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A generic model of string described by a Lagrangian density that depends on the extrinsic curvature of
the string worldsheet is studied. Using a system of coordinates adapted to the string world sheet the

equation of motion and the energy-momentum tensor are derived for strings evolving in curved space-

time. We find that the curvature corrections may change the relation between the string energy density

and the tension. It can also introduce heat propagation along the string. We also find for the Polyakov
as well as Nambu strings with a topological term that the open string end points can travel with a speed
less than the velocity of light.

PACS number(s): 11.17.+y, 11.10.Lm, 98.80.Cq

I. INTRODUCTION

The possibility of describing filament structures in a
simple way using field-theoretical string models has
gained increasing interest in relativistic astrophysics [1]
and general relativity [2], as well as cosmology [3,4]. The
cosmic strings are represented as vortices of a gauge-field
model or as a Nambu geometric string. The relations be-
tween the gauge-field vortices and Nambu strings has
been established by a number of authors [5]. In particu-
lar, Forster obtains the Nambu action in the limit where
the fields are condensed along a geometric line [6].

Polyakov proposed a modification of the Nambu action
in which, in addition to the usual term constructed with
the surface of the string world sheet, a term built with the
extrinsic curvature of the string world sheet is also con-
sidered [7]. Another possibility along the same line has
been explored by Lindstrom, Rocek, and van
Nieuwenhuizen [8]. From a field-theoretical viewpoint
these curvature corrections can be obtained by consider-
ing that the string has a certain thickness [9]. The dy-
namics of the Nambu string is dramatically changed by
the inclusion of curvature-correction terms that are high-
ly nonlinear in the action [10,11]. The effects of these
corrections in the string gravitational field are yet un-
known.

It is a rather remarkable fact that there are properties
of the strings that are not changed by the inclusion in the
action of the curvature correction of the Polyakov type.
An example is provided by the critical dimension in
which a consistent quantum theory of bosonics strings ex-
ists [12] (D =26}.

The curvature corrections to the Nambu-string action
depend on the particular field theory to which the strings
are associated. In this paper we study generic curvature
corrections built with the extrinsic curvature. We shall
study string dynamics and in a special way the energy-

momentum tensor that is a principal ingredient in general
relativistic considerations.

The physical system that we study is described in four-
dimensiona1 spacetime by a Dirac-distribution-value La-
grangian density that will yield fourth-order differential
equations [10,11]. Because of this difficulty, we shall use
a more geometrical approach than the traditional one
used when dealing with Nambu strings.

A geometrical string is a hybrid system intermediately
between a field and a particle, since the number of param-
eters used in its description is less than the number of
spacetime coordinates. Usually, this object is considered
more like a field than a particle. In this work we shall
take the opposite viewpoint. We shall consider, as did
Forster [6] and Maeda and Turok [9], a coordinate sys-
tem attached to the string world sheet; i.e., we take the
parameters of the world sheet as two coordinates, and we
choose the other two pointing in a direction orthogonal
to the world sheet. These last two parameters are null on
the world sheet. This system is analogous to the Serret-
Frenet frame of a particle in classical mechanics, the so-
called comoving frame.

We use a variational principle similar to the Hamil-
tonian principle for particles. We perform a variation
only on the coordinates which define the position of the
string in the spacetime. The energy-momentum tensor is
obtained by a variation of the other two parameters.

In Sec. II we introduce the coordinate system adapted
to the world sheet of a string evolving in a curve space-
time. Since the variational principle as well as the coor-
dinate system are rather involved, for methodological
reasons we derive the equation of motion and energy-
momentum tensor for the Nambu string. %'e present a
different derivation of the end-point condition for open
strings.

In Sec. III we study the equation of motion and
energy-momentum tensor for a generic model of strings
described by a Lagrangian density depending on the

1721 1992 The American Physical Society



1722 BRUNO BOISSEAU AND PATRICIO S. LETELIER 46

metric of the string world sheet and its extrinsic curva-
ture. We find that the inclusion of the extrinsic curvature
can change the string equation of state, i.e., the relation
between the energy density and tension, and may intro-
duce heat propagation along the string. Also, we have
the presence of typical dipolar terms.

In the final section, we briefly compare our method
with the usual one, and we discuss the equation of motion
and energy-momentum tensor for the Polyakov string,
and a model of strings that depends on the intrinsic cur-
vature that has a particular case the Nambu string with a
topological term. We find, in both cases, that the velocity
of the open-string end points can be less than the speed of
light.

II. WORLD SHEETS, COORDINATE SYSTEMS,
AND NAMBU STRINGS

e~ =X"~(3p, (2.1)

where the comma stands for the usual partial derivative,
i.e., tangent vectors to the parametric curves of the string
world sheet. The other two

N, =N,"(~)B„ (2.2}

will be taken as being orthogonal to the word sheet and
orthonormal:

In this section we study the equation of motion and
energy-momentum tensor for the usual geometric string
described by the Nambu action in an intrinsic system of
coordinates. Most of the results of this section are well

known, and they are presented mainly to introduce the
notation and different systems of coordinates as well as
the methodology that will be used later in the more gen-
eral case of strings described by actions depending on the
extrinsic curvature of the world sheet. We consider that
the strings evolve in a four-dimensional Riemannian
manifold endowed with a metric g„of signature
(+ ———); greek indices run from 0 to 3, with

p, v, p, . . . for ordinary systems of coordinates and

a,P, y, . . . for the special systems attached to two-
dimensional surfaces. Also, we shall use uppercase latin
indices A, B,C, . . . and lower case latin indices

a, b, c, . . . running from 0 to 1 and from 2 to 3, respec-
tively.

A string spans a two-dimensional surface S (world
sheet), which can be parametrized as x"=X"(r"),where
r"=(r, r'); r and r' are a time and a space parameter,
respectively. We shall associate with each point of the
string world sheet four linearly independent vectors
(e„,N, ) that form a basis of the four-dimensional space-
time. We shall take the first two as

curvature are, respectively,

X~a=e~ ea=g„.X",~X,a

K,q~ =VAN, e~ =g„VqN,"X

(2.5)

(2.6)

p'=sg', (g')'+(g')'=1 (2.7)

The system of coordinates, cr =(r",p'), with the quanti-
ties ~ and p' above defined, has a clear geometrical
meaning and will be particularly useful in studying string
dynamics. This system is similar to the Frenet-Serret sys-
tem of coordinates used to study the Newtonian dynam-
ics of a point particle. The spacetime metric in this new
system of coordinates will be denoted by G~&(a ).

By writing the geodesic equation for the spacelike geo-
desics, r"=const, and using relation (2.7), it follows that
[13]

(r."b),=0, (adG, b) =0. (2.8)

The subscript zero indicates that the quantities are taken
on the surface p'=0.

A first-order series expansion of G &, in terms of quan-

tities defined on the world sheet, gives

G p=(G p)o+p'(G p, ) o+O( p) . (2.9)

Also, from (2.8), the elementary properties of the holo-
nomic basis 8 (that is, a..a.=G., and
V B&=l Pz=Vg ) and the fact that B„and 8, on the
world sheet reduce to ez and N„we get

where V„denotes the covariant derivative along the

parametric curve v.~. The curvature K,~z is symmetric
in A and 8.

Now we shall define a coordinate system attached to
the string world sheet, cr =(r",p'), which generalizes to
a Riemannian space the system introduced by Forster [6].
Let us consider at a point P(r) of the world sheet the
two-dimensional space spanned by the unit spacelike vec-
tors N, . All the vectors lying in this space are represent-
ed at P(r) by A;N„where A, and A, are two parameters.
The manifold of geodesics through P, tangent to this
space, forms a geodesic surface. We shall assume that, at
least in the neighborhood of the world sheet, we can al-
ways choose the two vectors N, (r) in such a way that the
spacetime is foliated by the above-mentioned family of
geodesic surfaces. Hence, locally, for any point Q near
the world sheet, we can always define a unique geodesic
(lying only in one of the surfaces of the family) that
passes through Q and crosses the world sheet. Let s be
the length of the segment of the geodesic between the
world sheet and point Q. The point Q is determined on
the geodesic surface by the two coordinates [13]

N, .e~ =g„N,"X ~ =0, (2.3)

N, .Nb =g„N"NP = —6,b . (2.4)

The usual sum convention will be used for all kind of
equivalent indices. There is still one degree of freedom
left in the choice of the vectors N, .

The induced metric on the world sheet and its extrinsic

GAB ) gs +2+ Asp'+ O(p')

G„s=V„N, Nbp'+O(p },
G,b= —5,b+O(p ) .

From (2.10) we verify that

(G~b,.)o= —(G~., b )o .

(2.10a)

(2.10b)

(2.10c)

(2.11}
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A. Intrinsic motion equation of Nambu strings

The timelike world surface S describing the motion of
a geometric string is given by the extremum of the Nam-
bu action:

Therefore the variation S~S at v. =const gives

5A =p f& —yy" K,„a5p'(r)d r=0. (2.21)

Hence

A =p v' —y d'r, (2.12) y AB~ 0 (2.22}

where y is the determinant of the induced metric y AB

and p is the geometric string constant.
In the coordinate system (r",p'), the equation of this

surface is by definition p'=0. Now we shall consider in
the neighborhood of S another surface S represented by
the equation p'=5p'(r}. We pass from the surface S to
the surface S by a variation of p', 5p'(r) at constant r".
This variation is independent of the particular parame-
trization of the surface S (parameters r"}and it separates
the "true" or dynamical variation of the position of the
string in spacetime from the variation of the parameteri-
zations of the sheet.

Let us consider the variation of the action A:

5A = ,'p f—& yy 5yqa d r . (2.13)

And let y AB be the induced metric of S. In order to ob-
tain the variation

~YAB YAB YAB

we associate with S a similar system of coordinates
o ' =(r'",p"). We shall assume that the two system of
coordinates are related by the infinitesimal transforma-
tion

The two equations (2.22) are the "intrinsic" equations of
the strings; geometrically, they say that the mean curva-
ture of the world sheet is null [14].

This variational principle does not give rise to the usu-
al boundary conditions for the end points of open strings.
These will appear naturally when we consider the string
energy-momentum tensor.

It is easy to show that Eqs. (2.22) are equivalent to the
usual motion equations of strings in the ordinary coordi-
nate system (x"). First, we introduce the quantity

K~a =X",~a ~ ~aX",c+I M,'~X,"a (2.23)

(2.25)

Hence E~AB is a world vector normal to the word sheet
and can be written as

where f' za and I g„are the connections associated with
the world sheet of induced metric y AB and spacetime
metric g„, respectively. By using the projection tensor

)kp y ABXA Xp (2.24)

expression (2.23}can be written as

o.' =o +P(o ), (2.15) K"„a=5' K,„aNt,' . (2.26)

where the components of the vector P(o ) are first-order
quantities. Therefore the transformation of the space-
time metric is given by

Also,

&a AB
——g„v&a &AB (2.27)

G'p(o) Ga(o)=——S~G a, (2.16a)

where S& is the I.ie derivative along the field P. Also,

(2.16b)

By using (2.25) one can verify that (2.27) is equivalent
to the extrinsic curvature (2.6). And from (2.23), (2.27),
and (2.22},we get the string equation of motion written in
the usual way:

The semicolon denotes a covariant derivative with the
connection I

&
. On the surface S, we have p'=5p'(r)

and p"=0; hence,
+I'~i.P,'~X;ar"'=0 .

P(r, 5p'(r)) = —5p'(r) . (2.17) B. Energy-momentum tensor of Nambu strings

In order to have the same parameter ~" on S and S, we
shall impose

g"(r, 5p'(r)) =0 . (2.18)

G~a( "o) G~a( "0)=r~a r~a—
=5p'(r)(G„a, a )0, (2.19)

From (2.17), (2.18), and the transformation (2.15) at
o =(r",0), we get

To obtain the symmetric energy-momentum tensor as-
sociated with the string, we shall use the usual method
employed for matter fields in a Riemannian spacetime
[15]; i.e., by assuming that the fields satisfy their equa-
tions of motion, the energy-momentum tensor is obtained
as a consequence of the invariance of the action under
infinitesimal coordinate transformations.

In the case of strings, it is sufficient to consider
infinitesimal transformations of the particular form

and from (2.10) it follows that

5r ~a =2K.~a5p'«) .

(2.29a)

(2.29b)

where the fields P(r)=(g"(r ),P(r )) depend only on2.20
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the indicated variables. The transformation (2.29a) is a
change of parameters on the string world sheet; the ac-
tion (2.12) is invariant under this transformation. The
transformation (2.29b) is the transformation that was
used to derive the string equation of motion. Thus, as-
suming that Eq. (2.21) is verified, we have that the action
is an extremum, 5A =0.

From (2.13), (2.16), and (2.29), we get

21 f+ GG" (kA B+4 A)5'(p)d'pd'r,

(2.30)

where G is the determinant of G &
and 5 (p) =5(p )5(p )

is the usual Dirac distribution. To obtain this result, we
have made use of the identities

In ordinary coordinates (x"),

T" =ex"A, &;Br"'5'(p»

By using the identity

5 (x",X"(r'))/& g—=5 (p)5 (~, r')/v' G—

(2.42)

(2.43)

III. STRINGS
WITH CURVATURE CORRECTIONS

where g is the determinant of g„, (2.42) can be cast into
the more usual form

T""=pf v' r—r ABXI'AX;5'(x",X"( r))lv' g—d'r .

(2.44)

GAB5'(p) =r AB5'(p»

G5'(p) =y5'(p),

5GAB5'(p) 5r AB 5—(p) .

(2.31)

(2.32)

(2.33)

In this section we shall study strings described by La-
grangian densities built not only with the string-induced
metric, but also with the extrinsic curvature. The action
will be taken as

GAB 0
aP

0 0 (2.35)

We shall see later that the particular form of the matrix 9
is rather unique. Finally, by the usual calculation, we ob-
tain

5A = —p f BB[v —G 0 Bg 5 (p)]d pd 'T

+f& GT.I—g d pd r,
where

(2.36)

T =pg 5 (p) (2.37)

In the case of open strings, in order to cancel the diver-

gence term in (2.36), we must impose the boundary condi-
tions

(2.38)

where v'=0, I are the open-string end points. This condi-
tion implements the physical requirement that no canoni-
cal momentum escapes for the end points and implies
that these points move at the speed of light [16].

From (2.36), (2.38), and 5A =0, we get, for all kind of
strings,

f f&—GTB pd p P(r)d r=0 . (2.39)

Expression (2.30) can also be written as

5A = —
2p f—& GQ—B(g .B+gB. )5 (p)d pd r, (2.34)

with

A = —yL yAB, K,AB d r, (3.1)

where L transforms as a scalar under a change of param-
eters ~ . A particularly interesting example is the Po-
lyakov string, whose Lagrangian is

p( 1 &5ab+ lt r Acr BD) (3.2)

where a is a coupling constant. Another example is pro-
vided by the Lindstrom-Rocek —van Niewenhuizen
(LRN) string

LRN P[ e r AB P5 +oAcx'bBDr")] (3.3)

5A = f& y(F"'5y „,+F—AB5SC.„,)d'r,

where

(3.4)

FAB(r) gr AB+1 BL
2 AB

(3.5)

where p is a constant. When p«1 the LRN string
reduces to the Polyakov string with a =p/2 and this
reduces to the Nambu string when a=0. In general,
when one considers the derivation of the string action
from a gauge-field theory, the extra terms built with the
extrinsic curvature appear as second-order corrections
[9]. Nevertheless, since the particular form of the action,
in general, will depend on the particular field theory that
gives origin to the string action, we shall consider a gen-
eric function L wherein the curvature terms are not as-
sumed necessarily to be small corrections.

The variation of the action (3.1) can be written

Hence
Fa AB

~K.AB

(3.6)

T ~. =O.;0 (2.40)

T AB pr AB52( ) T Ab 0 Ta—b 0 (2.41)

The quantity T ~ is interpreted as the string energy-
momentum tensor; its components are

To find the variations 5y „B and MC, AB, we shall proceed
as in the last section. We recall that the coordinates
o =(r",p') and cr' =(r'",p") are attached to S and S
and they are related by (2.15). The general variation of
the spacetime metric is given by (2.16). On the other
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hand, from (2.10), this variation can be written as

GAB(o ) G—AB(cr )

=y Aa(r} —r Aa «)
+2p'(K, AB(r) K—,AB(r) }+O(p') . (3.7)

Now we restrict (2.15) to the case (2.29), i.e., when P
depends only on v". Note that this restriction does not
impose constraints on the type of surface S represented
by the equations p'= —P(r). By using (2.10) we can ex-
pand the last member of (2.16) in powers of p'. By com-
paring this expansion with (3.7), we obtain

Sr Aa
—

aalu
——rDA+a„g'yDB+g aDY AB+2pK.„, ,

(3.8)

GAB rAB+2p K Aa+ 2(GAB, b }pp'p +(p') . (3.10}

In Minkowski space the geodesics ~ =const are straight
lines and (GAB b )p can be written as

(GAB ab )p=Na A Nb A +Nb A Na B . (3.11)

As we mentioned before, the Lagrangian L is an invari-
ant under a transformation of the parameters ~". This
condition of invariance will be translated in constraint
equations for L. In order to find these constraints, we
shall specialize the variations (3.8) and (3.9) to the case
P(r}=0;we find

at the value p'=0. In deriving this last equation, we have
made use of

&K—.AB =~BC K.DA+dAk K.DB+0 dDK. AB

+,[a,gb(G„, .),+ a„gb(G„.),
+0'(GAa, ab }o] . (3.9}

The subscript zero indicates that the quantities are taken

and

~ y AB ~ak YDA +~AC YDB+0 dD Y AB

~+aAB ~ak KaDA ~AC aDB +k D aAB

From (3.4), (3.12), and (3.13},we get

(3.12)

5,A = —f& y[F" d —y„a+F'" dDK, AB
—(2/V —y)da[v y(F" yD—„+F'"K,D„)]jg d r

2f —d [V y(y „F"—+F'" K, „)gD]d2r . (3.14)

From the variational principle, we find

F" dDy Aa+F'" BDKa

(21'&—r)~ [—& r(F"'—r +F'"'K. }]=o

~e find that the variation (3.4) when we pass from S to
the neighboring S at constant ~" is

&p~ = f [+ y[2F" KbAB+ ,'F'" «Aa. b-)o]

(3.15)

In the case of open strings, in order to cancel the diver-
gence term in (3.14), we must also require

—8 [& yF'" (G —
) ]jg d

f (j [Q F AB(G ) gb]d (3.19)

F"'y AD+F'"'K. AD)l, i „=0. (3.16)

Note that we are not allowed to consider g l, , =0,
since these conditions severely restrict the type of trans-
formation. We shall come back to this point later. Equa-
tion (3.15) can be cast in a manifestly covariant form with
respect to reparametrizations of the world sheet as

Va(F „+F' K,D„) ,'F' V AK,BD
=—0—. (3.17)

The divergence term can be canceled by assuming a vari-
ation such that the boundary of S coincides with the
boundary of S, that is,

P( —ao, r') =P(+ ~,r') =P(r, 0)=P(r, I ) =0 .

(3.20)

From the variational principle, we obtain the equations
of motion,

2F KbAB+2F "
(GAa, ab)o

A. Equation of motion —( 1 x&—y)a, [&—yF'"(G„,.),]=0 . (3.21)

sp. Aa
= —

—,
'

[aalu'(GAb.

)o+e A g'(Gab. )o

+g (GAa, b}ol . (3.18)

To obtain the string equation of motion, we must per-
form a variation of the world sheet at constant ~ . In
this case the transformation (3.8) reduces to (2.20) with
P= —5p' and (3.9) to

Note that this equation is covariant with respect to a gen-
eral transformation of the parametrization of the string
world sheet and as Eq. (3.17) they are written in the very
particular system of spacetime coordinates adapted to the
string world sheet. Also, for open strings, this equation
of motion must be considered together with the end-point
condition (3.16). This last condition can be implemented
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by considering either —2f 8 [V' y—[F" y„+F'" K,„]g ]d r . (3.31)

(3.22)

or

(F"'r AD+F'"'K. AD)l, ~ p=,
=o . (3.23)

The first tells us that the end points travel with the speed
of light as in the case of Nambu strings. The second re-
striction, in general, cannot be implemented since it tells
us that each end point must describe two parametric
curves that, in the generic case, will not be the same. We
shall return to this point later.

B. Energy-momentum tensor

As in the case of Nambu strings, we shall obtain the
energy-momentum tensor from the variation (2.29} of the
action together with the assumption that the equations of
motion are satisfied.

From (3.4), (2.31)—(2.33), and the relation obtained by
deriving (3.7) with respect to p',

(&—G, T.B B)=f. & GT—.B p'p. .

Equation (3.32) can be cast in the form

f (& G—, T.B ,)P(r)d. 'r=O,

(3.33)

(3.34)

Thus we recover the term in (3.14) that gives the origin to
the open-string end-point constraints [cf. Eq. (3.16)].
Therefore the integral (3.31) is null.

The variational principle gives

f&—GT B.g (r}d pd ~=0, (3.32)

for all P(r). Therefore, formally, we can consider T B as
the energy-momentum tensor. Note that we have chosen
in (3.32) the mixed components T B in order to have the
contravariant components P(r), which are a function of

only. Since T ~ is a distribution in the variables p',
we must be careful in the verification of the "conserva-
tion laws" T ~.&=0. In order to be more specific, we
shall introduce the distribution notation

5 (p )5K,AB
=—'5 (p )(5G AB ), .

We find

5a =f v' G[—F"'5G„,

(3.24)

(e—G, T.B ,) =o. . (3.35)

for all P(r) Hence. , instead of T B.&=0, we shall con-
sider the conservation laws

+ ,'F'" (5G„—B),]5'(p)d pd'r . (3.25)

Using the relations

(1/& —G Q„v' —G = —,'G B„G +O(p ),
(1/& —G )8,&—G =

—,'G B,G +O(p),

T B.B= Y 5 (p)+ Y Bd5 (p), (3.36)(3.26a)

(3 26b) where

In order to better understand the meaning of this last
equation, we shall compute the explicit form of T ~.

&,

we find

f Q G [ [FAB ] GMNG FaAB]52(

,'F ABa. 52(p—)]5G„,d'p d2r (3.27)

or

and the usual properties of the 5 function, we can write
(3.25) as

YD(r) =rDBV „(2F" K,F'" )—
Y, (r) = (1/& —r )(&A &—y )(G,B B )pF"

+(G.B b )pa„F'"' 2K.ABF"'—
+K,„BKdF " +F " (GB, d„)P

—'(GAB, d )pF""

(3.37a)

(3.37b)

5A = ,' f v ——GTB—(g B+gB )d pd r. , .(3.28) —Y'( p)=-'G (GMNa„G „F""+a„F"")
with

TAB 0
Tag 0 0 (3.29a)

+ &(2GAD, E GAE, D)F "

Yd( )
—K FdAB

From (3.37) we get

(3.37c)

(3.37d)

z AB (2F AB MNK FaAB)52( ) FaABg 52(

(3.29b)

The introduction of the quantity T ~ as a tensor needs to
be justified; we shall come back to this point later. The
usual argument gives

A5= f&—GT B.gd pd r

fa,(& GT—Bg.)d'pd—2r . (3.30)

The second integral of (3.30) can be written as

(3.38a)

—(1/& —r e, [&—rF""'(G„.„),]] .

(3.38b)

& &—G, TD B.B)
=2+ r[ ,'F'"'~—DK.—AB—

+~B(F rDA+F K.DA }]

&&—G, T. B.B)

y[2F" KaAB+ 2F " (GABda),
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These equations tell us that the conservation law (3.35) is
a consequence of the requirement of covariance of action
under reparametrization of the string world sheet [cf. Eq.
(3.17)] and the string equation of motion [17] [Eq. (3.21)].

Now we will return to the definition of the energy-
momentum tensor (3.29). On the string world sheet,
some of the quantities g .&+/&. are null: namely,

(3.39)(4;b+kb;. }p=o .

Therefore Eq. (3.28} shows that the tensor T ~ is not
completely defined. It may also have components of the
form

T~ =S~ (r}g (p) (3.40)

det(T" s)—
A, Tr(T" s)+A, =0, (3.41)

This apparent indetermination of T ~ comes from the
fact that the transformations (2.29) are not a general
change of coordinates as is needed to determine the
energy-momentum tensor [15]. Nevertheless, the
verification of the conservation laws, taking into account
(3.40), shows that S' is identically null.

Finally, we want to say a few words about the physical
meaning of the energy-momentum tensor (3.29). First,
we note that in (3.29), in addition to the usual Dirac dis-
tribution, we also have the appearance of a, 5 (p), i.e., a
typical dipolar distribution that describes in a first ap-
proximation the string width. %e also have that now the
tensor T"z is no longer diagonal as in the case of the
usual Nambu string, a fact that will produce a richer
thermodynamics. Hence, depending on nature of the
roots of the secular equation

IV. DISCUSSION

~= JZd'r, (4.1)

where for strings with extrinsic curvature corrections
evolving in a curved spacetime,

z=z(x~, a„x~,a„a,x~) . (4.2)

The usual variational principle gives us the string equa-
tion of motion,

The method used to derive the equation of motion and
energy-momentum tensor of strings described by La-
grangians that depend on the extrinsic curvature of the
string world sheet presents some very special features.
The equation of motion split in two groups. The first has
no dynamical content; it is the geometric requirement of
the invariance of the action under a change of coordi-
nates. The second group defines the frame wherein the
string evolves. The strings are described always by the
same relation p'=0, but the frame in which this equation
has a meaning changes in each particular case. The actu-
al finding of this frame requires the solution of a quite
complicated system of equations. On the other hand, the
computation of the energy-momentum tensor can be per-
formed in a rather natural way using these intrinsic sys-
tems of coordinates. Our computation shows that the
energy-momentum tensor has a nontrivial structure that
will be difficult to obtain in usual coordinates. Also, in
the case of open strings, the intrinsic coordinates are
more suitable to describe the end-point condition. To be
more specific, let us write the action in the usual coordi-
nates X":

we can have three di6'erent situations that will give origin
to the three canonical forms [18]of T„s.

a' az a az az
ar"aH a a„a,x~ ar" a a„x~ ax~

and for open strings the end-point condition

(4.3)

ReA, Imk,

0 —
A

&

' ImA, —Rek,

A+K K

(3.42)

a a~
aH aa, a,x~ aa,x" =0, (4.4a)

The first two cases correspond to different roots of (3.41)
alld tile last to equal l'oots [Tpp+ Tp~

= ( T~ ] + Tp] )=A

and Tp&
= —a]. In the case of different real roots, we will

have, in general, that the string tension will not be the
same as the string energy density; strings with this kind
of equation of state have already appeared in the litera-
ture [19]. The case of complex roots is particularly in-
teresting because we will have the same relation between
the energy density and tension as in the case of Nambu
strings; but now we will also have a heat flow along the
string. In the last case, the equal-root case, we will also
have a heat flow along the string, but now the tension is
not the same as the energy density. In order to have ten-
sion, in other words, a string, we need A.—K)0. Note
that to have a well-defined secular equation, we need to
consider (3.41) as an algebraic equation in the sense of the
distribution theory. Also, since the coefficients of (3.41)
depend on ~, we can have that the three listed possibili-
ties may occur in the evolution of the same string.

aa, a,x~, „=0. (4.4b)

In principle, the dependence of X on the indicated
variables is through the spacetime metric tensor g„and
its first and second derivatives, the metric of the string
world sheet y~~, and the symbol E~~ or, better, on in-
variants built with these quantities.

The motion equation (4.3) gives directly the string
world sheet. But when written in terms of g„,yzz, and
K„~ it is quite complicated. The only particular case al-
ready known is the simpler case of the Polyakov string in
flat spacetime. The motion equation in this case is rather
formidable [11]. In the energy-momentum tensor (3.29),
derivatives appear in directions perpendicular to the
world sheet. Note that to express this fact in the usual
coordinates is not a simple matter. Also, condition (3.16)
is simpler than (4.4). In order to understand better the
meaning of the result obtained in the last section, we shall



1728 BRUNO BOISSEAU AND PATRICIO S. LETELIER

briefly discuss some particular cases of strings with cur-
vature corrections evolving in flat spacetime.

strings will look like a ribbon with some extension along
the above-mentioned direction 8, .

A. Pokyakov string B. Strings with intrinsic curvature corrections

(1 a5"—K.~sKb" ) I, , (=o (4.6)

In this case we have that the two equations for each
string end point (3.23) reduce to only one. Thus condi-
tion (4.6) in this case is a perfectly well-defined "bound-
ary condition. " The equations of motion for the Po-
lyakov string in usual coordinates and in covariant form
can be found in Ref. [11].

A class of solutions of the Polyakov-string equation of
motion in Minkowski spacetime is the Nambu strings
with the usual motion equation (2.28). The simplest solu-
tion of this last equation that describes an open string in
Minkowski coordinates is

X"=[r,b cosr'cos(d'or ), b cosr'sin(cor ), 0], (4.7)

i.e., a bar of length 2b rotating in the plane (x,y) with a
constant angular velocity co. The bar end points are
represented by ~'=0 and v'=m. For this particular solu-
tion, the boundary condition (3.22) tell us that cob=1,
i.e., that the end points travel with the speed of light.
The condition (4.6) reduces to

The condition (3.17) for the Lagrangian Lp [cf. Eq.
(3.2)] is satisfied identically, and the equation of motion
(3.21) in fiat spacetime reduces to

(L y AB+4aiJ5acK A KBC)K

+2aIJ, [Vs(K," 5"N, „Nb) K,"—5"N, „Nbs]=0 .

(4 5)

and the open-string end-point equations to either (3.22)
or

Another particularly interesting model of string is the
one in which the dependence on the extrinsic curvature is
through the combination

R =5' (K,Kb K,qsKb ) . (4.10)

LR I & —
O I

=0 (4.12)

where ( )'=d/dR. Thus, in this case, we can also have
alternative boundary conditions to (3.22).

The energy-momentum tensor reduces to

2[I.(LaR La ~2)y—"'
+L' 5' (K K„y" —K K" )]5 (p)

+L' (K y" —K'4 )5' 8 5 (p) (4.13)

There is a specialization of this last case that deserves
particular attention, the case in which Lz is a linear func-
tion of R:

This last equation is the contracted Gauss formula that
relates the extrinsic curvature of the world sheet with its
Ricci-scalar curvature R. Note that (4.10) is only valid in
flat spacetime; otherwise, we need to add corrections
coming from the curvature of the spacetime [20]. The
Lagrangian in this case will be written as La =LIt (R ).

The equation of motion with the respective end-point
conditions (3.23) in the present case is

(L~ R Lq l2—)Kb

+5' Nb V„[LaNds(K, y" K," K—)]=0, (4.11)

cob=[1+2aro ]' (4.8)

When —1 & 2aco' & 0 we also have a physically acceptable
solution in which the interaction reduces the speed of the
string end points. When a =0 we recover cob = 1.

The energy momentum (3.29) for the Polyakov string
in flat spacetime can be cast as

LT=p(1+aR ) . (4.14)

TAB — [( 1 aR )yAB+2aK AB5 bd 52(p)] (4.15)

We have that in two dimensions &—yR is a total
divergence. Therefore the equation of motion in this case
is again the usual Nambu equation, but the addition of
this topological term will change the boundary conditions
for open strings and the energy-momentum tensor. In
this case (4.13) reduces to

+2apK," 5' Bb5 (p) . (4.9)

TAB [L As+2 5ab(K K AB+2K AKBc)]52( ) For Nambu strings we have that

R= —5'I( EaAB b (4.16)

For strings evolving on a plane, say, on the (x,y) plane,
it is easy to show that the extrinsic curvature E,AB has
only one component along only one of the directions 8, .
This property of the extrinsic curvature is a consequence
of the fact that plane strings evolve effectively in three-
dirnensional Minkowski spacetime. Thus, for plane
strings, we will have an energy-momentum tensor with a
dipolar term that contains only one derivative of the
Dirac distribution. This means that plane Polyakov

Therefore, in this case, for the end-point conditions, we
can also have (4.6). The energy-momentum tensor (4.15)
is equivalent to (4.9) with K, =0. To show this last
equivalence, we recall that in a two-dimensional manifold
the Ricci tensor and Ricci scalar are related by
8 AB

=y ABR /2. The fact that the thermodynamics
changes by the addition to the Lagrangian of total diver-
gences has been studied by a variety of authors [21].
Note that the discussion concerning plane Polyakov
strings and the boundary condition (4.8) for the string
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(4.7) also applies in this case.
Finally, we want to add that the same methodology

presented here can be used to study membranes with cur-
vature corrections. A special case of a membrane with
curvature corrections is studied in Ref. [22].
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