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Quantum effects near a point mass in (2+ 1)-dimensional gravity
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We investigate the behavior of classical and quantum fields in the conical space-time associated with a
point mass in 2+1 dimensions. We show that the presence of conical boundary conditions alters the
electrostatic field of a point charge leading to the presence of a finite self-force on the charge from the
direction of the point mass exactly as if the point mass itself were charged. The conical space-time
geometry also affects the zero-point Auctuations of a quantum scalar field leading to the existence of a
vacuum polarization ( T„„)in the (2+1)-dimensional analogue of the Schwarzschild metric. The result-
ing linearized semiclassical Einstein equations G„„=8nG ( T„„)possess a well-defined Newtonian limit,
in marked contrast to the classical case for which no Newtonian limit is known to exist. An elegant re-
formulation of our results in terms of the method of images is also presented. Our analysis also covers
the nonstatic de Sitter-Schwarzschild metric in 2+1 dimensions, in which in addition to the vacuum
polarization, a nonzero vacuum flux of energy ( T„) is also found to exist. As part of this analysis, we
evaluate the scalar field propagator in an n-dimensional de Sitter space; as a result some novel features of
quantum field theory in odd dimensions are seen to emerge.

PACS number(s): 03.70.+k, 04.20.Cv, 04.60.+n, 98.80.Dr

I. INTRODUCTION

A well-established feature of Einstein gravity is that in
a space-time of dimensionality d (4, it is devoid of any
intrinsic dynamics. In three dimensions this result arises
from the observation that both the Ricci and the
Riemann tensors have an equal number of components
(=6). Consequently, the Riemann tensor can be ex-
pressed in terms of a combination of Ricci tensors:

R "&=e" e»(R) —
—,'5t'R ) .

Clearly, if the Ricci tensor vanishes then so does the
Riemann tensor, with the result that gravity does not
propagate outside of matter sources. Since the Weyl ten-
sor incorporates the internal degrees of freedom of the
gravitational field, it follows from (1.1) that C;„, =—0 in a
three-dimensional space-time. In a space-time of dimen-
sionality d ) 3, the vanishing of the Weyl tensor (also
called "the conformal tensor") is indicative of the fact
that the space-time under consideration is conformally
flat. This is not so in d =3, the issue of conformal flat-
ness in this case being decided not by the Weyl tensor but
by the symmetric, conserved, and traceless Cotton-York
tensor (sometimes also known as the three-dimensional
Weyl tensor),

C ~=a rs(Rt' ——'5t'R).r 4 (1.2)

so that any three-dimensional space-time is conformally
flat if and only if the Cotton-York tensor vanishes [1].
The Cotton-York tensor also features prominently in to-

(1.3a)

where

IF= f d x&gR

and Ics is the Chem-Simons action,

(1.3b)

1
Ics — d x &g e" "[aP„"citato„,+ ,

' co'coaco'„e—,b, ], (1.3c)

where co' is the spin connection and p is a constant hav-
ing dimension of mass. Variation of I with respect to the
metric results in the Einstein-Cotton equations [2,3]

R" +—C"'=0,l

p
(1.4)

C" being the Cotton- York tensor.
The new equations of motion (1.4) do not constrain the

curvature to vanish in the absence of sources, so that
gravity has a nontrivial dynamics and can propagate. It
is interesting to note that the external metric of a static
point source is identical in both topologically massive
gravity and Einstein gravity at large distances from the
source (pr ) 1), and is given by [2—6]

pologically massive gravity which has been the focus of
considerable attention in recent years following the
discovery by Deser that bosons and fermions can acquire
exotic spin and statistics within the framework of this
theory [2,3].

Topologically massive gravity is described by an action
which is the sum of the standard Einstein action and a
Chem-Simons term [3]:

Electronic address: tarun@iucaa. ernet. in.
fElectronic address: varun@iucaa. ernet. in. s =gt —gv —v (1.5a)

46 1616 1992 The American Physical Society



46 QUANTUM EFFECTS NEAR A POINT MASS IN (2+ 1)-. . . 1617

where

0 q(, p=(1 —4G,M), (p&1),2' —1

M being the mass of the point source and G2 the gravita-
tional constant in 2+1 dimensions. We note that the
t =const two-hypersurface of this metric is a cone, and
that the metric is flat everywhere except at the origin. In
terms of a new polar coordinate y=py the metric takes
the form

2 2 2 r —2ds =dt —dr — dy (1.5b)

with y extending over the entire range 0 ~ |p & 2~.
Metric (1.5) can be obtained from the well-known exte-

rior metric of a straight cosmic string by suppressing the
dimension along its length [7]. Recently many authors
[8] have studied the scattering of point particles in the
conical space-time metric (1.5). We shall follow an alter-
nate approach and study the semiclassical one-loop quan-
tum gravitational effects that arise in such a space-time
due to its nontrivial topology. Such effects are also
known to be associated with cosmic strings and have
been extensively studied by a number of authors [9].

The outline of this paper is as follows.
In Sec. II we study the classical electrostatic field of a

charged particle in the space-time of a point mass (1.5).
We show that the existence of conical boundary condi-
tions distorts the electrostatic field of the particle in a
way that causes the particle to experience a repulsive
self-force directed away from the point mass.

In Sec. III we examine quantum fluctuations of a mass-
less scalar field in the conical space-time described by
(1.5). We demonstrate the existence of a vacuum polar-
ization characterized by a finite vacuum expectation
value of the energy-momentum tensor (T„„).We also
show that the vacuum energy density ( Ten) is negative
for scalar fields coupling either conformally or minimally
to gravity.

In Sec. IV we calculate the back reaction of one-loop
quantum gravitational effects on the space-time geometry
via the semiclassical Einstein equations G„„= 8m.Gz ( T„,). We find that in the linearized approxima-
tion the semiclassical Einstein equations have a well-
defined Newtonian limit, in marked contrast to the classi-
cal case where no such limit exists.

In Sec. V we extend our study to the Schwarzschild-de
Sitter metric. We find in this case, in addition to the vac-
uum polarization, the presence of a vacuum energy flux
( T,„)directed radially away from the point source.

In Sec. VI we extend our analysis to include twisted
scalar fields and evaluate (P ) and (T„) for twisted
fields in the three-dimensional Schwarzschild metric. We
find that ( P ) and ( T„) are generally of opposite sign
to (P ) and ( T„„)for untwisted fields.

We end our paper with a discussion of our results in
Sec. VII.

Poisson equation in the conical background geometry
(1.5). Since fields are generally sensitive to the global
properties of a space-time, one would in general expect
nontrivial modifications to arise for the standard electro-
static field of a point charge in (1.5).

A general solution to the Poisson equation

b,y(x) = —2irq5 (x—x ') (2.1)

for a point charge located at x may be found by first con-
structing a Green's function satisfying

EG(x,x')= —2m5 (x—x') . (2.2)

The self-force on a test charge in the space-time (1.5) is
then given by F= —VU(x), where U(x) is the electro-
static energy:

U(x) =-,'q G(x, x) . (2.3)

The symmetry of the problem makes it convenient to
work in polar coordinates. The Poisson equation for the
Green's function (2.2) then assumes the form

1 8 8 1r +— G (r, 8;r', 8')
r Br Br r2 582

2' 5(r r')5(8 ——8'), (2.4)
r

where 5(r —r') and 5(8—8') are one-dimensional 5 func-
tions. Since 5(8—8')=(p/2m. )g" „e'~ ' ', we
shall use the polar coordinate expansion of the Green's
function

Gz(r, B;r', 8')= g e'i' ' 'g (r, r') . (2.5)
2K

g (r, r') then satisfies the radial difFerential equation

8 8 p m

Br Br r g (r, r')= —2m5(r —r') . (2.6)

Our one-dimensional Green's function can be written as

1——ui(r)u2(r'),

g (r, r')= '

——u, (r')u~(r),
(2.7)

d d A
u, (r) u2(r) —u2(r) u, (r)=—,

dr dr r

which gives A = —2@m, so that finally

(2.8)

where u
& 2 are solutions of the corresponding homogene-

ous equation: ui(r)=r and u2(r)—= r
The constant A may be determined from the Wronski-

an condition

II. ELECTROSTATICS IN 2+1 DIMENSIONS

We begin our treatment of classical and quantum
effects in conical space-times with a study of the classical

g (r, r')= X'i' ' (m&0),1

2[pm /

where

(2.9a)
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rX=—, for r') r,r'

rL=—for r'&r,
I

(2.9b)

go(r, r') = —1nr', 0~ r (r',
(2.9c)

g o(r, r')= —Inr, 0&r'(r .

The two-dimensional Green's function G~(x, x') now as-
sumes the form

1
" xp pGz(r, 8;r'8')= g cosprn(8 —8') — lnr',

2% ) Pl 2m

(2.10)

where L=r /r ' ( 1 is assumed.
Performing the summation in (2.10) we finally get [10]

G (r, 8;r', 8')= — In[r ~+r' ~ 2(rr'Pcosp(—8—8')],1

h

which for p =1 reduces to

6, (r, 8;r', 8') = — 1n~x —x'~,I

(2.11)

(2.12)

FIG. 1. The equipotential contours of the electrostatic force
field of a point charge g are shown for a space-time possessing a
deficit angle 3m/2 using the method of images (see Sec. II and

Appendix A).

the familiar form for the Green's function in (2+ 1)-
dimensional Minkowski space. 6~(x, x ) is formally
divergent in the limiting case x~x', and must be regu-
larized. Subtracting the fiat-space contribution 6, (x,x')
from 6~(x,x') and taking the limit x~x ' we get

The self-force on the test charge is then

6"s(x,x)= lim [6 (x,x') —6, (x,x')]

ln[p 2y2(P 1 )
]

4m
(2. 13)

F= —VU= —r- =raU (p —1)q
Br 4rrr

(2.16)

which is finite.
The electrostatic energy of a charge distribution is

U= ,' f fp(-x')6;"(x', x")p(x")d'x'd'x", (2.14)

%'e find that the self-force is repulsive and can be fairly
large for p &&1, corresponding to large values of the
deficit angle [11]. Interestingly, for M &((46&)

where p(x) is the charge density. For a point charge lo-
cated at x, p(x) =q5 (x' —x), so that

(46&Mq )q gqF= r=— r;
4mr 4nr

(2.17)

U(x)= f J5 (x' —x)5 (x"—x)
2

yG«s(x x )d2x d&x
p 7

2 26" (x x)= q ln[p r "]
8m

(2. 1 5)

i.e., the conical boundary conditions present in (1.5) have
effectively induced a charge Q on the point source, pro-
portional to its mass and of the same sign as the test
charge q.

Our results can be elegantly rederived using the
method of images [12], according to whichfor , integer p
(p~ 1),

6;"(«,8,8')= g 6, r, 8;r,8+ z~u

k=1 p
ln r +r' —2rr' cos b,8+

4m k

(2.18)
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III. VACUUM POLARIZATION NEAR A POINT MASS
IN 2+ 1 DIMENSIONS

It is well known that in a large variety of situations the
imposition of nontrivial boundary conditions serves to
alter the zero-point fluctuations of a quantum field lead-
ing to the existence of a vacuum polarization (DeWitt
[13]). One might conjecture that the conical boundary
conditions implicit in metric (1.5) will also lead to similar
effects arising in the space-time of a massive point parti-
cle in 2+ 1 dimensions.

To investigate this possibility we shall consider a mass-
less scalar field P(x) propagating in the conical back-
ground geometry (1.5), and satisfying the field equation

Clg(x)+JR =0 (3.1)

(the curvature scalar R is taken to be equal to zero every-
where except at the location of the point mass; g= —,

' cor-
responds to conformal coupling in 2+1 dimensions [14]).
Using conventional canonical quantization techniques,
the field operator P(x) may be expanded as a mode sum

P(x)= g [a~u~(x)+ctqtuq(x)], x=(t, r, 8), (3.2)

i.e., a test charge at (r, 8) sees (p —1) images of itself lo-
cated at (r, 8+2mklp) (k=1,2, . . . ,p —1). The proof
of this assertion is straightforward and is given in Appen-
dix A. (The method of images is illustrated in Fig. 1 for
p =4.)

The essential features of the conical spatial geometry are
incorporated in the boundary condition (3.3c). The
boundary condition (3.3b) is imposed to facilitate normal-
ization and mode counting. We shall take the R ~Do
limit at a convenient point later on in our discussion.
Equation (3.3a) can be solved exactly and its solution ex-
pressed as

i meuz =—ur~(r, 8, t)=N&~ Jz~ ~(cuir)e' e (3.4)

where coI =g&/R, gI being the 1th zero of J~I ~(x),
m =0,+1, . . . , I =1,2, . . . , and Nl is a normalization
constant whose value is fixed using the canonical equal-
time commutation relation

[p(xt), m(x', t)]=i5 (x—x'}, (3.5)

where the conjugate momentum n.(x, t)=p(x, t). Equa-
tion (3.5) is equivalent to the condition

f d2x Iui I =(2co&)

which yields a normalization constant Nl given by
' 1/2

(3.6)

Nl
277col R

(3.7)

The annihilation operator ctz defined in (3.2) defines a
vacuum IO) (ct&IO) =0) in which the two-point (Wight-
man) function D~(x, x') can be expressed as a mode sum

[14]:

D~(x, x') = ( P(x)P(x') )

where az, an't are annihilation and creation operators
satisfying the commutation relations [az, ct z ] =5&& . The
mode functions uz(x) satisfy the difFerential equation (for
r)0)

QgXQg X

l=1 m = —oo

N& ut (x)u&* (x') . (3.8)

8 1 c} c) 1 8
T uz(x) =0

r dr Br rz c18~

and the boundary conditions

u&(r, 8)I„z=0,
2'

u&(r, 8) =u& r, 8+

(3.3a)

(3.3b)

(3.3c)

The dummy boundary r =R is removed at this stage by
taking R ~ ~ in (3.8) and by noting that

1 1
lim —g u( ~— dcou,

R 1=1

lim J
( (~, (gi)2 2

g —+ oo nf I

(3.9)

The two-point function is obtained as an integral over ~
and a summation over m:

D (x,x')= P g e' 's ~'

defoe

'"" ' 'J (cor)J (car') .p + 4

pram/

p/m(
m = —oo

Carrying out the integration over co and setting

r +r' (t t'}- —
coshQp =

2TP

we obtain [10]

Dp(x, x'}=
q (~q (~2 g exp[imp(8 —8') Itn Ipu ] .dQ

4m (2'')' "0 (coshu —coshuo)'~

The summation over m can be obtained in a closed form, and the two-point function finally reduces to

(3.10)

(3.11a)

(3.11b)
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sinhpu

4m (2rr')' "0 (coshu —coshuo)'~2 coshpu —cosp(8 —8')
du

It is straightforward to see that for p = 1 one recovers the standard Minkowski space two-point function:

(3.12)

D, (x,x')= sinhu

47r (2rr')' "0 (coshu —coshuo)'~ coshu —cos(8 —8')
1

where o = ~x —x'~ .
4mo. ' (3.13)

The two-point function D (x,x ) obtained in (3.12) must be renormalized by subtracting out the Minkowski space con-
tribution from it [13,14], so that

D (x,x')„„=D~(x,x') D, (—x,x')

du p sinhpu sinhu

4n (2rr')'~ "0 (coshu —coshuo)'~2 coshpu —cosp(8 —8') coshu —cos(8 —8') (3.14)

At this stage one is in a position to evaluate the renormalized vacuum expectation values of the zero-point fluctuations
of the field (P (x) ), and the energy-momentum tensor ( T",(x) ).

Given the propagator on an arbitrary (2+1)-dimensional manifold, the vacuum energy-momentum tensor may be
determined by [14]

( T",(x) ) = lim [(1—2()V"V',—( —,
' —2()g"„V&V' 2(V"V—„+'(g" V~V—

X ~X

g(R", —,'Rg"„+—4—(Rg"„)+(,' ', g—)m——g"„]D (x,x')„,„.
For a massless field in fiat space-time (3.15) reduces to

( T",(x) ) = lim [(1—2()g" B&B'„—(-,' 2()gl„'g —8 B~ 2(g" V&—B„]D (x,x')„„.
X —+X

(3.15)

(3.16)

The coincidence limits of the various derivatives involved
in (3.16) can all be related to the two quantities
lime s(B /B8 )D (8,8')„„and limtr sD~(8, 8') in the
following manner [15]:

lim — D, (x,x')„,„= lim —,D, (8,8')„„.1a
r (3r ~ ' ""

(9 g 2r' (3.17)

The two quantities lima. eD~ ( 8, 8')„,„and
lima P Dz(8, 8')„„/88 can be expressed in terms of
finite integrals:

lim, D~(x,x ')„„x'~x Br Br

1 3 8= lim
2

—+
2 D~(8, 8')„„,

r2 4 i3g

(j2 1 5
lim D (x,x')„,„= lim —— D (8,8')„„,

x' x Qr O' 8 2r 4 388, . 8
lim D (x,x')„,„= lim —,Dz(x, x')„,„x'~x Qr x'~x Bt Br

1
s, (p),

Smr

a2
lim D~(8, 8')„„e'~e ()8

(3.18)

du cothu p cothpu

8~2r 0 sinhu sinh u sinh pu

lim D (8,8')„„=(P( ))
g'~g

1 ~ du
(p cothpu cothu )

0 sinhu

1 1= lim
~

—+ Dp(8, 8')„„,r2 4 Qg2

1
s(p) .

16~r (3.19)

and, using D(x,x')„„=0, Substituting relations (3.17) in (3.16) one obtains

(TPr)) = lim D (8,8')„„diag( —1, —1,2)+(2g —
—,') lim D (8,8')„„diag( —1, 1, —2)=1 - a'

2 ' ~- ee' 6)'~ 8

1
[s(p)diag( —1, —1,2) + (4g —

—,
' )s, (p)diag( —1, 1, —2) ] .

327Tr
(3.20)
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I I 1 I
I

I I I I

I
I I I I

function Dz(x, x'). Using this approach, which is out-
lined in Appendix A, we find

p —1

D (x,x')„„=g DM;„„(x,xk),
k=1

(3.21)

-2

I i I I I I I I I i I I I I I I I I I I I i I

3 4 5

FIG. 2. The p dependence of Snr(P~(r) ) is shown for both
twisted [—:s, (p)] and untwisted fields [ =—s, (p)].

s, (p)=8mr(P ) and s(p)=32mr (Too)& &&s are shown
plotted against p in Figs. 2 and 3. The vacuum expecta-
tion value of the energy-momentum tensor so obtained
satisfies the conservation equations ( T"„(x)).„=0and is
traceless for /= —,'.

It is interesting to note that as in the case of the elec-
trostatic field, the method of images can once more be
used for integer values of p to evaluate the two-point

[s(p)+ (4g' ——,
' )s, (p) ], (3.23b)

where p=(1 —462M) '. We find that for $~0, @(0.
This is a consequence of the fact that for scalar fields
with g & 0 the energy density ( Too) associated with the
vacuum polarization is always negative.

where x = (r, 8—, t ), xk:(r—', 8'+2~k lp, t')
Using (3.16) we find that (T"„(x)) has precisely the

same form as (3.20) with s, (p) and s(p) now being the
finite sums

p —1

s, (p)= g csc
k=1

(3.22)
3+k 1 nk

s(p) = g csc ——csc
k=] P 2 P

The sums (3.22) can be obtained from the corresponding
integrals for integer values of p by means of contour in-
tegration (see Appendix C).

It is also interesting to evaluate the total vacuum ener-

gy associated with a localized object of mass M:

8= f f,&Too(r))r dr d8 (3.23a)

(where the lower limit M ' has been imposed in order to
make 4' a finite quantity); as a result,

0

0

$

0.1

0.05

I I I
I

I I I I
I

I

s(p) = 327rr (T )q-,y,

s (p) =32rrr (T, ) g, gs

I I I
I

I I I I
I

I I / I

/
/

g= 1/8 y (= 0

/

r

IV. SEMICLASSICAL EINSTEIN GRAVITY
IN 2+1 DIMENSIONS

Using the regularized vacuum expectation value for
the energy-momentum tensor, obtained in the previous
section, we can attempt to solve the semiclassical Ein-
stein equations

(4.1)

at a linearized level in order to obtain the first-order
metric perturbation associated with the back reaction of
the vacuum polarization ( T„„) on the space-time
geometry [16,17]. We shall look for static solutions to
(4.1).

As demonstrated in the previous section ( T„)has the
form

-0.05 I I I I I I I I I I I I I I I I I I I I I I

1 2 3 4 5

FIG. 3. The p dependence of the vacuum energy densities
r'(Too) and r'(Toc) [see (3.21) and (6.9)] is shown for
untwisted {solid lines) and twisted scalar fields (dashed lines).
Two values of the coupling parameter g are considered:
minimal coupling (/=0) and conformal coupling (g= —,

' ).

a.( T„(r)) =
3 diag( —1, —1,2}+—diag( —1, 1, —2),B

r r

(4.2)

with a=2m G2lc, 3 =(1~/32~)s(p), 8=(lt /32~)
X(4$—

—,')s&(p) (lz =62'/c is the Planck length in 2+1
dimensions). Since a( T„"(r)) is a function of r alone, one
would expect the geometry of the perturbed metric to
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(4.3)

respect axial symmetry. The most general form for such
a metric is [1]

ds & e—&&&(~)(dr & dr &
) e &+(~)d8&

Then at large distances from the point mass (R » 1) the
line element (4.8) can be rewritten as

In the perturbative approach which we adopt, we shall
expand the metric about the Hat-space solution

T

ds =dt —dr — — dO (4.4)

2n( A B—)
R

R 2ir( A+B)
1

p2 R
(4.10)

so that each of 4(r) and %(r) may be written as

4(r) =4, +P(r) =P(r),

%(r)=%,(r)+f(r) =ln —+g(r),
(4.5)

where 4, = 1, 4, ( r ) = ln( r /p ) are the lowest-order terms
corresponding to the classical metric (4.4), and P(r) and
g(r) are the first-order corrections in the Planck length
lp.

The Einstein equations (4.1), with ( T„„)given by (4.2),
when linearized in P(r) and P(r) yield

d 1( 1 dP 2 dg 2n
(

B.
) ( 6 )

gr r dr r dr

1 dP 2n.
(A B)

r lr r

d p 41r

r

(4.6b)

(4.6c)

P(r)= ( A B)+k, ,
— (4.7a)

—4m' k2
f(r)= ln(r+1)+ +k3 .

r r
(4.7b)

In the above equations the constants of integration k,
and k3 must be set to zero since it is not possible to have

them linear in lp and dimensionless too. k2 can also be

set to zero since it refiects a scaling r ~ar.
The line element of the metric (4.3) to first order in lp

now reads

(We shall now adopt the natural units Gz =c =fr= 1; con-

sequently, all length scales will be measured in units of l~,
the Planck length in 2+1 dimensions. ) The functions

P(r) and P(r) can be obtained by integrating (4.6), giving

68(R ) =2m. 1 ——1—1 2n(A+B)
lnR

R
(4.11)

or, in terms of the classical deficit angle 50,&„,=2m
—2m /p,

58(R)=58,h„+ lnR . (4. 12}

One finds that for negative values of the energy density
( A +B & 0), the deficit angle increases as the point mass
is approached. For positive values of the energy density,
however, the deficit angle is seen to decrease with R. At
large distances from the point mass b8(R ) =b,8,h,„and
the local geometry of the space-time approaches the
asymptotic form described by the classical metric (4.4).

An important consequence of the linearized metric
(4.10) is the existence of a well-defined Newtonian limit to
the semiclassical Einstein equations (4.1) in 2+1 dimen-
sions. A given space-time geometry is usually said to ad-
mit a Newtonian limit if the time-time component of its
metric tensor has the form [18]

1+ 24(r)
goo= 1+

C
(4.13)

C&(r) then plays the role of the Newtonian potential and,
in the slow motion limit, the acceleration of a test parti-
cle is determined by d x/dt = —V'4. The Einstein equa-
tions in the same limit assume the form

One finds that, although the first-order metric (4.10) is no
longer locally Hat, its R-0 section is still conical, the
deficit angle now depending upon R, the proper radial
distance from the point mass. To quantitatively describe
this behavior it is convenient to introduce the deficit an-
gle b,8=2m C/R, w—here C is the circumference of a cir-
cle centered around the point mass at a fixed proper ra-
dius R from it. Then, for the metric (4.10),

ds = 1 — (A B) (dt dr )— —
r

Ro=h@= m4.G(T —
o —,'T) (4. 14)

2r 4m'

p r
(4.8)

dR = 1 — (A —B)2'
r

1/2
7Tdr= 1 ——(A —B) dr.
r

(4.9)

The above approximation to the metric is valid so long as
first-order corrections are small, i.e., when both
2m( A B)/r and 4m. A /r a—re small coinpared to unity.

Let us define a new radial coordinate R (r) such that

( T„'—:( T„") in our case). From (4.10) and (4.13) we find

that

@( ) G
n(A B}. —

R
(4.15)

where G3 (—= Gzlz) is the Newtonian gravitational con-
stant in 3+1 dimensions. For a conformally coupled field
B=O and 4(R)= —G3irA/R. A plot (Fig. 4) of A

against M, the mass of the point particle, shows that in a
broad range of parameter space, A is approximately pro-
portional to M.

The above results prompt us to define a grauitating
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mass in 3+1 dimensions —its motion is confined to a
two-dimensional section of the 3D space.

The above results acquire a special significance in view
of the fact that general relativity does not possess a
Newtonian limit in 2+1 dimensions (a consequence of
the lack of propagating modes in Einstein gravity in di-
mensions lower than 4). The attempt to construct alter-
nate theories of gravitation which might have a well-
defined Newtonian limit in lower dimensions has also
proved to be very elusive [2-4, 19]. For instance, the
Einstein-Cotton equations (1.4), describing topologically
massive gravity, do endow the gravitational field with a
nontrivial dynamics but not with a Newtonian limit.

V. QUANTUM EFFECTS IN THE (2+ I)-DIMENSIONAL
DE SITTER-SCHWARZSCHII D METRIC

I I I I I I I I I I I I I I I I I I I I

0.14 0.16 0.18 0.2 0.22

FIG. 4. The dependence of the gravitating mass MG, defined
in (4.16) for the confornially coupled case /= 8, is plotted

against the mass M of the point source. M is related to the
deficit angle of the space-time through 4ydef 8mM. (MG and
M are both expressed in units of the Planck mass. )

A (p)
( T„") = diag( —I, —1,2) .

r
(4.17)

The numerical value of the constant A depends upon
the contribution to the vacuum polarization from a quan-
tum field having spin a. For conformally coupled scalars
Ao=s(p)/32m. , as demonstrated in the previous section.
In general, when considering the net contribution to the
vacuum polarization from fields with different spin, one
would expect A (p) to be replaced by A (p)
=g n A (p), n being the number of spin-a fields
present in nature. The Newtonian limit will then assume
the somewhat more general form N(R) = nG3 A (p)/R. —

We should note that, strictly speaking, the potential
@-R ' corresponds to the Newtonian potential in 3+ I
dimensions and not in 2+ 1 dimensions where the
Newtonian potential has the form 4-lnr. Thus a test
particle near a point mass in 2+1 dimensions behaves
just as if it were in the neighborhood of a gravitating

mass MG.

m&
MG =m.( A 8)= [—s(p) —(4g ——')s, (p)], (4.16)

32

where p =(1—4GzM ) ', so that @=G3MG/R (MG )0
for —,

' ~ g) 0).
Most of the results of the preceding analysis can be

easily extended to other massless conformally coupled
fields such as massless spinors and vectors. The conser-
vation equation ( T", ).„=0 and the trace-free condition
( T~& ) =0 in this case guarantee that the regularized vac-
uum expectation value of the energy-momentum tensor
has the form

r2
s =dt —e ' dr+ dg (5.1)

where p =(1—4M) ', 0 8&2rr, and H=V'A/2.
For integer values of p the two-point function in this

space can be expressed as a finite sum over the Green's
function in de Sitter space G(x,x'), using the method of
images described in Appendix A. As a result we get

p —1

G (x,x ')= g G(x,x„'), (5.2)
k=0

where x:(r, t, rt) and xk:—(r', 8'+2nk—lp, rt'), ri being
the conformal time coordinate g =fdt e

The de Sitter space propagator G(x, x') has been ob-
tained in Appendix B for the general case of an n

dimensional space-time. In our treatment we shall set
n =3 and regard the mass of the scalar field to be small
(m /H & 1). In terms of the conformal time, the scale
factor assumes the form a = —1/Hrt; consequently, the
proper distance to the point mass in (5.1) is given by
R =ar = r/Hrt. The k —=0 term in (5.2) when suitably
regularized and differentiated gives the one-loop vacuum
energy-momentum tensor in (2+1)-dimensional de Sitter
space. The additional contribution to the de Sitter propa-
gator (B19) due to the conical nature of the space-tiine
(5.1) is given by

—H p —1

G~(x,x')„„,= vcscm. v g F(1+v, 1 —v; —,', cok),p ~ cone 4 k=1

(5.3)

where

illv= 1 — —6g
H

' 1/2

and

In this section we extend our previous analysis to non-
static conical space-times such as the de
Sitter-Schwarzschild metric, which describes the space-
time of a point mass in the presence of a homogeneous
cosmological constant A. The line element for this
space-time has the form
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r + r' —2rr' cos(9 —8'+2@k /p ) —hei
Nk —1

4gq'

In obtaining (5.3) we have substituted the value of the
I

de Sitter propagator (B19) into (5.2). Just as in Sec. III,
we compute the expectation values (P (x})and ( T",(x) )
from the coincidence limits of G (x,x') and its various
derivatives. As a result

(P (x))„„,= lim G~( x, x')„„,= vcscmv g F 1+v, 1 —v; —;1-—H 3 r sin (irk/p)
k=1

'2'
l.

(5.4a)

For conformally coupled massless scalar fields v= —,', and
we find that (P (x) )„„,is conformally related to the flat
space-time result obtained in (3.18):

I

As a result we find (for R «H

(P (x))„„,= s, (p) .
1

4mR
(5.6)

( P (x ) )„„,= Hri( —P (x ) )s„= s, (p),H
(5.4b) The diagonal components of (T"(x))„„,assume the

form
where s, (p) =gg, csc(mk/p).

The vacuum expectation value of the energy-
momentum tensor ( T",(x) ) is obtained by means of the
general relationship (3.15). After some lengthy calcula-
tions we obtain an expression for ( T",(x) ) in terms of the
coincidence limit of the hyper geometric function
F(1—v, 1+v;—3,cok ) and its first and second derivatives
with respect to cok. The derivatives of a hypergeometric
function may be evaluated using [20]

F(a,b;c;z)=d
dz

ab F(a +1, b+1;c+1;z) .
C

We find that for the case of a conformally coupled mass-
less scalar field, ( T"„)„„,is conformally related to the
flat space-time result:

( T",(x) &,.„,=(—Hg)'( T",(x) )fl„, (5.5)

with ( T",(x})„„givenin (3.20).
For massless conformal fields ( T",(x) )„„,as evaluated

above provides the entire contribution to the vacuum ex-
pectation value of the energy-momentum tensor in the de
Sitter —Schwarzschild metric. This is due to the fact that
the k =0 term in (5.2) [which we had dropped while cal-
culating (T",(x))„„,] when suitably differentiated and
regularized gives the one-loop vacuum expectation value
of the energy-momentum tensor in (2+ 1)-dimensional de
Sitter space. Since the only maximally form-invariant
rank-2 tensor under the de Sitter group is g„„,the entire
vacuum energy-momentum tensor in de Sitter space can
be constructed out of its trace: (T„„(x))=g„„(T)In
(n being the dimensionality of the space-time). For mass-
less conformally coupled fields in odd dimensions
( T) =0 so that ( T"„(x))=0 in any odd-dimensional de
Sitter space (Ref. [14], pp. 177 and 191). Consequently,
while evaluating the energy-momentum tensor for con-
formally coupled fields, the k =0 term in (5.2) will not
contribute and ( T",(x) )„„=( T",(x) )„„,.

For general values of m and (, (P (x)) and (T"(x) )
can be expressed in terms of elementary functions in the
asymptotic regimes R «H ' and R »H ' (equivalent-
ly rlrl«1 and r le»1) using the well-known linear
transformation formulas for the hypergeometric function
[20].

( T",(x ) )„"„s= i [s(p)diag( —1, —1,2)

+(4g —
—,
' )s&(p)

X diag( —1, 1, —2)], (5.7)

(T„"&,.„,=,(4g —
—,'), (p) .

H
16 R

(5.8)

The energy flux is a measure of the energy flowing away
from the point source (it is absent in the case of a homo-
geneous and isotropic space-time such as the (2+ 1)-
dimensional de Sitter metric). One can see from (5.8) that
the direction of the energy Aux is outwards from the ori-
gin for g & —,

' and inwards for g & —,'. It may be noted that
the diagonal components (T„"(x))„„,are of one order
higher in HR than ( T"(x) )~„"„~. [We feel that the results
(5.6}—(5.8) will also remain valid for noninteger p if s(p)
and s, (p) are expressed as integrals using (3.21).]

In the other limiting case R »H ', (T",(x))„„,can
be obtained using the following transformation property
of the hypergeometric function [20]:

F(a, b;c;a))=(1—co) , I'(c)I (b —a )

I bI c —a

XF a, c —b;a —b+1; 1

'1 —z

„r(c)i.(a —b )

I (a )I (c b)—
1XF b, c —a;b —a+1;'1 —z

(5.9)

We give below only the results for ( P )„„,and ( T„")„„,
to leading orders in HR:

where s, (p) and s(p) are defined in (3.18) and (3.19). One
immediately finds that (P (x))„„,and ( T"„(x))„"„~ob-
tained in (5.6) and (5.7) are conformally related to the
flat-space-time results (3.18) and (3.20) for all Ualues of (.
Both (p )„„,and ( T", )d,"„s, also seem to be independent
of mass m in this limit. In addition to ( T",(x) ) „"„s,given

by (5.7) there also exists an energy flux given by the off'-

diagonal component
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H2v —1 22v p —1

(P'(x)) = . R ' g si

(Tg())H2(l v)
16~ sinn. v

X [(6(—1)—v(4( —1)]
p —1

~ s1n
k=1

(5.10}

(5.11)

a (2+1)-dimensional de Sitter space-time, an Unruh-
De%itt particle detector nevertheless experiences a finite
response. To see this we note that the response function
of an Unruh-DeWitt particle detector is given by [23]

F(E)=f dr f dr'e ' ' 'D(x(r), x(r')), (5.12)

where D(x(r),x(r')) is the positive frequency Wightman
Green's function evaluated for two points lying on the
world line of the detector.

For (2+1)-dimensional de Sitter space the response
rate for an inertial detector is given by

The expressions in (5.10) and (5.11) are well defined
only for v&1. For v=1,2, . . . , equations (5.10) and
(5.11) display an infrared divergence which is similar to
the infrared divergence found for the massless propagator
in de Sitter space [21,22]. It tnay be noted that for v & 1,
( T„")~0 as R ~ ao, so that there is no radiation flux at
infinity.

We would finally like to point out that although, as
mentioned earlier in this section, vacuum polarization
effects for conformally coupled scalar fields are absent in

I

= f d(ht )
' 'D(ht ) (5.13)

H iHbt
(5.14a)

It is convenient to rewrite D(ht ) as a sum [10]:

where, for a massless conformally coupled scalar field (see
B17),

H 2 iHbt 1)kDht=
8m iHbt ~ k i [(iH/2m)ht+k][(iH/2m. )bt —k]

(5.14b}

The integral in (5.13) can be evaluated by means of contour integration, so that finally

F(E) 1 1

T 4 2 E/H+1
(5.15}

which describes a thermal Ferini-Dirac distribution at the de Sitter temperature [14] T =H/2'.
Equation (5.15) points to a remarkable feature common to all odd-dimensional space-times —the inversion of statis-

tics [24]. This can be viewed to be a consequence of the fact that the de Sitter Green's function in odd dimensions
displays an antiperiodicity in imaginary time. One can see this in the general case by applying the transformation prop-
erty of the hypergeometric function [20]

F(a, b;c;z)=(l —z)' ' F(c—a, c b;c;z)—
to the n-dimensional Green's function (B15). As a result we obtain

(5.16)

D(b, t ) =csc" htiH
2

1 H
)n/2

1l 2
I'((n —1)/2+v)I'((n —1)/2 —v) F 1 1 + n hz Hbt

I (n/2)

where

(n —1) mV—
4 H2

—n(n —1)g

1/2

(5.17)

The above expression is manifestly antiperiodic in b, t with period 2rrIH if n is odd, and periodic in ht with the same
period, if n is even. This leads us to conjecture that the response of a particle detector will be of the Fermi-Dirac type
in odd space-time dimensions even for a massive, nonconformally coupled scalar field. (In an even-dimensional space-
time F(E)/T ~ (e ~ —1) '; for details regarding the behavior of particle detectors in space-times of arbitrary di-
mension see Takagi [24].)

The response of a particle detector placed at fixed distance R from the point mass in the conical space-time (5.1}will
be modified to

f d g )
iEat—

T 8m —~ k o [(1—HzR )sin (iHbtl2)+H R sin (nklp)]'

At distances close to the point mass (i.e., R «H '), (5.18) reduces to

(5.18)



TARUN SOURADEEP AND VARUN SAHNI 46

F(E) 1 p
7 4 e 27fE!0+ l

(5.19)

which is just the detector response in de Sitter space enhanced by a factor of p. This result could have been anticipated
since the vacuum in de Sitter space has now e6'ectively been compressed into a region of space p times smaller, due to
the removal of the angular wedge from the space-time.

VI. TWISTED SCALAR FIELDS

As first pointed out by Isham [25] a twisted variety of scalar and spinor fields can be defined on a nonsimply connect-
ed manifold by considering antiperiodic boundary conditions along the identified coordinate (see also Ford [26]). We
shall consider a massless, real, scalar field twisted around the mass point M located at r =0. The twisted field P(x)
obeys the same field equations as (3.1). However, the boundary conditions for the modes of P are now different:

2'
ui(r, 8)= —ui r, 8+

p
(6.1)

Solving the field equation G(I)=0 with the new boundary conditions (6.1) we obtain

ip(m+1/2)(8 —6)') ' I Iu„(x)=N, e Jp)~+ )/i)(~r )J, ~+ i/p({~r ) (6.2)

where N&, the normalization constant, is identical to the untwisted case (3.7). Using (3.8) and (3.9) to define the two-

point function for the twisted field D (x,x') we get
oo I

D T(x x') P ~ eiP(m+ )/2)(() —8') d~ e
' ( J

p 7 p) +1/2) p) +1/2)(cur)J (d'or') . (6.3)

The integration over ~ is similar to the untwisted case (3.1la), and making identical substitutions as in that case we ob-
tain

D (x,x')= J, g exp[ip(m+ —,')(8—8') —
p~ m+2~u] .

4ir 2rr' "0 (coshu —coshuo)'/

The above summation can be rewritten in a closed form,

(6.4)

exp[ —p (m+ —,
' ~u+ip(m+ —,

' )(8—8')]= 2 sinh( —,'pu )cos—,'p(8 —8')

coshpu —
cosp (8—8')

so that the two-point function Dp(x, x') reduces to

sinh( —,'pu )cos—,'p(8 —8')
D (x,x')=

2ir &2rr' "o (coshu —coshu 0 )
' coshpu —

cosp (8—8') (6.5)

We now adopt the same procedure in renormalizing Dr (x,x') as was used in Sec. III; namely, we subtract out the p = 1

term in (6.5) so that the renormalized two-point function becomes

Dr(x, x')„„=D (x,x') D i (x,x')—

2m&2rr' "0 (c.oshu —coshuo)'

p sinh —,'pu cos—,'ph8 sinh —,'u cos —,'48
coshpu —cosp AL9 coshu —cosh8

(6.6)

As in the case of untwisted fields, the vacuum expectation values ((t) (x) ) and {T"„(x)) can be obtained from the

coincidence limit of the renormalized two-point function D (x,x ) and its second derivative with respect to 8. As a re-

sult

(P (x)) = lim D (8,8')„„= s, (p),1

o 6
' ' "" 8~r'

where

2 ~ du
s i (p) =— . (pcschpu —cschu )

o sinhu

and

a2
lim D (8,8')„„= s (p),
g 6 ag2 ~ ' "" S~r

(6.7a)

(6.7b}
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where

sT(p)= —J . p csch pu+2 ~ du 3 3 cschpu
o sinhu 2

cschu
csch u+

2
(6.8b)

Using arguments akin to the ones used in Sec. III while evaluating {T„) [see (3.16), (3.17), and (3.20)) we finally obtain

2

{T" ) T= lim D (8,8')„„diag( —1, —1,2)+(2$—
—,') hm D„(8,8')„„diag( —1, 1, —2)

2r ~' 6) 80 8'~ 0

1

&
[s (p)diag( —1, —1,2)+(4g —

—,
' )s i (p)diag( —1, 1, —2)],

327jr

which is precisely (3.20) with s(p) replaced by sr(p) and s, (p) replaced by s, (p). s, (p)=8mr{p ) and
s (p)=3 2n.r {Too)&, zs are shown plotted against p in Figs. 2 and 3. It is interesting to note that {Too) )0 for mass-
less conformally and minimally coupled twisted fields in contrast with the untwisted case.

As in the untwisted case, the vacuum energy-momentum tensor will in genera1 back react on the space-time geometry
via the semiclassical Einstein equations G„,=8m G2 {T„„),giving rise to the linearized metric

ds2= 1
2~(A B ) dt2 dR2 R

R 2

2n(A +B )1 R
R

(6.10)

where A =(li, /32m)s (p) and B =(lr/32m. )(4g —
—,')si (p) (li, being the Planck length). From Fig. 3 we see that for

0& g& —,', A B&0 a—nd A +B &0, so that the deficit angle in (6.10) decreases as the point mass is approached, in

contrast with the untwisted case.
As in the case of untwisted fields the method of images can also be used to determine D~ (x,x'), with p now restricted

to even integer values p =2,4, 6, . . . (see Appendix A), so that

p —1

D (x,x')= Q (
—I)"DM;„k(x,xi, ) .

k=0
(6.11)

—H p —1 . 3.v csee.v g ( —I )"F 1+v, 1 —v; —;1—
4n. k=1

p —I

G~ (x,x')„„,= g ( —1) G(x,xt ) =
k=1

Proceeding as in Sec. III and regularizing (6.11) by subtracting out D i (x,x') we find that the final form of {(f (x) )"is
given once more by (6.7a) with s, (p) now being the finite sum s, (p) =gg:oi( —I)"csc(nk /p)+2/m.

The method of images can also be applied to obtain the corrections to the propagator for twisted fields in the de
Sitter-Schwarzschild metric discussed in Sec. V. Following the procedure outlined in Appendix A we find

b,x„b,ri-
4qg'

where hxk = r +r' 2rr'cos(8—8'+2mk/p —),
H =v A/2, and v=(1 —m /H 6g)'~ . For a—massless,
conformally coupled twisted scalar field v= —,', and

{P(x)) will simply be conformally related to the fiat-
space-time result (6.7) so that

(6.13)

where R = —r/Hg. This result is also true for light sca-
lars (m /H & 1) in the vicinity of the point mass
(R «H ').

In addition, we also find, as in the untwisted case, the
existence of an energy flux

(6.14)

which vanishes for conformally coupled fields (g= —,').
We notice that {T;i)„„,has the opposite sign to (6.8),
signifying that in an expanding universe, if the vacuum
flux for untwisted fields is outwards, then the correspond-
ing fiux for twisted fields is inwards (and vice versa).

VII. CONCLUSIONS AND DISCUSSION

%e have shown how nontrivial boundary conditions
can afFect the behavior of scalar fields at both the classi-
cal and quantum levels. At the classical level we find that
the electric field associated with a point charge in a coni-
cal space-tine is distorted, leading the charge to experi-
ence a self force, in th-e complete absence of any other
charges in the space-time. At a more fundamental level
we find that the point mass, the source of the conical
geometry, also induces a vacuum polarization in the sur-
rounding space-time described by a finite vacuum expec-
tation value of the energy-momentum tensor
{T„,) ~ 1/r (r being the distance to the point mass).
Quantum effects of a similar nature are also known to
arise in the space-time of a cosmic string, where the
smallness of the string tension, Gp &10, prevents the
efFects from becoming large. No such constraint is
present, however, in 2+ 1 dimensions, with the result that
quantum effects can be significant in this case. %e have
also extended our analysis to an expanding universe by
considering the behavior of {P ) and {T„,) in a conical
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de Sitter space-time. We find that in this case, in addition
to the vacuum polarization, there exists a finite vacuum
energy fiux ( T„, ) that describes a net fiow of energy
away from the point source.

As part of our analysis we also evaluate the scalar field

propagator in an n-dimensional de Sitter space. Extend-
ing previous work by Takagi [24], we show that if n is
even the propagator exhibits a periodicity in imaginary
time with the period T= 2'/H (H being the Hubble con-
stant in de Sitter space). On the other hand, for odd n

the propagator displays an antiperiodicity in imaginary
time. This leads us to conjecture that the vacuum for
scalar fields in even- (odd-) dimensional de Sitter space
resembles a thermal Bose (Fermi) distribution. We are
a1so faced with the surprising result that an inertial parti-
cle detector registers a finite thermal response in de Sitter
space of odd dimensions [24], even though the vacuum
expectation value of the energy-momentum tensor for
conformal fields vanishes identically in this case.

An important outcome of our analysis is that, at the
semiclassical level, solutions to the Einstein equations

G„,, =-(8irGz/c")( T„,) possess a well-defined Newtonian
limit. This result is significant since it is well known that
the classical equations of general relativity do not have a
Newtonian limit either in 2+1 or in 1+1 dimensions.
We would like to point out that the existence of a
Newtonian limit to the semiclassical Einstein equations is
not a unique feature of 2+1 dimensions, but extends to
other space-time dimensions as well. For instance, it is
well known that in 1+ 1 dimensions the Einstein action is

a topological invariant and consequently has no dynami-

cal content. However, the semiclassical Einstein equa-
tions now give [27] 0=8irG, (T+ ( T ) ). For conformally
invariant fields, (T) is given by the trace anomaly,
which i' 1+ I dimensions is simply proportional to the
Ricci scalar (Ref. [14],p. 178). As a result the semiclassi-

cal Einstein equations yield

A =8viG, T, (7.1)

in which particles of mass m, are located at r, . [For a

which has both dynamical content and a Newtonian limit

[28).
We would finally like to mention that although our

analysis in this paper has regarded point sources to be
fixed, it might be of interest to extend the present ap-
proach to moving sources as mell. This case clearly bears
a close resemblance to moving mirrors —in both cases
boundary conditions, instead of remaining fixed, are func-
tions of both space and time. Consequently, as in the
case of moving mirrors one might expect particle
creation eftects to be present, modifying the motion of the
point mass and leading to an increase in the entropy of
the (2+ 1)-dimensional universe.

It would also be of interest to extend the treatment
given in this paper to (2+ 1)-diinensional space-times con-
taining several point masses. Such a space-time is well

described by the static multicenter metric [29]

d -'=dt' Q i
—,

~

— ' (d + d0 ), (7.2)

single point mass (7.2) can easily be brought to the form
(1.5) by a change of coordinates. ] For two masses the
problem reduces to one of finding the Casimir force be-
tween two cones. (In 3+ 1 dimensions, the corresponding
problem would be one of determining the Casimir force
between two cosmic strings. ) This problem bears a close
aftinity to that of the Casimir force between two wedges
[30] and is presently being studied.

Rote added in proof: It is interesting to note that the
space-time associated with a plane domain wall has the
form [7]

cB (1 Kz) dt dz

—(1—Kz) exp(2Kt)(dx +dy ),

APPENDIX A: THE METHOD OF IMAGES

In Sec. II we made the assertion

2+k
G (r, 8;r', 0')= g G, r, O;r', 0'+

k=0

[see (2.10)], where

(A1)

G (x,x')=~ = 1

4a
{m~0)

gp~mI
ipm(0 —0') I

/m [ 2'

where ~=2m Go. is the surface tension of the wall.
In the plane of the wall (z =0), this metric reduces to

that of a (2+1)-dimensional de Sitter space. It has been
recently shown that a vacuum bubble after nucleation
also has the internal geometry of a (2+ 1)-dimensional de
Sitter space, and that perturbations on it can be described
by a scalar field with a tachyonic mass [32]. Consequent-
ly the analysis of Sec. V, is relevant to the study of both
classical and quantum fluctuations on domain walls and
vacuum bubbles. [A conical (2+1)-dimensional de Sitter
space, of the kind considered in Sec. V, would describe
the metric on a domain wall pierced by a cosmic string. ]
From the form of the domain wall metric described above
and the phenomenon of the inversion of statistics in odd-
dimensional space-times discussed in Sec. V and [24], it
follows that a comoving particle detector registering sca-
lar particles and confined to move in the z =0 plane will
register a thermal Fermi-Dirac response, characterized
by a temperature T =K/2ir. On the other hand, since the
(z, t) part of the above metric describes a (1+1)-
dimensional Rindler space, a comoving particle detector
outside of the wall mill, for the same scalar particles, re-
gister a Bose-Einstein distribution at an identical temper-
ature. Thus, depending upon its trajectory, a comoving
particle detector in the space-time of a domain wall seems
to register either a Fermi-Dirac or a Bose-Einstein distri-
bution of particles.
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and X=r/r'(1.
In order to prove (Al) it is sufficient to establish that

~p(m(
ipm ( 8—8')

/m/
(mXO)

Since

p —1 Oo

eim &2~k/p )—
m, npk=o 1g = —oo

(A6)

p —1
2 2+k= —g ln 1+X —2X cos 8—8'+

k=0
substituting (A6) in (A5) we get [m %0 is assumed in (A7)
and (A8)]

To do this we rewrite the right-hand side (RHS) of (A3}
using the expansion [10]

—ln ]+X —2Xcos 68+ 2m.k

X(m( p —1

exp im 58+
m= —oo I ] k=O

Then

X(m( 2~k
exp im 68+

/m/ p
m%0

(A4}

oo X(m (
oo

~p y e im68

„ im/

X((
eipn68

(A7)

—g ln 1+X —2X cos 68+ 2m.k

k=0

X(ml p —
2mkg exp im 68+

= „ Iml „=,
mXO

(A5)

which is the LHS of (A3).
Having established (A3), we note that Gp(x, x') as

defined in (A2) can be written as

p —1 2mk
G (r, 8;r', 8')= — g ln 1+X —2Xcos b,8+

4~ k=o
lnr'2'

2 2 2mkg ln r +r' 2rr'cos —58+2' k 0

1/2

= g G, r, 8;r', 8'+
k=0

(A9)

which is what we set out to establish. [Equivalently Gp"s(x, x')=Gp —Gi =gpk:))G((r, 8, r', 8'+2mk/p). ]
Similarly the two-point functions of Secs. III and VI can also be obtained according to the method of images:

p —1

D (x,x')= g DM;„k(x,xk)
k=0

(p = 1,2, . . . ) for a field satisfying periodic boundary conditions in 8, and

(Alo)

p —1

D (x,x ') = g ( —I )"DM;„k(x,xk )
k=0

(p =2,4, 6, . . . ) for a twisted field satisfying antiperiodic
xk =(t', r', 8'+2mk/p), and for fiat space,

1
DM(nk(x~xk }

4mo k

where

(Al 1)

boundary conditions in 8. Here x =(t, r, 8),

hark
= ~x —xk ~

= r +r' 2rr'cos 68+—2+k
1/2

To prove (A10) and (Al 1) we note that, from (3.10) and (6.3),

and

D (x x')= da)e '"" '' ~ e'P ' 'J (d'or)J ((or' )p ~ 4 ~ p(m( p(m(
m = —oo

(A13)

D T(x x~) —P f d~ e
—ice(t —&') ~ eiP(m+)/2)(8 —8')J (d'or )J (cur') .xx „& toe ~ e

4m' 0 p(m+1/2( p(m+1/2( (A14)
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p —1 Qo

g Jo(cork)=p g J
I

I(cur)J
I

(cur')e'P (A20)
Qo p —1

p g J
I

I(a)r)J
I

I(cur')e'P = g Jo(cork),
which is what we set out to establish.

Similarly substituting (A17) into the right-hand side of
(A16) we get

k=0
(A15)1/2

2m.k
rk = r + r' —2rr' cos 0—0'+

Equations (A10) and (Al 1) are established immediately if (A18) reduces to
we use the generalized laws of addition for Bessel func-
tions (Davies and Sahni [9]):

(p =1,2, . . . ) for normal modes, and

Jpl +1/2I(~ )JpI +1/2I(~r

p
—1= g (

—1)"Jo(cork) (A16)
Ic =0

(p =2, 4, 6, . . . ) for twisted modes.
To establish (A15) we use the standard summation for-

mula for Bessel functions [10]:

p
—1 QO

g ( —1)"Jo(cork ) = g JI,
I

(cur )J~iI (cur')e"
k=0

p —1

X y ( 1)k il2~k/p

Ic =0

Again noting that, for p =2,4, 6, . . . ,

p —1 Qo

i 71.k(1+21/p)
I, ( rn + 1/2)p

Ic =0

and substituting (A22) in (A21), we obtain (A16):

(A21)

(A22)

Jo(coro)= g JIiI(cur)J lI(cur')e'
I = —oo

(A17)
p —1 QO

g (
—1)"Jo(~rk)=p g JpI~+l/2I("") pI +l/2I'~"

Ic =0

Substituting (A17) into the right-hand side of (A15) we
obtain

ip( rn + 1/2) 50 (A23)

p —1 QO p —1

g Jo(cork)= g JItI(cur)JItI(cur')e' g e'
k =0 I= —QO k=0

Finally we would like to point out that the method of
images retains its validity for nonstatic space-times pos-
sessing a symmetry axis, such as the metric

Again, since

(A18)
2

ds =a (21) drt dr 2—d9— (A24)

p —1 Qo

e il 2~k /p

I& =0 I = —QO

(A19) The Green's function in (A24) has the form (for normal
modes)

(A27)

D (x,x')= f deny„(g)y"(21') g e'P ' 'J
I

I(cur)J
I

I(cur'), (A25)4~ a(2i)a(2l')

where g (rt ) satisfies the time component of the Klein-Gordon equation [14]
d'X.

+ [co +a (2l)[m +(g—
—,')R(2i)]}y =0 (A26)

and the normalization condition y c) y„' y*d„y =i. R(rt) i—s the scalar curvature for the space-time (A23), and rI is

the conformal time ri = f dt /'a.

Similarly, for twisted modes (p =2,4, 6, . . . ),

Dp (x,x') = f dcoX (rl)X*('9')JpI +&/2I(~")JpI +l/2I(~" ) X

Clearly the proof of the image formulas for the flat-space
Green's function [(A13) and (A14)] can be extended to
this case also, since the essential element in the proof, the
generalized summation formulas for Bessel functions
[(A15) and (A16)], can with equal validity be applied to
(A25) and (A27), resulting in

D (x,x')= P 1

4m V a(21)a(2l')
p —1

X g f dcoy (g)y„*(g')Jo(cork)
Ic =0

p —1

Dl(x, xk ), (A28a)k=0

I

and

D (x x')= 1

4~ &a(g)a(g')
p —1

X y ( 1)"fd~r. (—g)g.*(g')Jo(~rk)
Ic =0

p —1= g (
—1)"D,(x,x„') . (A28bj

Ic =0

APPENDIX B: THE TWO-POINT FUNCTION IN
n-DIMENSIONAL DE SITTER SPACE

The n-dimensional spatially flat Robertson-%'alker line
element has the form
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ds2=dt2 —a (t)dl =a (q)(dq —dl ), (81)

where dl =g,":,'dx; and r/ is the conformal time coordi-
nate q =fdt /a (t). In the case of de Sitter space
a(r/) = —I /Hg, —~ & i}&0, where H is the Hubble pa-
rameter, H=v A/(n —1), and A is the n-dimensional
cosmological constant. A massive, real scalar field in (81)
satisfies the n-dimensional Klein-Gordon equation

[CI+m +(R(x)]{{){x)=0, (82)

where CI = (1/3/ —g )(}„(g"'3/—g (}„).
For purposes of quantization, the scalar field P may be

treated as an operator and decomposed into modes so
that

P(x)= fd" 'k[8»uk(x)+&»uk (x)], (83)

where 8k and 8» are the {n—1)-dimensional annihilation
and creation operators. uk(x ) can be written as [14]

(2m) / J( 2)/2(kbx )
eik hX

)(m —2)/2 (811)

where k = )k ~
and bx =

~
b,x ). Rewriting the Hankel

functions H„(kr/) in terms of the McDonald functions

K,(k /2),

H(„')(kq) =—K„(—1k'),—2
7T

(812)

where hx'=x' —x' '.
The d" 'k integration is carried out in polar coordi-

nates using the following expression for the integration
over the solid angle [10]:

(x )
—(2~)(1 n )/2a( ~ )(2 n)/2e i—

where k =(g,":((k; )'/ and yk(r/) satisfies

yk(i/)+(k +a2(2/) jm +[(—g(n)]R(2/)] )

(84)
we obtain G(x,x') as an integral over k ( = ~k~ ):

H) 2 — 1 (qg')(n 1)/
G(x,x') =

2(n —1)/2 ~(n+))/2 (g }(n —3)/2

X f dk k'" " 'K, ( ikr/)—K,(ikr/')

Xyk(g) =0, (85)
XJ(» 3)/2(kbx ) (813)

where g(n )= (n 2)/4(n ——1) is the conformal coupling
factor in n dimensions and R(2/) is the scalar curvature of
the space-time.

In de Sitter space It =n(n —l)H =const, and (85)
may be solved exactly to obtain

(86)

yk(g) are positive frequency solutions of (A5) normalized

according to the Wronskian condition

( H)n —2 I {-,'(n —1)+v}I'(—,'(n —1)—v}
G(x, x')=

2(2~)n/2 (u2 1)(n —2)/4

Xp —(n —2)/2( u ) (814)

The above integral can be evaluated in terms of Legendre
functions [10]so that, finally,

n nXk(q)
g

Xk( 1) Xk( /) Xk( l)
B7/ 8'g

and v=[(n —1) /4 —m /H2 —n(n —1)g](/2.
The complete mode functions are now

2
—3/2(2 )(2—n)/2( H~)(n —2)/2

Qk x

(87)
where u =(hx —i/

—i/' )/2gr/' G(x,x') i.n Eq. (814)
can be rewritten in terms of a hypergeometric function

[20] as

( —H)" 2 I ((n —1)/2+v}l ((n —1)/2 —v)
n/2 Pn /2)

Xe ' H', '(kr/) . (88) n —1 n —1 nXP +v~ v', ,co
2

'
2 '2' (815)

The two-point function G(x,x') can be obtained using a
mode-sum approach [14,31]:

which in this case leads to

1 HG(x,x') =—
8 2m

N 2
i )(n —1)/2

G(x,x') =fd" 'k uk(x)uk (x'), (89}

where ~=1—(bx —Aq )/4gg'.
One can easily verify that the propagator D(x,x'), for

a massless and conformally coupled scalar field

[m =O, g=g'(n)], scales conformally with the n

dimensional Minkowski space propagator DM;„„(x,x').
Substituting v= —,

' [corresponding to m =0 and g=g(n)]
in (815) and using the relation [20]

X fd" 'kH'„"(k )H("(kg')e ', (810)
(816)
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In three dimensions (815) reads

—H
G(x, x')= vcsc7rvF(1+v, 1 —v; —', ;co),

7T
(819)

which is used in Sec. V to construct the scalar field prop-
agator in the conical de Sitter metric.

APPENDIX C

We outline a few steps involved in the evaluation of the
integrals s&(p), s(p), and s, (p) [(3.18), (3.19), (6.7b}] for
integer p to get the summations (3.22) and (6.12). The
substitution z=e" brings these integrals to a form suit-
able for contour integration over the contour C shown in

Fig. 5. The contour integrals involved in s, (p), s (p), and

s, (p) are

2 dz z~+1 z +1
z —1 z~ —1 z —1

(C1a)

FIG. 5. The contour C and poles of (3.18), (6.7b), and (3.19),
used to establish (3.22) and (6.12) by means of contour integra-
tion in Appendix C, are shown in the complex Z plane for

p =8.

Sy dz z+1 ) z~+I
z —1 (z —1)' (z ~ —1)'

4 dz z~
(p even),z' —1 z'~ —1

(Clb)

(Clc}

we obtain

( H )(n
—2)/2( ~ r )(n —2)/2

D(x,x')=
(4 )n/2

respectively. The poles of all the contour integrals (Cl}
are the (2p)th roots of unity, of which the poles e'" /t',

k = 1, . . . ,p —1, lie within the contour C (Fig. 5).
Evaluating (Cl) using the residue theorem we obtain (om-
itting lengthy intermediate steps)

I'(-,'(n —2) )
X

2 g 2 }(n —2)/2

=[a(n)a(n'}1" "'"DM;.k«x'» (817)

s, (p)= g csc (C2a)

as expected.
In four dimensions (815) assumes the well-known form

[21j

k~
s(p) = g csc ——csc (C2b)

G(x,x')= ( —,
' —v )sectrvF( ,'+v, —,

' —v;2;to)—. (818)
16~ 4

p —1

s, (p) = g (
—1)"csc

k=1

k~ 2

P 77
(C2c)
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