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Calculation of the quark damping rate in hot QCD
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We present a complete calculation of the quark damping rate at zero momentum, to leading order in
the QCD coupling constant g at a nonzero temperature T. All terms of leading order in g are included

by the resummation of an in6nite subset of higher-loop diagrams. At zero momentum the damping rates
for the quark and the plasmino (a collective mode with opposite chirality and/or helicity) are equal: for
three flavors of massless quarks, the result is y =0.151g T. We also examine the recent controversy over
the gauge dependence of the quark damping rate, and show how it is resolved when dimensional regular-
ization is used as an infrared regulator of mass singularities.

PACS number(s): 12.38.Mh, 12.38.Cy

The "plasmon problem" of high-temperature QCD is
to calculate the damping rate for a gluon at rest (the
plasmon is a collective mode of the gluon with longitudi-
nal polarization). When first posed [1], it was noted that
the standard one-loop calculation is incomplete, and that
some set of higher loop diagrams contribute even to lead-
ing order in the QCD coupling constant g. Over the next
decade, many one-loop calculations of the plasmon
damping rate were carried out. The incompleteness of
the one-loop calculation was demonstrated by the fact
that the result for this physical quantity appeared to de-
pend upon the gauge-fixing condition, even with methods
that are supposedly gauge invariant. The paradox was
resolved by Braaten and Pisarski [2,3] who developed a
general and systematic method for resumming the
higher-loop diagrams which contribute to damping rates
at leading order. The diagrams that require resummation
were also studied by Frenkel and Taylor [4]. A formal
proof that resummation produces gauge-invariant results
for the damping rates of both quarks and gluons was
given in Refs. [3] and [5], and used to compute the
plasmon damping rate at leading order [6].

Recently, Baier, Kunstatter, and Schiff [7] have shown
that, because of mass-shell singularities, in covariant
gauge there are subtleties in the formal proof of gauge in-
variance given in Refs. [3] and [5]. In calculating the
damping rate for a massless quark at zero momentum in
covariant gauges, the straightforward application of the
resummation method of Ref. [3] gives a contribution to
the damping rate that depends on the gauge-fixing pa-
rameter [7]. The problem was resolved by Rebhan [8],
who showed that a careful treatment of the mass shell
singularity requires an infrared cutoff; similar results
were found by Nakkagawa, Niegawa, and Pire [9]. These
authors showed that the gauge-dependent contribution to
the damping rate vanishes when calculated in the pres-
ence of the cutoff, in agreement with the formal proof of
gauge invariance [3].

In this paper we calculate explicitly the quark damping

rate at zero momentum to leading order in g in the
Coulomb gauge. As we were writing this paper we re-
ceived a paper on the same subject by Kobes, Kunstatter,
and Mark [10]. Our value in (18) agrees with their final
result. We then analyze the mass singularities of covari-
ant gauge using dimensional regularization as an infrared
cutoff. The gauge-dependent term is found to vanish, in
agreement with the analysis of Rebhan and of Nakka-
gawa, Niegawa, and Pire.

We follow the conventions of Ref. [3]. We use the
imaginary-time formalism, with Euclidean momenta
P"=(p,p) so that P =(p ) +p, p=~p~. Dirac ma-
trices satisfy the Euclidean algebra [y",y"] =25"'. In
imaginary time, the Euclidean energy is p =2jvrT for a
boson and p =(2j +1)AT for a fermion, where j is an in-
teger. Amplitudes in real time are obtained from those in
imaginary time by analytically continuing the discrete p
to a continuous Minkowski energy, p = —iE. After ana-
lytic continuation, a momentum is called soft if all of its
components, E and p, are of order g T, and hard if any
component is of order T. When all of the external mo-
menta for an amplitude are soft, there are loop correc-
tions, termed hard thermal loops, which contribute at the
same order in g as the tree amplitude. In the effective
perturbation expansion developed in Ref. [3], the effects
of hard thermal loops are included by resummation into
effective propagators and vertices. These effective ampli-
tudes can be summarized compactly by an effective La-
grangian which is gauge invariant, although nonlocal
[11]. The quark damping rate at zero momentum is cal-
culated to leading order by evaluating one-loop diagrams
constructed out of the effective propagators and vertices.

The complete inverse propagator for a massless quark
is iP y —5X(P)——*X(-P), where the quark self-energy is
separated into the hard thermal loop 6X and a remainder
*X, termed the effective self-energy. At soft momentum
P-gT, the hard thermal loop in the self-energy is com-
parable in magnitude to the bare inverse propagator,
5X—gT. The effective self-energy is a perturbative
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correction down by one power of g, *X-g T. The quark
damping rate is proportional to the imaginary part of *X.

The hard thermal loop 5X in the quark self-energy was
computed first by Klimov and Weldon [12]. It is chirally
symmetric, [y,5X(P)] =0, and independent of the
gauge-fixing condition. As a consequence of the chiral
symmetry, the effective quark propagator, defined by
'6I ' =——iP y —5X, can be decomposed into eigenstates
of helicity:

0 0
eg (p) —eg (p) Y +~p y +.Z (p) y ~p r

f + 2

where p =p/p. The scalar functions '6+(P) are given by

to emphasize that, like the plasmon mode of the gluon, it
owes its existence to the collective effects of the plasma.
At rest, p =0, the helicity is indefinite, and the two modes
coincide: co+(0)=co (0)=mI. Their behavior for small
momentum p «mI is co+(p)-m&+p/3. Note that the
plasmino dispersion relation is decreasing at small p, so
that its minimum occurs at nonzero momentum.

The damping rates y+(p) and y (p) for quarks and
plasminos are given by the imaginary parts of the poles in
the propagator, y~(p)= —Imco~(p). At rest the hard
thermal loop in the quark self-energy is
5X( i—co, 0)= (m—//co)y, and the equation for the pole
in the quark propagator becomes

m
~+(P ) = 'po+p + Qo

p

lp lp+pi
p

"'
p

m
co —

y +'X( ico—+0+,0)=0 .
N

(3)

(2)

Here m&
=QCI /8 g T is the effective quark mass induced

by the thermal medium; in QCD, the Casimir constant
for the fundamental representation is CI=4/3. The Q„
are Legendre functions of the second kind; from the
properties of Qo and Q„ the two self-energies are related
as 'b, (p,p) = —'b, +( —p,p). After analytic continua-
tion to Minkowski energies p = —iE, the positive-energy
poles of 'b, +( iE,p) a—nd 'b, ( iE,p) —define the disper-
sion relations E=co+(P) and E=co (p) for the quark
quasiparticles to leading order in g. The dispersion rela-
tion E =co+(p) describes the propagation of a quasiparti-
cle whose chirality is equal to its helicity, and is identified
with an ordinary quark. The other dispersion relation,
for E=co (p), represents a quasiparticle with chirality
opposite to its helicity. It has been called a plasmino [13]

To lowest order in g, the damping rate for a quark or
plasmino at rest is then

yz(0)= —,
' tr[y Im'X( —imI+0+, 0)] .

The Dirac trace is represented by tr, so —,
' try extracts

the coeScient of y in the effective self-energy. The extra
factor of —,

' in (4) arises from the solution of the mass-shell

condition in (3). Like the real part of the mass, the

damping rates for quarks and plasminos are equal at rest,
y+(0) =y (0).

We now turn to the calculation of the damping rate for
a massless quark. From the analysis of Ref. [3], the only
diagrams that contribute at leading order to the discon-
tinuity of 'X( —imI+0+, 0) are one-loop diagrams with
soft-loop momenta. From (4.44) —(4.46) of Ref. [3], the
expression for the discontinuity is

Disc'X(P) = —C/g Disc Tr *I'""(P, P—;K, K)'5—""—(K)

+'I'"(P,K P; —K)'hI(P——K)'I"(P —K, P;K)'b,""(K)— (5)

The integral over the loop momentum E" is
Tr = TX„Of d k /(2~) . The discontinuity arises only

from the soft region of the integral over k. The first term
in (5) involves the effective vertex between a quark pair
and two gluons, 'I ";this vertex is absent at the tree lev-

el, and first arises at one-loop order. The second term in

(5) is the usual one-loop expression for the quark self-

energy, except that the tree amplitudes have been re-
placed everywhere by effective propagators and vertices.
In Ref. [3] we gave a formal proof that (5) is gauge in-
variant on the effective mass shell defined by *6I '(P) =0.
We return to the question of gauge invariance after calcu-
lating the damping rate in Coulomb gauge.

In the Coulomb gauge the only nonzero components of
the effective propagator *LP' for soft gluons are

(K)= AI(K) and 6''(K)=(5'J kkj) b, (K). The-
longitudinal and transverse gluon propagators are [14]

eg (K)
—1 k2 3m 2Q

ik0
1 g 1 (6)

~ 0
*5 (K) '=K ——m Q

ik' 5

3

(7)

For QCD with N& flavors of massless quarks in the fun-

damental representation, the effective gluon mass induced
by the thermal medium is m =Q 1 +NI /6 g T/v'3.
After analytic continuation to real energies k = —iE, the
poles in E of *6, and '51 determine the dispersion rela-
tions co, (k) and coI(k) for transverse gluons and plasmons.

The effective vertex *I' is the sum of the tree amplitude
I and a hard thermal loop 5I, *I =I +5I . The hard
thermal loop is part of the one-loop amplitude, and so we
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introduce a four-vector Q„which is related to the loop
momentum: Q"=(i,q), with q is a three-vector of unit
length, q =1, so Q" is a null vector, Q =0. For the am-

plitude between a quark pair and a gluon, at the tree level
I "=y" [16]. The hard thermal loop in this amplitude,
5I ", is given by

5I "(P K P ——K)=m f . (8)
4~ P Q(K P) —Q

The integration over the directions of q is denoted by d Q.
The angular integrals are especially simple at zero three-
momentum, p =0, and give

(5'1 k—~V')'r'(P, K P—; K—)

m
1 — (Q0 —Q2) (5'J—kkj)yj, (10)

3ip0k

using the shorthand Q„' =Q„(i(p —k )/k ).
At the tree level there is no amplitude between a quark

pair and two gluons, I" =0. This amplitude is induced
at the one-loop level through the hard thermal loop, so
*I"'=5l" . The angular integral for the hard thermal
loop is [16]

'I ""(P, P;K—, —K)
*I' (P,K P' ——K)

Plq1+ Q0 y-
ip k

2
mq

Qlik y,
ip0k

(9)

50
4 (P Q)'(P —K) Q

At p =0 the required components are

m'I (P, PK, —K)=—i (Q' y Q'i—k y )+(E + E), ——
0)2k 0 1

~ 2

(5'J—k kj)'I"J(P, P;K, —K) = — — (Q' —Q' )y —
—,'(Q', —Q' )ik y +(K K) . —

3lp k

(12)

(13)

. ~ AP ~

In the Coulomb gauge the transverse gluon propagator is proportional to 5'~ —k k, so in (10) and (13) we only need the

effective vertices *I' and *1 ' after contraction with this projection operator.
Inserting these results into (5), it reduces to

2C
Disc'X(p, 0)= y Disc Tr —'hl(K) g (2ip ik0+—k) *b,+(P —K)

2(
~ 0)2

+*6,(K) g [(p k) +2ip —k+k +mf) *6+(P E)—
mf~[(p —k ) +k ]

k
Q0

i (p0 k)—
k

(14)

This expression has been simplified by expressing the Legendre functions Q„' in the effective vertices (9), (10), (12), and

(13) as linear expressions of either "b,+' or *6 ', (2) with coefficients that are rational functions of the momenta. After

canceling factors of 6+ and 6+ wherever possible and dropping terms with no discontinuity, the remaining terms

give (14).
The integrand in (14) has been reduced to a sum of terms of the form B(k )F(p —k ). The discontinuity at

p = —imf is computed after evaluating the sum over k for discrete fermonic values of p, and then analytically con-

tinuing in p . We use the identity

DiscTQB(k )F(p k)~, , —
+,=2vri(e ~ +1)f dcon(co) f dco'n(co')5(E co co')pll—(co)p—F(co'), (15)

k 0
(P =—IE+0 ) 00 00

where n(co)=(e ~ 1) ' and n(co')=(e" —~ +1) ' are
the thermal distribution functions for bosons and
fermions, respectively. The functions pll (co)
—:DiscB( i co)/2mi a—nd p~(co') =DiscF( i co')/2ni are-
the spectral densities for 8 and I'. The spectral densities
required in the evaluation of (14) are the quark spectral
densities p+(co, k), the gluon spectral densities pl(co, k)
and p, (co, k) and DiscQ0(co/k)/2ni = —8(k —co )/2,
where 8(x) is the unit step function. The spectral densi-
ties p+(co, k) for the quark propagators 6+(K) are relat-
ed by p (co, k)=p+( —co, k), and are given in Ref. [17].
They are positive semidefinite; p+(co, k) has support only

I

at the points co=co+(k) and co= —co (k) and on the in-
terval co &k, while p (co, k) has support at co=co (k),
at co= —co+(k) and on co &k . The spectral densities
pl(co, k) and p, (co, k) for the gluon propagators *b,(E)
and *b,, (K) are both odd functions of co and are given in
Ref. [18]. For the transverse spectral function,
p, (co, k)/co is positive semidefinite and has support only
at the points co=+co, (k) and on the interval co2 & k . For
the longitudinal spectral function, —pl(co, k)/co is posi-
tive semidefinite and has support at co=+co, (k) and on
co (k

When (15) is applied to (14), the delta function
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5(mf —co —co'), together with the behavior of the spectral
functions, restricts the support of the remaining integrals
to the regions in which m and cu' are soft. At soft ener-
gies the thermal distribution functions can be approxi-
mated by n(co)=T/co and n(co')= —,'. The final expres-
sion for the quark damping rate at zero momentum to
leading order in g is

Cfg T
y~(0) =a (16)

The coeKcient a is a pure number that depends only on
the ratio ms /mf, in QCD, this ratio has the value of
&8/3 for two fiavors of massless quarks, and &3 with
three massless fiavors. The normalization of a in (16) is
chosen so that a naive one-loop calculation in the
Coulomb gauge, using bare propagators and vertices
without any resummation, gives a =1. The complete
value to leading order in g is given after resummation by
the integral:

f2( co'+ m + k )

+ mf

[co' —(mf+k) ]+ & k mf

—pi(co, k)
p+(co', k )

p, (co, k)
p+(co', k)+ 8(k —co' )

k CO

a = f "dk k f clcof dco'5(mf —co —co')
0 00 oo

(17)

Since p, (co, k)/co, pt(co, —k)Ico, and p+(co', k) are all posi-
tive semidefinite, (17) is a sum of positive terms. The con-
stant a in (17) is determined numerically to be

a =5.63, Nf =2, (18)

a =5.71, Nf =3 .

These results are significantly larger than the coeScient
a = 1 found by naive one-loop calculations in the
Coulomb gauge.

The damping rate y for a particle in a therma1 medium
has a simple physical significance. Because of continual
interactions with the medium, such a particle (or more
accurately, a quasiparticle) does not have a sharp energy
shell, but instead behaves like a resonance with width y.
Only if y is significantly smaller than its energy should a
quasiparticle be regarded as a true physical excitation,
because only then will it propagate long enough to have
significant physical effects. Equating the damping rate

y+(0) in (16) with the thermal quark mass gT/&6, we
find that quark quasiparticles with zero momentum exist
in any meaningful sense only if the coupling constant g is
significantly less than 2.7. The calculation of the gluon
damping rate in Ref. [6] gives a similar result, implying
that gluonic quasiparticles with zero momentum exist
only if g is significantly less than 2.5. In making these es-
timates, we have not worried about the appropriate scales

1

for the running coupling constants appearing in the
thermal masses or in the damping rates, nor have we wor-
ried about how small the coupling constant g must be in
order to use leading-order perturbation theory. These
questions can be addressed reliably only after calculations
beyond leading order.

A formal proof of the gauge invariance of the quark
damping rate to leading order in g was given in Ref. [3].
It involved straightforward algebraic manipulations using
the Ward identities satisfied by the effective vertices:

K~ *r~(P,K P; K)— —

=i [*bf '(P) —*bf '(P —K)], (20)

K"K' ' I'" (P P K —K—)'
=i[2'bf '(P) 'bf '(P+K)—*bf '(P —K)—] . (21)

Baier, Kunstatter, and Schiff [7] have shown that in co-
variant gauges there are mass-shell singularities which

appear to invalidate this formal proof. The gauge-
dependent term in the discontinuity of the effective self-

energy is obtained by substituting *b,""(K)~gK"K'/
(K ) in (5). After using the Ward identities and drop-

ping terms with no discontinuity, the term proportiona1
to the gauge-fixing parameter ( is

Disc'X(P)~iiKs= —(Cfg 'bf '(P)Disc Tr
2 2*elf(P —K) *bf '(P) .

(K 2)2
(22)

For momenta P=( —iE, O), the inverse propagator
'b« '(P) vanishes near the mass shell like (E —m/), and
so naively this term is not expected to contribute to the
damping rate. But the integral in (22) contains mass-shell
singularities: straightforward evaluation of the integral
generates a factor of 1/(E —mf ), which cancels against
the (E—mf ) from the two inverse propagators to give a

I

finite, gauge dependent contribution to the damping rate.
The problem is not merely that a physical quantity, such
as the damping rate, is gauge dependent. More funda-
mentally, since the formal proof of (3) hinges only upon
the Ward identities, as in (20) and (21), its breakdown
would imply that gauge invariance is violated by a
thermal distribution.
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This problem was resolved by Rebhan [8] and Nakka-
gawa, Niegawa, and Pire [9]. They observed that if mass-
less fields are present, as from the gauge-variant part of
the gluon propagator in covariant gauges, it is necessary
to insert an infrared cutoff before evaluating the integral
in (22}; only then can the mass shell be approached. Do-
ing so, instead of an infrared finite contribution to the
damping rate, there is an infinite contribution to the
wave-function renormalization constant of the quark. Of
course it is standard to find infrared divergences and

I

gauge dependence in wave-function renormalization con-
stants.

The authors of Refs. [8] and [9] used a momentum
cutoff as an infrared regulator. To illustrate this problem
in a different light we show what happens when dimen-
sional regularization is used as an infrared regulator; this
has the virtues of respecting gauge invariance and avoid-
ing the complication of a new momentum scale. At zero
momentum, the contribution to the quark damping rate
from the Baier-Kunstatter-Schiff (BKS) integral is

yaws= —2$Cfg lim (E mf—) Im Tr
2 z

['5+(P K)+—'b (P K)]—.1

E mf (It 2)z
(23)

Dimensional regularization is implemented by replacing the integral over three spatial dimensions by one in 3+@di-
mensions, with e a positive infintesimal parameter. Using 1/(E ) = —(8/elk )(1/E ), the sum over k and the discon-
tinuity at p = iE ca—n be evaluated by using (15). Replacing the thermal distribution functions by their soft limits, (23)
reduces to

yaKs= 2rrfC&g —T lim (E—m&) f fdco'[p+(cu', k)+p (co', k)] [5(E co' k—)+5—(E cu'+k—)] .
z mf (2~)s+~ + ' ' ak' 2k'

(24)

The infrared singularities arise from the contributions to
the quark spectral functions about their mass shell,
co'=co~(k). Concentrating on the region near the mass
shell, E-mf, the relevant terms in the spectral functions
reduce to p+(c0', k) —+5(co' —(mf+k/3)} /2. Using the
delta functions to evaluate the integral over co' and k in
(24) and taking the limits e~O and E~mf wherever
there is no ambiguity, the final result is

C 2T
ysKs=g lim IE—mf I'. (25)

4m E mf

The sensitivity to an infrared cutoff is now apparent: the
limits of going to the mass shell, E~mf, and removing
the infrared cutoff, e~O, do not commute. If we remove
the cutoff, e~O, before approaching the mass shell,
E=mf, we obtain a finite, gauge dependent contribution
to the damping rate [7]. Following [8] and [9], however,
if we approach the mass shell with an infrared cutoff in
place, e)0, the discontinuity of (25) vanishes. This
verifies that to leading order the quark damping rate at
zero momentum in covariant gauges is independent of the
gauge parameter g.

These infrared divergences are not seen in the
resummed expansion in Coulomb gauge, because then the
only gluon modes which contribute to a discontinuity are
the physical modes of transverse and plasmon fields.
These modes all have thermal masses, and so avoid the

l

mass-shell singularities inherent in the massless modes of
covariant gauges. This is why in computing the damping
rate in Coulomb gauge we could overlook any infrared
regulator.

We conclude by emphasizing that this sensitivity to the
presence of an infrared cutoff is generic to all theories at
nonzero temperature, resummed or not. Without bother-
ing with a cutoff, at zero-temperature field theories cou-
pled to massless fields exhibit logarithmic infrared di-
vergences, from integrals such as fdkjk. At nonzero
temperature, the singular behavior of the Bose-Einstein
distribution function produces powerlike infrared diver-
gences, from integrals as Jdk n(k)/k —TJdk/k .
These infrared divergences require an infrared regulator,
with the true test of any regulator being that the proper
Ward identities are respected. As we have seen, infrared
divergent, gauge-dependent terms are generated for
wave-function renormalization; the Ward identities imply
similar terms for vertex renormalization. As long as the
Ward identities are respected, however, we can be certain
that the formal proof of gauge invariance for the damp-
ing rate [3,5] goes through.
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