic
term from mixing [9] with the b(1232) (not calculated
in Ref. [7]), and spin-orbit and two-body terms which
approximately cancel. The situation for the A(1920) is
improved, and agrees well with the data, for which no
errors are quoted [16].

Table II shows the amplitudes for these states cal-
culated in the Breit frame with relativized-model wave
functions [27]. The process of relativization, generally
speaking, replaces quark masses in operators with sim-
ple functions of their kinetic energies, and smears the
quark coordinates. Since the photocouplings dealt with
here are all for light-quark states which are not highly ex-
cited, it should be a reasonable approximation to replace
the quark kinetic energy with a constant. This corre-
sponds, up to the addition of an average scalar-binding
energy [1], to the effective mass rn' in Eq. (6). There is

TABLE II. Photoproduction amplitudes with the relativized-model wave functions of Ref. [10]
calculated in the Breit frame with the transition operators H"', K, H', and H with g = 1.3,
m' = 437 MeV, M~ = 3m', and n = 0.5 GeV. Units are as in Table I.

State
(energy)

N
q (1440)

(1710)

N
q (1880)

N q (1975)

4 ~~+ (1232)

(1600)

b, i (1920)

(1985)

A

A",
2

An
2

A~
2

AA

2

A~~

2
A

2

A",
2

A~
2

A"'"
1
2

A"'
3
2

A"'"
1
2

A Jiy'A

3
2

A"'"
1
2A"'"
3
2

A"'"
1
2

Apl)YL
3
2

0+31

0—20

0-16

-1+16

-1+1

-4+13

0—107

0-185

0+41

0+71

—14+26

29+4

—18—7

—17

10

Aso

—33

—22

—20

—28

50

12

31

Agb

12

12

14

—22

Total

—12

—108

-186

30

Expt.

—69+ 7

37+ 19

—5k 23

—141+ 5

—258+ 19

—22k 29

1+ 22

43+?

23k?
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no reason, however, for this effective mass to be the same
as that which appears in the model with nonrelativistic
wave functions.

Quark smearing has the efFect of multiplying the pho-
tocoupling amplitudes by a nonrelativistic form factor
which falls ofF as the three-momentum transferred to the
quark increases. With the light quarks smeared with a
Gaussian distribution of the same size as that used in the
relativized-model spectroscopy [10], this form factor falls
ofF only a few percent over the range of Mx values consid-
ered here, and so will not affect the photocouplings. Ac-
cordingly the measured photocouplings have been fit [28]
by varying the quark efFective mass. The quark mag-
netic moments are maintained at the values needed for
a simple additive explanation of the nucleon moments
by covariation of g, and the recoil mass in Eq. (12) is
kept as MT = 3m'. The amplitudes in Table II are cal-
culated with the modestly increased value m" = 0.437
GeV (g = 1.3), which yields the best global fit to all
of the measured photocouplings. The relativized-model
wave functions are expanded in an oscillator basis with
a = 0.5 GeV. Since this basis is large [10], the results are
largely insensitive to this choice [28].

The cancellation which leads to small couplings for
the N(1440) persists. The N(1710) amplitudes maintain
their signs and are reduced, and are now in quite good
agreement with the (rather uncertain) data. Since this
simple fit does not change the quark magnetic moments,
the amplitudes for the 6(1232) are largely unchanged,
although there has been some improvement arising from
the relativized-model wave functions [29]. The h(1600)
amplitudes have been reduced in size, and (due to a
change in sign of the AN amplitude) have changed sign.
Because of the obvious sensitivity of the magnitude and

sign of the 6(1600) amplitudes to mixings, those aris-
ing from the relativized wave functions may be the most
trustworthy as they allow the wave functions of the initial
and final states the most freedom to mix via the inter-
actions. The photocouplings of the 6(1920) are smaller
but still positive. These results are summarized in Fig. 1,
where A„, and the total amplitudes from Table I (in the
Breit frame) are plotted, along with the total amplitudes
from Table II, and the data.

V. DISCUSSION AND CONCLUSIONS

It appears that this model is incapable of explain-
ing the measured photocouplings of the Roper resonance
N(1440). Comparison of Tables I and II show that the
cancellation between the H"' terms and the sum of the
H" and Hzb terms is independent of details of initial
and final wave functions (as long as they remain orthog-
onal). The size of these relativistic corrections relative
to the H"' terms in this case might call into question the
convergence of such a p/rn expansion. However, the av-
erage size of the expectation of H"' is significantly larger
than that of H"9+ H'~+ Hzb, when the photocouplings
of all of the resonances are considered. The point of
view taken here is that Eq. (6) represents a minimum
set of tensor terms required by gauge invariance [20, 1],
and so if their coefficients are viewed as free (subject to
other constraints such as the nucleon magnetic moments)
the physics of the transition operator will have been effi-
ciently parametrized. This appears to be borne out by an
improvement of the fit to all of the photocoupling data
upon addition of these terms with suitably adjusted pa
rameters [1,28]. As a consequence it would appear that,
in this model, a conventional picture of the Roper res-

100
I I I I I I I

W

0
0

0

5(5 o g

() 4
C 0

Q t)
~ ~

R

-i00—

-200—

~I ls

I I I I
"I

I I I-

N(1440) N(1710) N(1580) N(1975) d(1939) h(1800) h(1990) 4(1955)

FIG. &. Breit frame photoproduction amplitudes with mixed Isgur-Karl and relativized-model wave functions Diamonds
squares are the An, and totaL" amplitudes from Table I, respectively; circles are the "total" amplitudes &om Table II. For

Pgy states A" and A" amplitudes are displaced, with Az&~ plotted to the right of the corresponding A~&z, «»33 states Azg2

and Aspic amplitudes are displaced, with A3"&2 plotted to the right of A~i&z. Data points, taken from Ref. [16j, are also plotted
with error bars.



1972 SIMON CAPSTICK

onance and its photocouplings is incompatible with the
current data.

For the other states dealt with here the situation
is less clear. The b, (1600) amplitudes appear to be
poorly described in the model with Isgur-Karl model
wave functions, but the discrepancy diminishes when the
relativized-model wave functions are used. The other
states for which which data exist seem to fit fairly well,
given the rather uncertain data.

It is significant that, like the 6(1232), the Roper reso-
nance is a light state with a large [13] coupling to n N. It
is therefore possible that virtual nucleon-pion loops [30]
renormalize the photocouplings of these states. The ab-
solute sizes of the error in the two cases are similar. It
seems rather unlikely, given the lack of many such dis-

crepant states below 2 GeV, that the Roper resonance
and the b, (1600) are pure hybrids. The next highest ez-
perirnentaj states with these quantum numbers [N(1710)

and b, (1920)] are quite well described in the conventional
quark model and are too heavy to be assigned the lightest
quark-model states. They could, however, be mixed [14]
with relatively light hybrid states with these quantum
numbers. More precise data on the photo- and electro-
production of the resonances considered here will be cru-
cial in deciding among these possibilities.

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of
Energy under Contract No. DE-AC02-76ER03066 and
Contract No. DE-AC05-84ER40150. The author wishes
to thank Richard Cutkosky and Zhenping Li for helpful
discussions, Arun Gupta for his help with iterative diag-
onalizations, and Winston Roberts for his help with the
calculation of signs.

[1] F.E. Close and Zhenping Li, Phys. Rev. D 42, 2194
(1990); 42, 2207 (1990).

[2] M. Warns, H. Schroder, W.P. Pfeil, and H. Rollnik, Z.
Phys. C 45, 613 (1990); C 45, 627 (1990);M. Warns, W.
Pfeil, and H. Rollnik, Phys. Rev. D 42, 2215 (1990).

[3] N. Isgur and G. Karl, Phys. Lett. 72B, 109 (1977); 74B,
353 (1978); Phys. Rev. D 18, 4187 (1978).

[4] N. Isgur and G. Karl, Phys. Rev. D 19, 2653 (1979).
[5] N. Isgur, G. Karl, and R. Koniuk, Phys. Rev. Lett. 41,

1269 (1978); Phys. Rev. D 25, 2394 (1982).
[6] T. Kubota snd K. Ohta, Phys. Lett. 65B, 374 (1976).
[7] R. Koniuk and N. Isgur, Phys. Rev. D 21, 1868 (1980).
[8] C.P. Forsyth and R.E. Cutkosky, Phys. Rev. Lett. 46,

576 (1981); Z. Phys. C 18, 219 (1983); C.P. Forsyth,
Ph. D. thesis, Carnegie Mellon University, 1981.

[9] R. Sartor and Fl. Stancu, Phys. Rev. D 81, 128 (1985);
83, 727 (1986).

[10] S. Capstick and N. Isgur, Phys. Rev. D 34, 2809 (1986).
[11] R.E. Cutkosky, in Hadron '91, Proceedings, College Park,

Maryland, edited by S. Oneda and D.C. Peaslee (World
Scientific, Singapore, 1992), p. 913.

[12] R.A. Amdt, J.M. Ford, and L.D. Roper, Phys. Rev. D
32, 1085 (1984).

[13] R.E. Cutkosky and S. Wang, Phys. Rev. D 42, 235
(1990).

[14] T. Barnes and F.E. Close, Phys. Lett. 158B, 89 (1983);
E. Golowich, E. Haqq, and G. Karl, Phys. Rev. D 28, 160
(1983); F.E. Close, Rep. Prog. Phys. 51, 833 (1988); Z.-

P. Li, Phys. Rev. D 44, 2841 (1991);Z.-P. Li, V. Burkert,
and Z.-J. Li, ibid. 46, 70 (1992).

[15] K. Ohta, Phys. Rev. Lett. 43, 1201 (1979).
[16] Particle Data Group, J.J. Hernandez et al. , Phys. Lett.

B 239, 1 (1990).
[17] M.B. Gavela, A. Le Yaouanc, L. Oliver, O. Pene, J.C.

Raynal, and S. Sood, Phys. Rev. D 21, 182 (1980).
[18] R.A. Amdt, Z.-J. Li, L.D. Roper, R.L. Workman, and

J.M. Ford, Phys. Rev. D 4$, 2131 (1991).
[19] D. M. Manley and E. M. Saleski, Phys. Rev. D 45, 4002

(1992).

[20] S. J. Brodsky and J. Primack, Ann. Phys. (N.Y.) 52, 315
(1969);F.E. Close and L.A. Copley, Nucl. Phys. B19,477
(1970); F.E. Close snd H. Osborn, Phys. Rev. D 2, 2127
(1970); R. Faustov, Nuovo Cimento 69A, 37 (1970); G.
Feinberg and J.Sucher, Phys. Rev. Lett. 85, 1740 (1975);
J. Sucher, Rep. Prog. Phys. 41, 1781 (1978).

[21] R. McClary and N. Byers, Phys. Rev. D 28, 1692 (1983).
[22] A more complicated procedure is necessary when the

relativized-model wave functions, which are not totally
symmetric, are used; see Ref. [10] and S. Capstick and
G. Karl, Phys. Rev. D 41, 2767 (1990).

[23] S. Capstick and W. Roberts, Report No. CEBAF-TH-
92-05 (unpublished) .

[24] This agrees with the sign predicted by Kubota and Ohta
in Ref. [6]; interestingly the result of this sign change is to
bring the calculations of Refs. [7,9, 1] in closer agreement
with the data [16] for this state.

[25] The signs arising from the vrN vertex in Refs. [1,9] were
adapted from Ref. [7], who only list the n'N signs for
unrated wave functions. In Ref. [1] Close and Li give the
correct predictions of the H"' model for the sign of the
unmixed-Roper-resonance coupling.

[26] H.J. Weber, Phys. Rev. C 41, 2783 (1990).
[27] The missing states in Table II are assigned their model

masses from Ref. [10]; note the mass of the highest
mass N z is significantly lowered by mixing with higher
bands.

[28] S. Capstick, Phys. Rev. D (to be published).
[29] In Capstick and Karl in Ref. [22], a solution of this prob-

lem is reported based on the smaH quark mass in the rela
tivized spectroscopic model (rn = 0.22 GeV). In the light
of the global fit of Ref. [28] this solution becomes less at-
tractive. Moreover, current conservation with the nonrel-
ativistic transition operator is improved using an egecti ve

quark mass m of the order of 300—400 MeV; our calcula
tion found the electromagnetic current roughly conserved
at low Q (with relativized-model wave functions) using
an inconsistent value of 336 MeV for the quark mass.

[30] I. Guissu and R. Koniuk, Phys. Rev. D $6, 2757 (1987).


