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Effective action at finite temperature
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We consider the problem of generalizing the usual effective potential calculations by computing
the kinetic terms in the one-loop effective action. Results for the leading-order gradient terms in the
effective action for scalar fields valid for both zero and finite temperatures are given when quantum
corrections arise from scalar, spinor, or gauge fields. In the gauge field calculation we present a
generalization of the 't Hooft gauge-fixing condition which removes cross terms in the scalar and

gauge fields, resulting in considerable simplification of the fluctuation operators. Our results imply
that the consistency of the one-loop effective action requires at least three families of fermions.

PACS number(s): 03.70.+k, 11.10.Ef, 98.80.Cq

I. INTRODUCTION

The behavior of quantum field theory at finite temper-
ature has received attention because of the existence of
phase transitions and because it has important applica-
tions such as to the very early Universe [1].

In circumstances where local thermodynamic equilib-
rium is established the state of a physical system lies at
the minimum of the free energy. In the case of quantum
field theory, the free energy F can be identified with the
effective action I' by the relationship I' = PI', where P
is the inverse temperature. If the ensemble averages of
the matter fields are homogeneous and unchanging with
time, then the free energy density is given by the finite-
temperature effective potential introduced by Weinberg
[2, 3]. We have extended techniques for the evaluation of
the effective action as a perturbation series in the gradi-
ents of the ensemble averaged fields, which can be used
where the usual effective potential approach proves inad-
equate.

One situation of interest to us is the electroweak phase
transition in the early Universe. Inhomogeneous Buctu-
ations in the Higgs or gauge fields during this transition
are particularly important. In the first place, sphaleron
fluctuations are present and these can change the baryon
number of the Universe [4—7]. The rate of sphaleron fluc-
tuations at a temperature T is approximately given by
T exp( —b,l'), where AI' is the increase in the effective
action caused by a sphaleron, calculated at finite tem-
perature. Some of the temperature dependence in the ef-
fective action can be obtained by replacing coupling con-
stants with temperature-dependant variables [5, 6], but
this does not reproduce all of the temperature-dependent
terms that can arise.

Another reason for considering the rate of inhomoge-
neous Huctuations is that they may determine the nature
of the electroweak phase transition. The efFective poten-
tial of a component of the Higgs field has the form [8]

~(4) = ,'-'(T)4'+ ."(T)~—'+~(T)4' —(1)
The temperature-dependent mass m(T) passes through
zero during the phase transition. At a temperature T,
the potential can have two separate and equal minima,

and if the rate of transitions over the barrier between
them is small then the Universe would supercool. The
full effective action, as calculated here, is important in
determining the rate of these transitions.

The terms in the effective action which are quadratic in
scalar field gradients have previously been calculated at
zero temperature for scalar and Dirac field theories [9,10].
A variety of related expansion techniques have been used
to calculate these terms [13, 17]. At finite temperatures,
a derivative expansion similar to the one used here has
been applied by Hu [11,12] to the scalar loop case. The
quadratic term for a gauge field loop is given explicitly,
we believe for the first time, in Sec. IV of this paper.

The important new feature of our calculation is the in-
troduction of a new gauge which generalizes the 't Hooft
gauge [15] for expansion about a nonconstant background
scalar field. The new gauge choice leads to separable fluc-
tuation operators, and should be useful in other applica-
tions outside the present context. One such application
would be to simplify the analysis of the classical stability
of Yang-Mills Higgs soliton solutions.

We give the contributions to the quadratic scalar gra-
dient terms resulting from interactions with a Dirac field
loop in Sec. III and a gauge field loop in Sec. IV. In the
latter case the finite-temperature correction has the op-
posite sign to the original gradient term. This can be in-

terpreted as an instability of the classical vacuum caused
by the gauge field loop, but stability is restored if there
are several families of fermions.

II. THE FINITE- TEMPERATURE EFFECTIVE
ACTION FROM SCALARS

%e have already explained the reasons for being in-
terested in terms in the effective ac'tion which contain
derivatives of fields. This requires generalizing the calcu-
lations of Coleman and Weinberg [9] for efFective poten-
tials. Previous work includes Refs. [9, 10, 16—20, 11, 12]
which involve evaluations of the efFective action for non-
constant background fields. The method which we will
use is based upon the local-momentum space method for
curved spacetime introduced by Bunch and Parker [14].
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A. Zero-temperature results

The one-loop correction to the effective action for real
scalar fields is expressed as the functional integral

I'~ = —ln dp[P] exp ( P—A-P) . (2)

%e choose to work in a spacetime with a Euclidean met-
ric. dp, [P] represents the functional measure for the scalar
fields, and b, is some second-order, self-adjoint differen-
tial operator. In quantum theory we are interested in

6 = —V'+ m'+ V(P)

where m is a constant, and V(P) is a function of the
background scalar field. [For example, in A/4 theory,

V(P) = 12AP, where P is a background field. See Jackiw
[21] or Iliopoulos [10] for lucid discussions of the back-
ground field method. ] From (2), we have

ol"V(x)
Bx» . Bx&

X—2."

Hence, (5) becomes

where

M' = m'+ V(x').

In order to solve (10), Fourier transform G(x, x') as

G(z, z') = d"k

( )~e G(k) z ),

substitute into (10), and integrate by parts to obtain

—V +M +) —,y"' y""V„, „„.. .G(x, x')=b(y)
n=l

I ~ 1 =
z ln [det 6] = 2tr in 6, (4)

using the definition of Gaussian functional integration
over boson fields. It should be noted that both the de-
terminant and the trace in (4) are to be performed in
function space as well as over any indices carried by A.

Our method of calculation involves an expansion of the
Green function G(x, z') for the operator 6, defined by

xG(k;z') = 1. (13)

We want terms in the one-loop effective action which in-
volve kinetic terms in the background fields in V. Thus,
we write

AG(z, z') = b(x, z'). (5)

We can relate I'& 1 to G by differentiation of (4) with
respect to m:

G(k;*') =) G, (k;x')
j=O

(14)

Bm Bm
= -tr

= 2itr[b, ']

d z trG(z, x).

The remaining trace in (6) is over field indices carried by
the Green function. (Dimensional regularization can be
adopted here by integrating over N dimensions and using
analytic continuation to N = 4 at the end. ) This relates
I'~il to the coincidence limit of the Green function.

Because we only require the coincidence limit of the
Green function, we may evaluate G(x, x') for z in the
neighborhood of z'. Let

X=X +g.
(In curved spacetime this procedure would amount to
the introduction of Riemann normal coordinates at x',
or more generally, a synchronous frame in a vector bun-

dle, and the calculation would parallel that of Bunch and
Parker. ) We allow V(z) to be a general function of x and
Taylor expand about x = x':

1
V(x) = U(z') + ) —

t
y"' y "P„',

n=l

where

where the subscript k counts the number of derivatives
which occur in the expression G~. Note that this proce-
dure is difFerent from Bunch and Parker [14] who solve

(13) as an asymptotic series in k. The method which we

adopt is more suitable for obtaining the kinetic part of
the one-loop efFective action. We may then solve (13) as
an asymptotic series in the number of derivatives.

Equating terms in (13) on both sides with no deriva-
tives leads to

Gs(k;z') = (k + M )

This will lead to the usual effective potential part in the
one-loop effective action. The remainder of (13) is then

) G, (k; x') + (k' + M') '
j=l

(16)

The indices in the double summation may now be rela-
beled so that one of them counts the total number of
derivatives:

) G, (k;x')+(k +M )
j=l

~ .~.i" 0"G (~k;x')
n, ! ctkj=l n=l P1 P~
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Thus

3

G, (k;x') = —(k'+ M') ') —,V„,...„„

(18)

B. Finite-temperature results

The local momentum space method presented in the
previous section may also be extended to calculations
at finite temperature by replacing the momentum space
measure in the zero-temperature results with [2, S]

This result fully determines all of the terms in the expan-
sion (14) of the Green function in the number of deriva-
tives, although the explicit expressions for Gz must be
found by solving (18) iteratively. We have done this for
terms which involve no more than four derivatives and
find, after some straightforward calculation, the results
summarized in Appendix A.

The desired expression for the one-loop effective action
may now be obtained directly from (6), (12), (14), and
the results in Appendix A. The term with no derivatives
just gives the usual effective potential, and we shall not
consider it further here. The terms with one and three
derivatives are seen from (Al), (AS) to be odd in k, and
therefore they will integrate to zero. The second deriva-
tive terms in I'&il are found, after an integration by parts,
to be

p
(21)

Fq~
~ —— ~I 3 "V —-I""4 V„V . (22)

The finite-temperature integrals are evaluated in Ap-
pendix B. We find that, at high temperature,

where ko = 2zn/P. The relevant integrals which can
arise are summarized in Appendix B. Although it is pos-
sible to obtain results for arbitrary background fields, we
will restrict attention to those which are time indepen-
dent.

Using the result in (A2) and integrating by parts
leads to the following expression for the second derivative
terms in F~ ~

(19)
I'2 —— d x(M ) ~ (V'Vi)

384m
(2S)

[If there is more than one scalar field, then there will be
a trace over group indices in (19).] The terms in I'~il

which contain four derivatives are

r~" = ' '~ ——'M-' &V '+—'M-' V"V.

—„',M-4V~"V„„+„',M-4(V'V)'

where V; denotes the spatial gradient only. For massive
A/4 theory, we have

A2T
15(&) d4x(i/n2 + 12gy2)-34/'2y2g itigiy2 327r

(24)

This one-loop correction has the same sign as the kinetic
term in the classical scalar field action.

For the terms in the finite-temperature efFective action
which involve four derivatives, we find

M V"V„V V]. (20)

In the case of massive A/4 theory, V(x) = 12Apz(x),
and Mz = rnz + 12Apz(x), where p(x) is the background
scalar field. The result in (19) agrees with the calculation
of Iliopoulos [10], and the result in (20) may be shown to
agree with a result of Fraser [1S].

+,'1(5)V'V&V-,, ——,', 1(4)V'~V,,
+ oI(4)(7 V) ].

Here 7'z is the spatial Laplacian. Use of the high tem-
perature expansions of Appendix B leads to

p/jj = J'g4, (
-T (M2) 2/2(p'p)2 T (M2) 2/2+'++2+4. T (M2}-2/2+'pjj,

T (M2) —5/2j/ jy + T (M2)
—5/2(gjy)2) (26)

Unlike the case for the second derivative at finite tem-
perature, the fourth derivative terms have an indefinite
sign.

III. THE FINITE-TEMPERATURE EFFECTIVE
ACTION FROM SPINORS

The classical action for a Dirac spinor field with a non-
constant mass M(x) in a spacetime with Euclidean sig-
nature i

r&'~ = -i (27)

The gamma matrices satisfy

v"v" + v"v" = ~~"". (28)

The nonconstant mass term here may come from a
Yukawa coupling to a scalar Geld, for example.

The one-loop effective action arising from integration
over the fermion field is



1674 IAN MOSS, DAVID TOMS, AND ANDREW W'RIGHT 46

I'~ 1 = —ln dp[tP, @]e

= —ln det [
—i(p 9 —M)]

= —tr ln [
—i(p 7' —M)] .

I,"' = „'., (X —l)r(2 —m/2)

( Mz ) N/'2 2—
x dxi (38)

i [p 7—
' —M(x)] S(x, x') = 6 (x, x')

and assume that

M(x) = m+ M(x)

(30)

(31)

As for the scalar field, we will relate I'~i1 to a Green func-
tion S(x, x') for the operator occurring in (29). Define

where p is the renormalization scale. The result contains
a pole term at N = 4. For a Yukawa coupling we would
have M(x) = m+ gP(x), and the pole term would be
absorbed by a field renormalization for the scalar field

P(x). If we also perform a finite renormalization, so that
I'2~ 1 begins at quadratic order in P, then the renormalized

r,(" is

for some M(x) which does not depend on m. Then
(

Mz)I,"' = -(4 )-'
ren m

(39)

d x trS(x, x) (32)

1
M(x) = M(x') + ) —y"' y""M„,

n=l

where the functional trace has been performed leaving
only the trace over any other indices carried by the spinor
fields.

The local-momentum expansion may be used in (30).
Write

The presence of the logarithmic term is expected on the
basis of renormalization group considerations, and will
be present whenever it is necessary to perform a field
renormalisation for the scalar field. If the scalar field is
massless, then (39) becomes (since M = gP)

= —g (4x) d x ln
~

(z
' V"PV'„P.

(4o)

where

ct"M(x)
Bx» Bxi'

Define a Fourier transform of S(x,x') by

(34)

We will see a similar result in Sec. IV for gauge field
loops.

The result for finite temperatures may be found in a
similar way to the result for scalar fields, with the mo-
mentum space measure (21). At the end of the calcula-
tion,

S(x,x') = e'""S(k;x') (35)
p(&)

2 12' d x (M ) i V'MV, M.

(p k+ iM) +i ) M~, —

Write, analogously to (14),

xS(k;z') = l. (36)

and substitute into (30). After integrating by parts, We have again considered only the case of spa-
tially dependent background scalar fields. This finite-
temperature radiative correction to the classical scalar
field kinetic term is found to have the same sign as that
obtained from scalar field loops in (23), in contrast with
the contribution in the vacuum energy which has the op-
posite sign. It therefore appears that fermion contribu-
tions to the effective action stabilize the classical vacuum,
even at high temperatures.

S(k;x') =) S, (k;x'),
j=o

(37) IV. THE FINITE- TEMPERATURE EFFECTIVE
ACTION FROM GAUGE FIELDS

where the subscript counts the number of derivatives.
The coefficients with j ( 2 are given in Appendix A.

Since the calculation here is principally intended to
illustrate our method, we will make the simplifying as-
sumption that M in (36) is a multiple of the identity.
The Sp term in (37 again leads to the usual effective
potential part of I'( which we will not consider further.
The Si term given in (A7) gives a vanishing contribu-
tion to the effective action. After some Dirac algebra,
integrations by parts, and the use of zero-temperature
results in Appendix B, the part of I'( ~ which contains
two derivatives is found to be

Consider the interactions between massless scalar me-
son fields C and gauge bosons A„described by the action

d x 4iF""F„„+(D"C)t(D 4') (42)

where D„=9'„+ieA„ is the gauge-covariant derivative
and F» is the corresponding field strength tensor. We
shall take the gauge group to be U(l), but the generaliza-
tion to arbitrary gauge groups can be carried out with-
out difhculty, and some results for other gauge groups
are given below.

The Erst step in constructing the effective action is to
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expand the action about a background field:

For one-loop order we can neglect terms which are not
quadratic in Pi, P2, or A„. When this is done it im-

mediately becomes apparent that the scalar and vector
fields are coupled by cross terms. These should be elim-
inated in the gauge-fixing process, otherwise they would
considerably complicate the analysis.

We will choose the gauge-fixing functional

X[A, P] = V"A& + oegg2 + 2U"A„. (44)

where n is the gauge parameter and

U„= P 'V~/. (45)

p, ~ v+ 1 I 1+ 2 2 2 (46)

where

For constant background fields, U„vanishes and our
gauge reduces to the 't Hooft gauge [15].

In the generalization to Yang-Mills theory with a back-
ground Yang-Mills field A„, the gauge-fixing condition
is defined by the replacement of Vi'A„with DI'A„. We

would also require U& to be a solution of (D"—U&)P = 0.
Integrating over the gauge degrees of freedom in the

path integral gives a ghost contribution detb, z and a
gauge-fixing term H/2n in the action. Since the gauge-
fixing functional has been chosen to eliminate any cross
terms, we get a quadratic contribution to the action of
the form

4""= —b""V + (1 —n ')V"V" +4o. 'U"U"
—2(1 1VvUp p 2Cl 1(U&V~ —UvV~) ~ e2y2

(47)

Ag ———V' —2U~V„+ a.e P,
Ai = —V',

A2 = —V2+ ne2$~.

(48)

(49)

(50)

M =e P =mz+M (52)

where m2 is a constant. We then expand the logarithms
in (4.10) as powers of Mz. For the gauge loop example
we also have to expand the logarithms in powers of U„,

A

since this is also of first order in derivatives of P.
The expansions are simplest with the choice n = 1 for

the gauge parameter. With this choice of gauge param-
eter we get the second derivative terms given below:

In order to perform the path integration, the operators
in (4.5) have to be self-adjoint, but the ghost operator
bs, which already appears as a determinant, must be
left in its non-self-adjoint form. The one-loop effective
action so obtained from the path integral is then

l+-tr ln+„—tr lnb~+ 2tr lnb2+ 2t

(51)

We have the same problem expanding these logarithms
as in the previous sections. This time, for variety, we
will adapt the method used by Aitchison and Fraser [16],
as described in Appendix C. (The relevant expressions
for the local coordinate space expansion are contained in
Appendix A.) First of all we set

(tr lnA„)2 = —ztr(( —V +m ) (—V +m )M&"M +4V&V~M ""M

+tr (—V +m ) (4m U —4V"V"U„U„+2M U„")
(tr lnb, ~)q = —zitr(( —V' +m ) (—V' +m )M„"M +4V'„V'„M" M

—tr (—V +m ) (2V"V"U„U„+M2U„")

(tr lnb2)z ———-'tr(( —V +m ) (—V +m )Mz"Mz+4V V M ~"M'}

The first trace in each equation has the same form
as the scalar field case given in Appendix C, while the
remaining terms come from the contributions to the op-
erators depending on U„. The traces are over spacetime
and vector indices and can be evaluated in momentum
space, all of the relevant sums and integrals being given
in Appendix B.

At zero temperature, the second order term in deriva-
tives in I'& & is

82 2
I'2 —— d x 2 ln —

2 ~
V"pV„p.

8vr2 ( y,2) (54)

This term could be deduced from the wave function
renormalization. For a gauge-Axing term a, this im-

plies that the numerical coefficient of ln p. is [22] (n—
3)e /32m . The remaining dependence on P follows by
dimensional analysis.

We shall only give high temperature results in the case
that P is independent of time. Then

78 T78 T
32m ep

(55)

The singularity at P = 0 could be removed, as with sim-
ilar terms in the effective potential [3], by summing sub-
sets of higher-loop graphs.

The result (4.16) can also be obtained with the gauge
parameter choice o. = 0. This indicates that the leading
term in the high temperature expansion is independent
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of gauge fixing, as is the case for the leading term in the
effective potential. Higher-order terms will not be inde-
pendent of the gauge-fixing in general. If a gauge —fixing
independent result is required for all temperatures, a nat-
ural formalism to adopt is the Vilkovisky and DeWitt
procedure [24, 25], although physical predictions should
not depend on using the formalism. The higher order
terms are currently under investigation.

A simple generalization of our results can be made to
larger gauge groups:

(N):
72

I'2~ l = — d x (N —1)—.'7'pV, p,
327t' gp

SU(N):
72

I'2 l = — d x [N(N —R)R] ~

327r gp
(57)

V. DISCUSSION AND CONCLUSIONS

In the case on O(N), the background field was taken
to be PE, for a unit N vector E For .SU(N), the
background field was PAi/~2, where Ai is the group
generator which breaks the SU(N) symmetry down to
SU(N —R) x SU(R) xU(1).

The sign of these results is the opposite of the sign
of the corresponding classical terms, indicating possible
instability of the classical vacuum. Stability can be re-
stored by the inclusion of the scalar or fermion fields to
ensure that the overall sign of the quadratic terms is pos-
itive. For theories in which the gauge and fermion cou-
plings are equal (such as supersymmetric models), com-
parison of the gauge and fermion results indicate that at
least three families of fermions are required.

have given results up to fourth order in the number of
derivatives and we have set up most of the expansions
that are needed to calculate the same order terms with
gauge loops.

The logarithmic terms which arise, for example in
the gauge loop at zero temperature, are related to the
renormalization of the four-dimensional theory. On the
other hand, the finite high temperature terms come from
quantum Buctuations which are constant in the time di-
rection. These terms are finite corrections to a three-
dimensional quantum theory and in the case of back-
ground scalar fields cannot be obtained by simple renor-
malization group arguments.

In applications to the early Universe it would be of in-
terest to extend our analysis to include background gauge
fields, along the lines indicated in Sec. IV. Shaposhnikov
[5] has argued that the leading terms can be obtained
by replacing the gauge coupling g with a temperature-
corrected function g(T). However, a complete analysis of
the gradient terms in the effective action remains to be
done.

Although we have limited our considerations to one-
loop effects, the extension to multiloop processes is cer-
tainly possible. The local-momentum expansion of the
Green functions could be used in this context. For ex-
ample, at two loops the efFective action involves products
of two or three Green functions. It would be a straight-
forward calculation to substitute in our Green function
expansions and then collect terms with the same number
of derivatives of the background fields.
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In the above, we have shown how to calculate in a
systematic manner kinetic terms in the one-loop effec-
tive action which arise whenever there are nonconstant
background scalar fields. We gave results valid for both
zero and finite temperatures. In the scalar loop case we

APPENDIX A: COEFFICIENTS IN THE LOCAL
MOMENTUM SPACE EXPANSION

After solving (18) iteratively, we find

Gi(k;x) = 2iD k"V„,

Gg(kIx) = 2D 4V"V„—12D k"'k"'V„,V„, —D '7 V + 4D k"'k"'V„~)

Gs(k;x) = 120iD k"'k"'k"'V„,V„,V„, + 40i,D k"'V„,V"'V„, (A1)

—12iD k"'V»V' V + 80iD k"'k"'k"'V V —20iD k» V» V

+4~D-'k"'V'V —SiD-'k~' k~ kI"'V„„



EFFECTIVE ACTION AT FINITE TEMPERATURE 1677

G4(k;x) = 1680D k"'k»k»k"4V»V»V»V„, —840D k"'k"'V»V»V»V»

+40D V"'V„,V"'V„, + 180D k"'k"'V„,V»V' V —20D V"V„V' V
—1680D k"' k"'k"'k"' V„,V„,V„,„4 + 160D k"' k"' V„,„,V"'V~,

+600D k"'k"'V„V„,V„,„,V"' —32D V"'V"'V„,„,—80D k"'k"'V„V' V

+10D sV—I gzV +. 3D—s(gzV)z+ 240D —7k»k»k»kl 4V„V„„„
72D— k"'k"'V V"' —40D k"'k"'V '7 V+ 160D k"'k"'k~'k"4V V

64D k&~k»V V» + 4D 'V V»»
+12D k"'k"'V V, —16D k"'k"'k"'k"'V

We have set

D = k'+M'

in these expressions.
In the spinor field case of Sec. III, substitution of (3.11) into (3.10) results in the terms

So(k;x') = P ',

Si(k; x') = PM„—P p"P

S (k. I) P—1M P-i P1P—1M P—i »P —i + P—1M P—1M P—1 P1P—i »P —i

+P-1M P—1M P-i »P i PyP i + iP 1M P-—i PyP —i »P-i

where we have set

P =p k+iM
For the gauge field case discussed in Sec. IV, we need the Green function for the operator h„defined in (4.6), with

n = 1. De6ne

b,„"G „(z,x') = b„"(x,x').

Expanding the Green function in powers of derivatives as before leads to

Go" (k x') = 6"D

( 4)

Gi"„(k;x') = 2i61"D k"M q
—2iD (U"k„U„k"), — (A5)

Gz" (k x') = iD M G "—'"+-D M D ' b" —2iD (U~k —U k")G"
+2D —1UP (k D—1)cr 2D-1U (kPD 1)n (4UPU

— 2UIJ )D
—2

where p, denotes 8/Bk„when acting on G or D and 8/Bzl"
when acting on Mz or U". These expressions may be
used to obtain the terms in the effective action which are
quadratic in derivatives.

APPENDIX B: MOMENTUM SPACE
INTEGRAL 8

I(p) = (p —1) ' zI—(p —1) (B2)

for p&2.
The other integrals which we require are

It is easy to see from (B2), or directly from (Bl), that

De6ne

d k
~(k +M )

IPx»(p) k"'k»(kz+ M2) "
(2~)~

= A(p)K'»

where Mz was defined in (ll). The standard formula of
dimensional regularization leads to (p & 1) f lak k&'k~'k» k~'(k'+ M') -"

(2x)~

1(p) (4 )N/2 (P / ) (M2)N/2 y—
I'(p) = B(p) (b"'"'6'"'"4 + symmetries). (B4)
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Et is easy to show that, for p & 2,

A(p) = —2'(» —1) 'I(p —1)

and, for p) 3,

8(p) = —,'(p - 1)-'(p-2)-'I(p-2)

(85)

(86)

I(p) = ) dN-'IG
+ (2n7riP) + M

These results are sufficient to calculate the terms in the
one-loop effective action at zero temperature which con-
tain no more than four derivatives.

At finite temperature, the integral given in (Bl) gets
replaced with

I(5) 5T (M2) 7/2

I(6) 7T (M2) 9/2

(817)

(818)

The finite-temperature generalization of (84) may be
written as

) 1 N li1G k"k"(k'+ M') "
(27r) N —1

A, (p) = (p-1-)-' M, A, (p- 1) (820)

= A1(p)6"" + A2(p)n"n' (819)

where nI' is a unit vector in the time direction. We have

(87) and

I(1) (4~)
—(&-1)/21

(
3 &

)p-1(2~p-1) &-3

xq(-3, ——", ; PMi2~)

where

(88)

The relation given in (83) still holds, so that we only
need to work out I(1). Doing the integration before the
summation leads to

A ( ) = -'( —1) 'I( —1) (821)

for p ) 2. In the high temperature limit it may be shown
that

A1(1) = 32, (N —4) '+ s4, ln(47rT ) —p

+ 1 M2T2 T (M2)3/2 + (822)

and
I,'(s;v) = ) (n +v ) (89)

It may be shown [23] that ((s; v) is analytic for R(s) ) 2
and has simple poles at s = 2, —2, . . .. In particular,

((32—~~; v) = v2(N —4) —' y I,'(1; v)+O(N —4)

(810)

where for small v,

~(1; ) = —.'+.+ (~ —1)"——.'~(3)" + —.'~(5)" +
(811)

[The exact expression for ((1;v) may be found in
Ref. [23].] The high temperature expansion for I(1) is
then found to be

A2(l) = —
45 T + 32m~ M + 12M T
T (M2)3/2+

The result given in (820) leads to

A1(2) = —1s, (N —4) —32, In(4~T ) —p

A1(3) = —32, (N —4) —s4, ln(47rT ) —p
T (M2)

—1/2

(823)

(824)

I(2) = —,.', (N —4)-' —„'., in(4~T') —q]

+ T (M2) —1/2 +
I(3) =,T.(M')-'/'+
I(4) = sT4 (M2)

(813)
(814)

(815)

(816)

I(1)=,(N —4) +, ln(47rT ) —p + ,T-
——(M )' + O(M T ) (812)

Results for I(p) with p ) 2 are easily obtained by re-
peated differentiation of (813) using (83). In particular,
for p ) 3 there will be no poles at N = 4 and no loga-
rithmic terms in the temperature. In fact, as long as the
original integrals are convergent (which is the case for
p ) 3), the leading term in the high temperature expan-
sion comes from the n = 0 term in the expansion. We
have

For p ) 4, when the integral in (819) is convergent, we
have

A2(p) A1(p) (825)

A1 (4) A2 (4) 192 (M )

A1(5) —A2(5) s,T2 (M )

A1 (6) A2(6) 1924 (M )

A1(7) —A2(7), 227Tss (M )

(826)

(827)

(828)

(829)

Finally, we need the finite-temperature generalization
of (85):

in the high temperature limit. (This result follows from
the fact that the dominant term in the limit comes from
the n = 0 term in the summation. ) Use of (821) then
gives the remaining results:
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then I'&~) expanded in powers of M:) QPy A, Pg kP 3kP4 (k2 + M2)
P (2z.)N —1

r&'&= -trln( —V +m')+-tr (—V +m) M

—-tr ( V'+m) M + ".1 2 2 —1 2 2
4 (C2)= Bq (p) (b"'"'6"'"4 + symmetries)

+B2{@)(6"'"'n"'n"' + symmetries)

+B3(p)n"'n"'n"'n"4
The effective potential contribution to the effective action
can be separated out by collecting all of the factors of
G = (—V + rn ) together:

(B30)

The B;(p) which we require have p & 5, and are all finite
at N = 4. This means that the dominant term in the
high temperature expansion comes from the n = 0 term
in the summation. By taking pq = p2 = p3 = pi4 = 0,
and p~ ——p2 ——0, p3 = pr4 = 1 we can relate B2(p) snd
B (&) toB (p):

I' ) = -tr lng + -tr GM —-tr g M2 2

4 gM gM +ltr g M4
4 (C3)

The first three terms contain no derivatives of M and
they reconstruct the effective potential as a function of
M The remaining terms can be simplified by grouping
factors of G together using commutator identities:

B2(P) - —B~(P)

B (&) -3B~(&).

(B31)

GM GM = G M +G (LM )M +G (L M )M +~832~

Bq(p) may be found by taking p] = p2 = p3 = p4 —1,

B~(&) = 4(&- I) '(&-2) 'I(p-2). (B33)

The previous results found for I(p —2) in the high tem-
perature limit may now be used to obtain the desired
results for B,(p).

r&'& =-tr ln —T +M2 (C1)

where M2 depends on the background field. The mass
M is split up into m +M, where m, is a constant, and

APPENDIX C: OTHER METHODS OF
EVALUATING THE EFFECTIVE ACTION

Another method of evaluating the effective action has
been invented by Aitchison and Fraser [16]. This method
can easily be adapted to high temperature calculations.
Consider the one-loop contribution to the effective action,

LM = —2V„(M )'"+ (M ) „",

L M = 4V„V,(M )'""+O((M2),„„).
(C5)

(C6)

Therefore the contribution to the second derivative terms
from r&') is

I", '=--'t. G'(M') M'+4G'V V (M') "M'.
~P

(C7)

The trace can be evaluated by replacing 7'" with ik~.
Using the results of Appendix B for the high tempera-
ture limits of the momentum integrals, one recovers the
same result as (23). Higher order terms can be found
by expanding the logarithm to higher orders and using
further commutator identities.

(C4)

where IM2 denotes the commutator [
—V2, M2]. Expan-

sion of the commutator yields
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