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Smeared Wigner functions and quantum-mechanical histories
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We calculate the probability for a quantum-mechanical history consisting of imprecise samplings of
position at two moments of time. In the limit of small time separation, this leads to an imprecise sam-

pling of position together with a time-of-flight sampNng of momentum. We also calculate the probability
for the history consisting of direct momentum and position samplings a short time apart. In each case,
we find that the resulting probability distribution on phase space is a smeared version of the Wigner
function, and is positive. %'e show that these smearings belong to a class of smearings which make the
%'igner function positive. In the case of the time-of-flight momentum sampling, it is more general than
previously considered smearings, such as that of Husimi.

PACS number(s): 03.65.Bz

I. INTRODUCTION

The Wigner function [1] has proved to be a useful
mathematical and conceptual tool in a variety of cir-
cumstances [2]. For a system described by a density ma-
trix p(x, y), it is defined by

W(p, q)= du e't'"
p q

——,q+-i u/A

2m% 2' 2

2

H= +v(q) .
2m

(1.4)

The Wigner function for a pure state may then be shown
to satisfy the Liouville-type equation

aW ~ aW dV aW ir' d'V a'W
t)t m t)q dq t)p 24 dq'

where the ellipsis denotes terms of higher powers in R and
higher derivatives in W and V. Hereafter we set A= 1.

These properties of the Wigner function show that it is
very similar to a classical phase-space distribution and
have prompted its use as a heuristic interpretational tool,
especially in discussing the emergence of classical behav-
ior in quantum cosmology [3—8). However, there are a
number of grounds on which an interpretational scheme
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For a pure state, p(x, y) =ip(x)%*(y), it has the properties

dpWp, q =4'q
and

dqWp, q =+p (1.3)

where 4(p) is the Fourier transform of %(q). We will be
concerned with systems described by a Hamiltonian of
the form

based on the Wigner function must be regarded as prob-
lematic. The main objection is that it is not always posi-
tive. This may be seen as follows. Denote by W&(p, q)
the Wigner function associated with the pure state g.
Then a direct calculation shows that

f dp dq W&(p, q)W&(p, q)= ~(tb, tb)~= 1 (1.6)

where (g, (b) denotes the usual inner product between 1b

and tb. By choosing lb and (b to be orthogonal, we see that
the integral of the product of their Wigner functions is
zero, and therefore, since neither of the Wigner functions
generally vanish identically, at least one of them must go
negative somewhere. It seems to be the case, however,
that the Wigner function is positive for many cases of in-
terest, and only goes negative as a result of oscillations in
small volumes of phase space. Indeed, it turns out that if
the Wigner function is smeared over a suitable volume of
phase space, a positive probability distribution can be ob-
tained [2,9—11].

A second objection to this use of the Wigner function
(and indeed, with any smeared version of it), is that there
is no fundamental justification for its use. Its interpreta-
tion as a probability distribution in phase space is in-

spired by its properties outlined above, and by the fact
that it gives the expected answers for a variety of simple
cases. But predictions in quantum mechanics are made
using a well-defined set of procedures involving projec-
tions operators, states, unitary evolution, etc., and the
above use of the Wigner function makes no contact with
these procedures.

The purpose of this paper is to give a brief, direct, and
elementary justification for the use of a certain class of
smeared Wigner functions as interpretationa1 tools. This
we do by applying the standard machinery of quantum
mechanics to calculate the probability of finding a parti-
cle with a sequence of properties at a succession of times,
for a given initial state, i.e., the probability for a
quantum-mechanical history. By focusing on the case of
a history consisting of imprecise samplings of position at
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two closely separated moments of time, we obtain a prob-
ability distribution for a position sampling together with

a time-of-flight momentum sampling at approximately
the same time. We also consider a history consisting of a
direct (but imprecise) momentum sampling and an impre-
cise position sampling a short time interval apart. In
each case, we find that the resultant probability distribu-
tions on phase space are smeared Wigner functions. In
the first case, the smearing is slightly more general than
those previously considered [2,9—11], and we investigate
some of its properties.

This paper was inspired by the observation of Gell-
Mann and Hartle that the signer function naturally
arises in a formalism of quantum mechanics that assigns
probabilities to histories [12]. It is also an offshoot of
another paper on closely related matters by the present
author in collaboration with H. F. Dowker [13].

II. SMEARED SIGNER FUNCTIONS

—c(p p)(q —
q
—)], (2.1}

where N =m
'~ (ab —c /4) '~ . Smeared Wigner func-

tions have been considered before in the literature, of the
form (2.1), but with c =0 [2,9—11]. For convergence we
must demand that ab —c /4)0. Let us ask for what
values of a, b, and c it is positive. The simplest proof of
positivity involves an elementary generalization to the
case c@0of the argument given in Ref. [11]for the case
c =0. More enlightening, however, is a generalization of
the proof given in Ref. [10], and we take this approach
here.

The basic idea is to show that the smearing function in
(2.1) is itself a Wigner function, for certain values of a, b,
and c. Positivity then follows from (1.6), suitably general-
ized.

Let us begin by obtaining the appropriate generaliza-
tion of (1.6). Denote by W the Wigner function of the
density matrix p. Then a direct calculation shows that

1
dp dq W~ (p, q)W~ (p, q)= dx dy p&(x,y)p2(y, x)

(2.2)

Now p, and p2 are positive Hermitian operators. There
therefore exist operators S, and S2 such that p~=S]S]
and p2=S2Sz, where a dagger denotes Hermitian conju-
gation. It follows that

Tr(p, p2) =Tr[(S,S2)(S,S2) ])0; (2.3)

hence, the desired result is achieved.
Now consider an arbitrary Gaussian density matrix.

Let

p(x, y) = A exp( —ax —Py +yxy +px +vy ) . (2.4)

We begin by describing a general class of smeared
Wigner functions. Define the smeared Wigner function

W(p, q)=N f dp dq W(p, q)

Xexp[ —a (p p) b(q——
q
—)~

Hermiticity, p(x,y)=p*(y, x), implies that a=P', y=y',
and p=v . Normalizability requires a+P) y. The nor-
malization Trp=1 fixes the values of A. Now consider
positivity. It implies that

f dx dy f (x)p(x,y)f *(y))0 (2.5)

for any normalizable function f. Let

g (x)=f (x) exp( —ax +px ) .

Then (2.5) becomes

f dx dyg(x)g (y)er"~)0 .

Expanding the exponential in a Taylor series, one has

(2.6)

(2.7)

n=O"'

where

g„=fdx x "g(x) .

(2.8)

(2.9)

Positivity is therefore satisfied if and only if y & 0.
Let us now consider the Wigner function of the density

matrix (2.4). Carrying out the Wigner transform, one ob-

tains an exponential smearing function equal to that in

(2.1) if the coefficients in (2.4) are chosen to satisfy

a=B,
b = —(y —4aP)8,
c = —2i(a —P)B,
2ap+ cq = i (v p}8, —

cp+2bq = [(a—P)(v —p)+8 (ij+v)]B,

ap +bq +cpq= —
—,'(v —p) 8,

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

where 8 =(a+P+y) '. Solving (2.10}-(2.12), one ob-
tains

1
2

a =P' = 1+ab — + ic
4a 4

(2.16)

cy= 1 —ab+
2a 4

(2.17)

Equations (2.13) and (2.14) may also be solved for p and
v, but the solutions will not be needed. Equation (2.15) is
satisfied identically by the solutions to (2.10)—(2.14).

The important point now is that the positivity condi-
tion y) 0 implies the restriction ab —c /4(1. Together
with the normalizability condition, we therefore have

c2
0(ab — (1 .

4
(2.18)

This then, is the condition the coefficients must satisfy in
the smeared Wigner function (2.1) in order that it be posi-
tive.

Note that the quantity ab —c /4 is essentially the in-
verse of the volume of phase space over which the
Wigner function is smeared. Reintroducing Planck's
constant (2.18) is then the condition that the Wigner
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function be smeared over a positive volume greater than

In place of (1.2), (1.3), the smeared Wigner function
(2.1) satisfies

p(a, ,a, , . . . , a )

=Tr[P (r )
'' 'P (r, )pP (t ) . . P (r„)],

f dp W(p, q)=, z f dqI+(q)I exp
1

7T 0 Oq

(2.19)

(3.3)

l'H(t tl ) l'H(t t& )
P (t)=e 'P e (3.4)

where p is the initial density matrix and P (t) denotes
projection operators in the Heisenberg picture:

f dq W(p, q)=
—2

f dp I+(p)l exp
0'p

(2.20)

where

0 2 0 2a b

ab —c l4 ab —c l4
(2.21)

It follows that 0 o. 1, consistent with the uncertainty
principle.

There are many more properties of the smeared
Wigner function (2.1) that could be worked out, and
presumably they are very similar to those for the case
c =0 [2,10). This would be an interesting topic for future
investigation.

III. PROBABILITIES FOR HISTORY

gP =1, P Pp=6 pP (3.1)

A projection corresponding to imprecise sampling of po-
sition, for example, is

Now we show how smeared Wigner functions might
arise naturally when one studies quantum-mechanical
histories. An event in quantum mechanics at a fixed mo-
ment of time is characterized by a projection operator
P, where u denotes the set of possible alternatives. The
projections should be exhaustive and exclusive, which
means, respectively, that

Formula (3.3) is the central result for a formulation of
quantum mechanics based on histories. We will exploit it
in what follows.

There are two ways of regarding expression (3.3). One
can think of it in the context of closed systems, such as
the Universe as a whole [14]. In this case, in order to as-
sign probabilities such as (3.3) to the histories, it is neces-
sary to show that the probabilities obey a certain set of
sum rules. This is equivalent to saying that sets of his-
tories must decohere. The projection operators in this
case are not to be thought of as measurements or interac-
tions with another system. They are merely "samplings"
determining the properties a system might be consistently
ascribed. Alternatively, one can think of (3.3) in the con-
text of open systems, as in the Copenhagen interpretation
of quantum mechanics [15]. In this case, the projection
operators do correspond to measurements performed by
an external, classical measuring apparatus. The probabil-
ities for different sets of histories need not obey the prob-
ability sum rules because the different sets correspond to
distinct physical situations. Either point of view ulti-
mately leads to the same expression (3.3) for the probabil-
ities. The present work concerns only the mathematical
properties of this expression, and is not specific to either
of these interpretations of it.

A. Time-of-flight momentum sampling

Now consider the history consisting of an initial densi-
ty matrix p at time t„a sampling of position at time t„
evolution to time t2, and a sampling of position at time
t2. The probability that these samplings will return the
results x

&
at t, , and x2 at t2 is

I'H(t2 t& ) iH(t2 —
t& )p(x„t„xz,tz)=Tr P„e ' ' P, pP„e

(3.2) (3.5)

This projector asks whether the particle is in a region of
size 5 around the point x, and the variables x take a
discrete set of values, x =0,+6,+26, . . . . Generally,
the probability for the event in question is given by
Tr[P p], where the trace is over a complete set of states,
and p is the density matrix.

A history is a sequence of events at a succession of
times. A quantum-mechanical history is therefore
characterized by a sequence of projectionsP,P, . . . , P at a succession of times, t, , t2, . . . , t„.

n

From the standard formalism of quantum mechanics, the
probability for such a history may be shown to be

—2x x (3.6)

These are exhaustive, but they are only approximately
mutually exclusive. Equation (3.5) may now be written

Our goal is to evaluate this expression in the short time
limit.

The position projections (3.2) are rather cumbersome
to use mathematically, and it turns out to be more useful
to use the Gaussian projectors instead:
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p(x& t&, x2, t2)= fdx2dxidyi(x, , t, lx&, ti &p(xi yi)&y& ti lx2 t2 ~exp
(x, —x, }2

g 2
1

(yi xi }

01

(xz —Xi)
202

(3.7)

X1+y&
p(x„y, )=f dk W k,

Ek(x) J7) )
(3.&)

In the short time limit, the propagator is given by
' 1/2

(x„t,lx, , t, ) = m
2m. it

LPl
exp (x2 —x, )

2t
L

(3.9)

where we have introduced t =t2 —t, . Introducing
g=x, —y, and X=(x, +yi)/2, Eq. (3.7) becomes

For convenience we will generally omit prefactors. They
may be recovered in the Gnal result using normalization
conditions. Next we write the density matrix in terms of
its Wigner function

0 1a= , b=
2a

m 01 +, c=-
2at 01

m th)
(3.14)

Equation (3.14) is the first main result: a sampling of po-
sition, accompanied with a time-of-Qight sampling of
momentum at approximately the same time yield the re-
sults x1, k with a probability given by a smeared Wigner
function of the form (2.1).

Equation (3.13) is positive by construction because ex-

pression (3.5) is positive. Still, it is gratifying to check
that it falls into the class of smeared Wigner functions de-
scribed in Sec. II. From (3.14), one has

2 m 2cr2cT2

ab — = 1+ (3.15)
2t2

p(x, , t„x,t )=f dx dgdk dX W(k, X) as expected.
For the particular values (3.14), one has

Xexp ig k+ —(X —xz}
22 — ~2 — J +2' u 201

3m 0 0

4t
(3.16)

(x, —x, )

2 2P1

(X—xi)
g 2

1

(3.10)

The integrals over xz and g are readily carried out, and
one obtains the result

p(xi, ti, x2, t2)= f dk dX W(k, X)

X exp
2 '2

01 Pl
k ——(x2 —X)

2a t

(X —x i), (3.11)
2 — 2

g 2
1

where

2g2g2
a= 1+ 1 2

2t
(3.12)

where

X exp[ —a (k —k) b(X —x,)—
—c(k —k)(X —x)], (3.13)

Finally, we can rewrite this as a probability distribution
not for x1 and x2, but for x1 and the momentum
k = (x2 —x, )m It The resu. lt is

p(x„k, t)= f dk dX W(k, X)

The uncertainty in momentum goes to infinity as t —+0,
while the uncertainty in position remains finite. a and c
go to zero in this limit, and all dependence on p complete-
ly drops out. This is not surprising since a sampling of
momentum by a time-of-Bight method requires a nonzero
amount of time to elapse. Also, note that the previously
considered smearings of the Wigner function with c =0
are realized by the coefficients (3.14) only in the limit
t~ao, a limit which can be taken in the calculation of
this section only for the case of a free particle (for which
the calculation is exact}.

Another interesting case to consider is that in which
one has a distinguished system coupled to an environ-
ment, and the projections in (3.5) refer only to the dis-
tinguished system. This arises, for example, in the model
of Caldeira and Leggett [16], discussed in Refs. [12,13].
This coupling to an environment is generally necessary to
produce decoherence of alternative histories for the sys-
tem. A complicating factor is that the evolution of the
density matrix is not unitary, and the expression (3.7) will
no longer be valid. However, one can show that it is uni-
tary in the small time limit [12,13), and then is described
by (3.7). This means that the above result holds for the
more general situations discussed in Refs. [12,13].

B. Direct momentum sampling

One may also consider histories in which there are pro-
jection operators which sample momentum directly. Let
us therefore consider the history consisting of an initial
density matrix p, a sampling of position at time t, , evolu-
tion to time t2, and a sampling of momentum at time t2.
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The probability that these samplings will return the re-
sults x at t, and p at tz is

l'H(, tg tl ) iH(t& —t
l

}

p(x, t, ,p, t~)=Tr[P e ' ' P pP e ' ' ],

projections were taken in a different order. Repeating the
calculation with a momentum projection at time t, and a
position projection at time tz, and then letting tz t, ,
one finds a distribution of the form (2.1) with c =0, and

where

(3.17)
2

2 0
It

cr 2[1+(1/2)a, o ]
(3.25)

—2

0' 0—
X X

—2f" dpexp —P P
Ip&&pl .

(3.18)

(3.19)

C. Coherent state projectors

Finally, it is pertinent to ask what other possibilities
exist for sampling positions and momenta. A natural
possibility to look at are coherent state projectors,

Equation (3.17) may thus be written

p(x, t„p, t~)= f dp dx dy &p, t, lx, t, &p(x y)&y t~lp, t~ &

P,, =Ip —q&&p ql

where lp, q & are coherent states:

(3.26)

(x —x) (y —x)X exp
0 0

1
&x lp, q, &

= exp
(x —q) + ipx

20
(3.27)

(p p)
0 2

(3.20)

In the short time limit, one has

1p t
&p, t~ x, t, & =exp — ipx-

2m
(3.21)

where t =tz —t, .
Inserting (3.21), and also (3.8), one finds that all depen-

dence of t drops out. Introducing g=x —y and
X =(x +y)/2, one obtains

p(x, t„p, t, )=f dp dgdXdk W(k, X)

g2
Xexp i (k —p)g—

20

P(p, q)=Tr[P p]=l&p, qlql&l'.

But, through the relation (1.6), (3.28) is equal to

P(q, p)= dp dq Wq, (p, q) W (p, q) .
1

(3.28)

(3.29)

Here, W (p, q) is the Wigner function for the coherent
P e

state (3.27), and is given by

W (p, q) =—exp — —cr(p —p )
1 (q —q) (3.30)

The coherent state projectors affect simultaneous impre-
cise samplings of position and momentum. To find the
connection with the Wigner function, it turns out not to
be necessary to look at histories, but it is sufhcient to look
at the probability that, in a pure state I4 &, a simultane-
ous imprecise sampling of position and momentum yields
the approximate results q,p. This is given by

(X—X) (p —p )

0—2 2
X

0—

(3.22)

The integrals over p and g are readily carried out, with

the result

Equation (3.29) is therefore a smeared Wigner function of
the form (2.1) with c =0 and a =b '=cr. This is not a
new result [10],but it is perhaps useful to see how it fits
into the general approach considered here.

0 2

= 2

2[1+(1/2)o o ] o „
(3.24)

The result is therefore a smeared Wigner function of the
form (2.1) with c =0.

Because t dropped out of the calculation, we may take
it to zero and regard the position and momentum projec-
tions as occurring at the same time. It then becomes an
issue of whether one would obtain the same result if the

p(x, ti,p, tq)= f dX dk W(k, X)

Xexp[ —a(k —p) —b(X —X) ],
(3.23)

where

IV. CONNECTIONS WITH EARLIER WORK

With the particular case of quantum cosmology in
mind, it was proposed in Ref. [3] that one could use the
usual, unsmeared Wigner function as an interpretational
tool for identifying correlations in the wave function of
an isolated system. The basic idea was to look for peaks
in the Wigner function.

Anderson [7] and Habib and Laflamme [5] have
correctly pointed out some of the deficiencies in this ap-
proach and suggested improvements. In addition to the
problems discussed and dealt with in this paper, a prob-
lem these authors pointed out is that the peaks of the
Wigner function obtained for certain examples in Ref. [3]
were artifacts of the approximation methods used. More
accurate treatments often lead to a wildly oscillatory
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Wigner function possessing many peaks, and most of
these peaks do not correspond to behavior of interest, e.g.
to classical behavior. Habib and Laflamme suggest that
these problems may be avoided by coarse graining [5].
They investigated a (rather complicated) form of coarse
graining in which the system of interest is coupled to an
environment, which is traced out of the density matrix.
The overall effect is to smear the Wigner function and
smooth out the rapid oscillations. In connection with the
approach of this paper, we point out that it is most likely
that adequate smoothing of the oscillations could also be
achieved by smearing of the form (2.1). Here, the origin
of this smearing is not coarse graining due to tracing out
an environment, but coarse graining due to imprecise
sampling of positions and momenta.

We also note that Anderson [7] has proposed the
smeared Wigner function (3.29) as an interpretational
tool, and as an improvement on the approach of Ref. [3].
Finally, after completion of this work, the author became
aware that the appearance of the Wigner function in con-
nection with joint probability distributions of the form

(3.5) has previously been noted by Barchielli, Lanz, and
Prosperi [17].

A useful approach to prediction in quantum mechan-
ics, and, in particular, to prediction in quantum cosmolo-
gy, is one in which probabilities are assigned to histories
[14]. A more heuristic approach that has been used in
the past assigns probabilities to histories through study-
ing the Wigner function for the state of the system at a
fixed moment of time [3—8]. The content of this paper
has been to show that the latter can emerge from the
former, although it is a class of smeared Wigner functions
that naturally emerge, and not the Wigner function itself.
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