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Dimensional regularization characterizes divergences using poles that occur in Feynman integrals
when n (the number of dimensions in the regulated theory) equals D (the number of dimensions in the in-

itial classical action). Since these poles are generated by gamma functions of the form I ( A —n/2}, a

divergence arises only if A —n /2 is a negative integer; consequently the need for renormalization arises

only beyond one-loop order when n is odd. We illustrate this by computing the renormalization group
functions to lowest order in a model for a massive scalar in three dimensions with four- and six-point

couplings.

PACS number(s}: 11.10.Gh

I. INTRODUCTION

Dimensional regularization [1] is a particularly useful
technique in perturbative calculations of radiative efFects
for two principal reasons. First of all, it respects any
symmetry that does not depend on the dimensionality of
the classical theory (such as gauge symmetry). Second, it
characterizes all divergences arising in the course of
evaluating Feynman integrals by poles occurring when n

(the dimension of regulated theory), equals D (the dimen-
sion of the classical theory), making it possible to renor-
malize by using a "mass-independent" subtraction
scheme [2].

A peculiarity of dimensional regularization is that in
odd dimensions integrals which are divergent by naive
power counting may be regulated to a 6nite value, with
no poles occurring when n =D. To see this, let us exam-
ine the standard n-dimensional (Euclidean) integral
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"k (k )'
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lar in three dimensions consistent with renormalizability
and the symmetry P~ —P.

In the next section we perform an explicit calculation
of the renormalization-group functions to second order in
the coupling constants ~ and A, , using the techniques of
(1) and (2). (An analogous computation has been done in
the four-dimensional P (P„)model in [3].)

II. THE RENORMALIZATION-GROUP FUNCTIONS

To second order in ~ and A, , the 26 diagrams that con-
tribute to the two-, four-, and six-point functions are il-
lustrated in Fig. 1. It becomes apparent that the integra-
tion formula (1) leads to poles when n =3 only if the dia-
gram being evaluated involves having two vertices con-
nected by an odd number of internal lines. Consequently
the only divergent diagrams are i, j, k, I, s, t, and z. The
only Feynman integrals we need to compute are conse-
quently
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Irrespective of what integer values a and b may take, no
poles occur on the right-hand side of (1) when n ap-
proaches any odd integer.

Nevertheless, odd dimensional theories can be diver-
gent beyond one-loop order as a and b in (1) themselves in
principle can then depend on n /2. Vfe illustrate how this
happens in the three-dimensional theory whose Lagrang-
ian is

0 P

Lr-&z

This is the most general model for a self-interacting sca- FIG. 1. Two-, four-, six-point functions.
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d "k 1

(2m. )" k +m (3a)

dk dq 1 1 1
Ib (2~)" (2n)" k +m q +m (p+k+q)~+m~ (3b)

and

(2m)" (2n)" (2n)" (2n)" k +m q +m (k+r) +m (q+s) +m (p+r+s) +m
(3c}

In the Appendix we show that the relevant contributions
to I„II„and I, are given by (8 =—3 —n )

(4a)

so that the contributions of diagrams a, n, and x are

(a) = —(ms —m„),
(n)= —as,

(6a)

(6b)

1Ib=
327T E

(4b)
and

(x)= —As . (6c}
2

~ —5m2
2"m4c

(4c) The bare and renormalized quantities are now related by
the equations [2]

We now apply renormalization theory to our perturba-
tive expansion along the lines of [2] and [3]. Initially, the
action of (2) is split into two parts,
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with the wave-function renormalization being given by

c (Aa)Z=l+ g
v=1

(7d)
(1)=&s(1)
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4m

1

3277 E
(Sd)

Here p is the usual radiatively induced scale parameter.
The lowest-order contributions to the functions in (7)

are now determined by evaluating the appropriate Feyn-
rnan diagrams depicted in Fig. 1. They are given by
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The first terms, on the right-hand sides of (8) are the
number of diagrams, the second the so-called symmetry
factor, " and the third the contribution of the Feynman
integrals, as determined by (4).
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By (6a) and (8a)—(Sd) we see that the portion of the radiative correction to the two-point function that contributes to
wave function and mass renormalization is such that
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p +m&+
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6X4X32~'
(9)

Similarly, the four-point function following from (6b),
(Se), and (Sf) is

1 10(X)'= ——
a 6 322 (13b)
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3 X 32m 3 X 4 X 32~
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while the six-point function following from (6c) and (8g)
1s

2

r = —x, +—1 10 R

6 32m

By (9), (10), and (11) we see that finiteness is ensured to
this order of perturbation theory for these diagrams if the
functions in (7) are taken to be
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respectively. With this in mind, we see that in Fig. 1, we
must now include the diagrams (b), (c), and (o). These ex-
tra contributions are
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so that it is necessary to supplement the result of (12) by
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The vertices of (6b) and (6c) by (7a) and (7b) now ac-
quire contributions bilinear in the coupling constants and
proportional to c, ', the extra pieces are

A final contribution now arises due to the correction
(15a}induces in (n) of Fig. 1:

2A,R KR A,R mR
2

(n )'=— 2+
3X32m 3X4X32m.
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mR

4n.
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and this means that (b) of Fig. 1 now receives the contribution
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From (17), we find that the final contribution to the func-
tions in (7) is
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Together, (12), (15), and (18) yield
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(19c)
p'=}M(1+p),

(19d) (7a} and (7b) become

(20)

The renormalization-group functions can now be ex-
pressed in terms of the quantities in (19). To show this,
we follow [2]. Upon setting

a, (AR )—2pa„+, (AR )
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Terms linear in s in (21) can be eliminated by defining

XR =iLR(1 —2ep),

KR =«„(1—sp),

7tlg =my

(22a)
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Equation (22) is now used to express it~, KB, and mB in
terms of A,z, Rz and m z. It is now possible to identify
A,R', KR, and m'R with the terms in the resulting relations
that are independent of poles in c; we find that
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functions so that, to second order in the coupling con-
stants A, and ~,

A'R =AR —2p[a, (XR ) —XRa', (A,R )], (23a)
III. DISCUSSION

KR —KR p[a p(XR }mR —2XRa
&

(XR )mR
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m R =m '„—p[ —2b, (A,R }K„' —2XR b, (A,R }K„'

—bp"(XR)KRmR 2XRb p (AR }KRmR—
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From (19}and (23) we obtain the renormalization-group

We have seen how dimensional regularization can be
used to compute radiative effects in odd dimensional
theories. This is despite the fact that in some instances
when power counting indicates that a divergence should
occur, dimensional regularization does not give rise to a
pole when n =D. For example, diagram (o) of Fig. 1 is
linearly divergent when a cutoff is used, yet finite when
dimensional regularization is employed. Once the cutoff
is removed by renormalizing the coupling ~, the finite
part left is identical to the result of dimensional regulari-
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zation. This is consistent with the statement in [4] that in
the limit m =«=0, only Jt. and P need to be renormal-
ized if dimensional regularization is used.

It would be interesting to extend these considerations.
For example, we could go beyond lowest order, as was
done in [5] using a cutoff. Also, other theories, such as
three-dimensional Chem-Simon s theory and Yukawa
theory with the renormalizable four-point interaction
4%/, can be treated using dimensional regularization.
A further problem would be to see if the Bogolubov-
Parasiuk-Hepp-Zimmermann (BPHZ) renormalization
procedure can be applied in the context of dimensional
regularization, using the approach of [6]. We intend to
address these issues.

and D. MacKenzie also contributed at an early stage of
this work.

APPENDIX

We consider in this appendix the integrals in (3). For
I„we need only apply (1), so that

I, = (m')""-'r 1 ——" (A 1)
(4~)n/2

which, because r( —,
'

) =&n. and r(x + 1)=x I (x), be-
comes when n =3 the result of (4a). Next, repeatedly us-
ing the standard integral
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1 I (p+q) & x~ '(1 —x~
dX

a~b r(p)r(q) o [xa +(1 x}b]—+

in conjunction with (1) we find that

(A2)

dk 1 dq 1
b

n

n 2 2

n

n

I
~

2
dX

(2m. )" k +m (2~)" o [q +x(1—x)(p+k} +m ]

2

f dx f dyy' " [x(1—x)]"~ y(1 —y)p +(1—y)m + ™n 3

(A3)

Since near E=0, r(E)-1/E, (A3) reduces to (4b). Finally, by using (A2) to combine denominators in (3c) and integrat-
ing over k and q, then over r, and lastly over s, we arrive at the result

I, = f dx dy f dl, do [x(1—x)y(l —y)]"~ [A(1 —A)]" o'
0 0 (4m) "

2n —5

2 2 om A, 1 —
A,

X o(1—cr)p +(1—o)m + + (A4)

Equation (A2) can now be used to evaluate integrals over x, y, A, , and o. in (A4), leading to (4c).
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