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Spontaneous supersymmetry breaking of the Wess-Zumino model at finite temperature
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We investigate the one-loop effective potential of the supersymmetric model in the high-temperature

domain. We observe the fact that supersymmetry can be broken by finite-temperature effects and there
is a possibility that broken supersymmetry can be restored in the higher-temperature region.
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I. INTRODUCTION

The study of the vacuum structure by use of the
effective-potential method has been investigated by many
authors [1] since the possibility of using this method was
pointed out by Jona-Lasinio [2]. Jackiw [3] suggested the
elegant method, the Feynman path-integral method,
which was used to obtain a simple formula for the
effective potential. By use of this method, we obtained a
deep understanding of vacuum stability and structure in
the quantum domain.

Kirzhnits and Linde [4] have suggested that spontane-
ous symmetry breaking in relativistic field theory wi11

disappear above a critical temperature. By this sugges-
tion the study of the phase transition at finite tempera-
ture in quantum field theory has become a matter of in-
terest. It was reported that the broken symmetry of
several theories can be restored above the critical temper-
ature. Weinberg [5] suggested that the diagrammatic-
functional methods for evaluating effective potentials in
quantum field theory might be profitably employed to
study temperature effects. Dolan and Jackiw [6]
developed the functional method to evaluate directly the
temperature-dependent mass and potential shape.

Supersymmetry has fascinated particle physicists since
it was first discussed [7]. It allows one to mix bosons and
fermions in the same multiplet, which may have
relevance for particle-unification schemes. If nature real-
ly is described by a supersymmetric theory, the symmetry
must be spontaneously broken, because fermions and bo-
sons with degenerate masses do not occur in nature. In
terms of the Weyl two-component spinor formalisin, the
supercharges Q„and Q„satisfy the relations

I Q~, Q„]=2rr"„zP„. Multiplying by this relation
(o.") ", we obtain the energy of the supersymmetric
theory:

H=-,'[Q&Q;+Q;Qi+QzQ, +Q2Q2] .

the zero-energy state E„„„„=(OIHIO) =0. If the vacu-
um energy is not zero (i.e., (OIHIO)%0), then the super-
symmetry of the theory breaks down spontaneously.
Several authors [8,9] have investigated this issue, which is
spontaneous supersymmetry breaking in the finite-
ternperature region, and they reported the critical tem-
perature, at which supersymmetry breaks down, for some
models. On the other hand, it was argued by other au-
thors [10] that supersymmetry is not broken at finite tem-
perature if it is not broken at zero temperature. These
considerations are important as a phenomenological and
theoretical basis for a unified theory and quantum
cosmology [11].

We also investigate this problem and represent some
different aspects of the theory. In Sec. II we treat the
Wess-Zumino model, explicitly derive the one-loop
effective potential, and add a finite-temperature effect,
and follow up with discussions.

II. EFFECTIVE POTENTIAL

—
—,
'

A,4')5'(8)+ H. c.], (4)

where 4 is the chiral superfield and H.c. denotes Hermi-
tian conjugation (we follow the conventions in Ref. [12]).
After supercoordinate integration we obtain the action

I=J1 x —t) pot'g po "r) 1T+——r—n (f +p)
2 2 " 2

—A HA+A(f A+pPA*) —V(A, A")

Our starting action is the minimally extended Wess-
Zumino model. In superspace the action, which ap-
parently has supersymmetry, is given by

I=Jd x fd 81 8[(@t@ grtl ,'rnid—z——

We define the supersymmetric ground state denoted by
IO), such that where

(5)

Q~ IO) =0, A =1,2,
Q„. IO) =0, A =1,2 .

(2)

(3)

V(A, A')=g +gm(A*+A)+gi(A' +A )

+m'I AI'+m~1 AI'(A "+A)+~'I AI'.
Hence the supersymmetric vacuum state corresponds to The P is the two-component Weyl spinor, and A is the
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complex scalar field; the auxiliary field (which has no ki-
netic term) has been eliminated by an "on-shell" condi-
tion. The superpotential V( A, A) has a minimum at

1/2
m m g+

4A,

Since V( A,*,A, ) =0, the system is located at the super-
symmetric phase under the classical level.

To obtain the one-loop effective potential, we introduce
a spacetime-independent field y, which corresponds to
the zero-momentum state, such that A(x)~A(x)+g,

A (x)~A*(x)+y . We obtain the quadratic action in
terms of quantum fields:

—X'(4lyl'l Al'+ A'y" + A "y') . (7)

Our one-loop partition function Z [y*,y] in terms of the
zero-momentum field y, y* is

Xq"' '= —8 Qo "g ——go "8 g+ m—(Q +P) A—'C7A
2 " 2 " 2

+X(y'y+Py*) —g) (A*'+ A') —m'l Al'

—mA(2l Al (y+y )+/*A +/A )

Z [g',g]=—f2)psst)gstexp ——f d x [/st(iy~+, "d„M)ps—t] fS A'2) Aexp ——f d x B (0+N)B

where

g~=(f",P„), 8 =(A, A'),
where gM is the four-component Majorana spinor and
y~~ is the gamma matrix in %ey1 basis. Now we obtain
the result in momentum space:

AB
P

pAB 0,0'

p 0 0
p g

' Cl 0

0 egA Z [X,X']= Det(y„P"—M)

Det(G+ N)

det [(p —
l rt l ) ]

det[(p' —
p

—lg'()(p' —p+ lpl )]
' (13)

(=2(gk, +mls+A, y ),
p=m +2m)i, (y+y*)+4k lyl

g=m +2Ag,

(10)

(12)

where we have performed the determinant in terms of
discrete space for a second equality. We use the (-
function method [13] to obtain the continuum-space

—
gA (O)

determinant (note det A = e " ):

p(s)=lim f dt t' ' f d4x1

P Q~ y xI(s) 0

4

exp[i' (x y) l(4t) lrtl—tl(p )]-
16~2)2

s'
16~ p

1 (s —2) X (volume),
r(s)

(14)

where the dimensional parameter p is introduced to make a dimensionless exponent. We obtain the regulated g func
tion such that

,(0)= — li)l ——+ln4
P' —

I
l' 32m- 2 p

where a prime denotes differentiation with respect to s. The one-loop effective potential for the fermionic loops is

(15)

VFermi
p' —lgl l pl' ——+ln

16m. 2 p
(16)

By the same way, we can find the bosonic contribution:

V "'=—(' (0)—g' (0)
s
' —

p
—

lkl u' —p+ lkl

(p+ lgl) ——+ln
32 tt 2 p

+(p —
lgl ) ——+ln p —ill

2 p 2
(17)
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It is interesting that bosonic and fermionic contributions have the opposite effect to the potential [see Eqs. (16) and
(17)]. This difference of sign originates from the difFerent spin character of the two fields. The above g-function ap-
proach directly gives us the renormalized expression. So all parameters have been already renormalized. In terms of
the one-loop level, we find the effective potential

yO —y (X X» )+@@Fermi + VBose )

Consider the thermal effect of our system. The thermal contribution can be easily introduced by an imaginary-time
formalism [6] such as

Vpperms 4
2m2p'

+ 12)l'+ 12)l'
In(l~l2p )+o(p )

180P 12P 16M

VP' =2 f dxx ln(1 —exp[ —[x +P (p+lgl)]' ])+2
0 2 f dxx ln(1 —exp{ —[x +P (p —lgl)]' ])

+ ~ — '
[(q—lgl)'"+(i +lgl)'"]+o(p),

45p 3p2 6mp
(19)

where the above expressions include antiperiodic and periodic boundary conditions for the fermion and boson fields, re-
spectively. The total thermal contributions are

VP VPFcfml + VPBOsc
1 1 1 (20)

Sm+,+, [ln ~(X+X*)+2~'IXI']+O (1/P)
12 12P 6P

(21)

where we use a high-temperature perturbation to obtain the above relations. Now we can write the one-loop effective
potential at the high-temperature region:

yP V (X» X)+@@Fermi + VBose )+y yP ) (22)

III. RKSUI.TS AND DISCUSSIONS

%'e have represented the vacuum structure of the system, which is the minimally extended supersymmetric Wess-
Zumino model, by explicitly deriving the one-loop effective potential at a finite-temperature region. As a result of
thermal loop corrections, V,1„„„1deformed to V,&. It is curious that the fermionic contribution to the zero-
temperature effective potential has an opposite sign compared with the bosonic one [see Eq. (16)]. At zero temperature
there is a competition between fermionic and bosonic contributions. If the contributions of fermions more rapidly grow
up than the bosonic ones, then the system is unstable. Hence the parameters of the system should be chosen properly to
include the theory on the consistent region.

We can see the free-energy density of an ideal ultrarelativistic free gas in Eq. (21). It can be redefined such that

g ~gp~
where

(23)

gp=g +A
12P"

(24)

By fitting the other parameters (p~pp, m ~mp, )i,~kp), we obtain

jef Vclassical(Xp&Xp&i p&gp&~p&~p)+~[ ~l (Xp&Xp&1 p&gp&~p&~p)+ Vl (Xp&Xp&i p&gp&mp&~p)]

5mp
+Pi + [mpAp(xp+Xp)+2Aplxpl ]+O(1/P)

12P 6P

These reparametrizations correspond to the changing of
the renormalization point, which does not affect the
physical analysis. In the high-temperature region, the
last term is the dominant one, which is the thermal

correction term. As the temperature is raised, the struc-
ture in the potential is swept, whatever the vacuum struc-
ture at zero temperature may be, and we can expect that
the minimum of the effective potential grows up. The
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vacuum energy is no longer zero, (O~H~O)%0, and so a
supercharge cannot annihilate the vacuum state
Q„~O)WO and the mass degeneracy has disappeared.
This is a general feature of the supersymmetric model
which is located in the thermal environment [9]. As the
temperature was raised in this temperature region, the
vacuum structure wiped out. Then any internal symme-

try which was broken at zero temperature can be restored
in the finite-temperature region. The supersymmetry res-
toration can occur under a particular situation (i.e., when
there exists a minimum point at which the vacuum ener-

gy is zero). Supersymmetry is not the case in this temper-
ature region.

On the other hand, let us consider the extremely-high-
temperature domain. In that case the thermal contribu-
tion is the most dominant term in the e8'ective potential.
We pick up the most dominant power 1/P term such
that

hm V,~= ViI3
p~p

2
5mp 2 2

12/3 6P
+ [myles(yg+yp)+2iL ~yp~ ]

(26)

In the extremely-high-temperature domain, our system is
dictated by the above vacuum structure. We can easily
find the minimum value by requiring the condition

The minimum point is Re(gg'" ) = —m ~ /2A, ~,
Im(yg'")=0. At this point the value of the potential is

V~ (gt7'"'g~™n)=0(i.e., lim& o(O~H~O) =0). We can see
the degenerated thermal masses from Eq. (26) such that

8 V~2

B(Re (y))

0 V~i

B(lm (y)) x=p

10K.p

3@2

10K,p

3P

(28)

These aspects (which are the facts that there are the de-

generated massive modes and the value of the vacuum en-

ergy is zero at the minimum point) imply that supersym-
metry can be restored at the extremely-high-temperature
domain; this is very curious.

Intuitively, the contribution from the fermionic loop
has an opposite sign compared with the bosonic one, and
so there is competition between the bosonic and fermion-
ic corrections. At the extremely-high-temperature re-
gion, the competition is stabilized as Eq. (26). It is not
clear at this stage that these features are the general
property of the supersymmetric system or confined
within our model. These observations are limited under
the one-loop approximation at extremely high tempera-
ture. It is noticeable that the stable structure, which
gives rise to the restoration of supersymmetry, can be
maintained when higher-loop effects are considered.

=0,
B(Re(y) ) Re~sf'"~

av~
=0

Q( lm(y ) ) tm(re'" )
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