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Semi-inclusive rapidity distributions and a critical analysis of the concept of partition temperature
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An analytical computation has been performed of the partition temperature of an n-particle system of
total invariant mass M with a transverse-momentum cutoff. The result has been used to compare with

the previously obtained fitted values at &s =540 GeV and it is shown that some further dynamical as-

sumption is needed in order to reproduce aspects of the data beyond dn /dg. The effect of the center-of-

mass motion of the system on the pseudorapidity distributions is also discussed.

PACS number(s): 13.85.Hd, 12.40.Ee

I. INTRODUCTION

Several years ago, Chou, Yang, and Yen (CYY) pro-
posed to describe a high-energy hadron-hadron collision
at a given energy as an incoherent superposition of col-
lisions with difFerent partition temperatures [1]. The
model is as follows. Consider, for instance, a pp collision
at a sufficiently high incident energy &s and events with
n (nonleading) particles. The total center-of-mass energy
of this n-particle system W=h&s is assumed to be sto-
chastically distributed among n particles with some con-
veniently parametrized transverse-momentum cutoff fac-
tor g(pr). In other words, the exclusive probability dis-
tribution for nonleading particles is described by a micro-
canonical ensemble, i.e.,

6 pj
Probability =g g(p7J )5 g E; —h &s

j j I

where all the quantities are given in the center-of-mass
frame and h represents the fraction of the total energy
&s, which remains in the central region. We remark
that, in CYY, every quantity is referred to one hemi-
sphere only, with a tacit assumption that the events are
symmetrical with respect to the center of mass.

In this case, the single-particle distribution turns out to
be given by the canonical ensemble

Probability =a g(pr )expp

P

(1.2)

where a is a normalization constant and the parameter
T, the so-called partition temperature, is evidently a
uniquely defined function of W and n, once g(pr) is

chosen [2].
At this point, the authors of Ref. [1] perform a fit of

semi-inclusive pseudorapidity distribution data [3] in
540-GeV pp collisions, by using (1.2) where an empirical-

ly determined factor g(pr) is replaced. With appropriate
choices of T, all the experimental points for n,b, & 10 are
surprisingly well reproduced in the entire g range where

the distributions have been measured and they conclude
that (1.2), and consequently also (1.1), is in excellent
agreement with experiment. Another report has been
given [5] where, with an additional assumption that the
inelasticity h is a function of the impact parameter b, fair-
ly good results have been obtained also at different ener-
gies of pp collider.

However, notwithstanding a good fit of the data, we
think we need something more before concluding that
(1.1) is really in good agreement with experiment, since
those authors have not obtained T from the knowledge
of W and n as we are going to do, but determined it by
fitting only the semi-inclusive pseudorapidity distribu-
tions and then calculated W by using the parametrization
itself. The main purpose of the present paper is thus to
obtain the relationship between T, on the one hand, and
W and n, on the other hand, and then, by using W and n

determined experimentally, to compute T and compare
with the semi-inclusive (pseudo) rapidity distribution
data.

In what follows, starting from (1.1) we derive in the
next section the single-particle momentum distribution
(1.2) and thereby the functional form of T~(W, n). A
comparison with data is carried out in Sec. III, where
first we consider the CYY analysis [1] and then an in-

dependent work by Takagi and Tsukamoto [6], where the
implicitly implied forward-backward symmetry by Ref.
[1] has been removed but two uncorrelated leading parti-
cles are now assumed. Conclusions are drawn in Sec. IV.

II. DERIVATION OF THE SEMI-INCLUSIVE
MOMENTUM DISTRIBUTION

Consider a system of n particles, having a total invari-
ant mass M=+W —P, where (W, P) is the energy-
momentum four-vector of the system. For simplicity, we

assume all the particles in the system to be pions of mass
m and neglect the statistics. As far as the single-particle
distribution is concerned, we believe that this is a reason-
able approximation.

Divide the phase space into small boxes with volumes
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P([n, ] )= n! n&

g(n, t. . nN~

N
. . . q~"5 ~ |i W —g niEi

I 1=1

EV&, EV2, . . . , 5VN. We shall start from a discrete phase
space and obtain the continuum limit by 1etting hV; ~0
and N~ao. The probability of finding n1 particles in
b, V& (1=1,2, . . .,N) is written

with the normalization

y, pT dy dp&=1 . (2.3)

Here, y is the rapidity of the particle.
The single-particle momentum distribution is, then

written in this discrete version as

N N

IPLl ~ T X "IPTI
1=1 1=1

(2.1)

where [ ni ] stands for any set [ n „.. , n~ ]. and the prob-

ability that a produced particle be found in AVk can be
written in terms of the probability density f(y, pT ) as

nk n1

I nI I

y V'([ n, ] ) B
I nI I

(2.4)

EVk ~0
N —+ oo

'Vk f(3 k PTk )~ ~k =f(v, pT)ds d pT (2.2)

In the continuum limit, A and B are given (see Appen-
dix A) by

,fb pT)4 dpT
(2~)4

6p+l cc El+i
x f '

ds f dt fduT[F(s, t, uT)]"

Xexp[(W gpT+—m coshy)s (PL —Q—pT+m sinhy)t —i(PT —pT) u, ] (2.5)

and

1 6p+ I oo 6)+ i oo

B=— f ds f dt fduT[F(s, t, uT)] exp[Ws pLt —i(—pT —pT) uT],
(2~)4 so —[co si /co

(2.6)

where we have introduced a definition

F(s, t, uT) =fdy dpTf(y, pT—)exp[ —Qpr+m (s coshy t sinhy)+—ipT uT] . (2.7)

To avoid unessential complexity, let us forget in this paper the pT conservation, since it is well known that (pT ) is
small compared with (pL ), which will be assured by g (pT ) of (1.1) and defined in (2.11) below. Then
F(s, t, uT )~F(s, t ) in (2.7) and uT integrations are suppressed in (2.5) and (2.6). So, (2.4) reduces to

C
(ttk ) =ttf(y, pT)dy dpT —, (2.8)

with
6p+i oo 6)+i oo

C= f ds f dt[F(s, t)]" 'exp[(W —QpT+m coshy)s (pt QpT+—m si —hyn)t] (2.9)

where y is measured with respect to the rest frame of
M(y =y, —Y, Y= rapidity of M).

This ansatz is more general than the one utilized in
Ref. [1] insofar as it includes the case of a longitudinal-
momentum dependence. That is to say, for P) 0 it yields
an approximate Gaussian in rapidity, which is what one
gets for the inclusive particle distribution in Landau s hy-
drodynamical model [7]. The pure (longitudinal-) phase-
space ansatz which appears in (1.1) is recovered in the
limit of P~O. We emphasize that due to the constraint
of energy conservation the resulting semi-inclusive distri-
bution (2.4) will be independent of P, as can readily be
seen by substituting (2.11) into (2.1) and (2.4).

Another minor difference between our ansatz and that
of Ref. [1] is that here g(pT) is an exponential not in pT

(2.10)

In order to proceed with the computation of the semi-
inclusive distribution (nk ), we parametrize the probabil-
ity density f(y, p T ) [cf. (2.1) and (2.2)] as

—tiQp~&+m coshy —5'1y pr+m
(y, pT) =ae e (2.11)

with

f ff(y, pT)dydpT=1, (2.12)

Ep+ t oo el+i oo

D= f ds f dt[F(s, t)]"exp(Ws Pzt) . —
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but in transverse energy Qpr+m, which is better suit-
ed for fitting the data [8]. In Sec. III, we shall choose
5( —m '), by using &s =540 GeV (pr ) data [9].

Let us not compute F(s, t } by replacing in (2.7)
f(y, pr ) parametrized as (2.11}.We have

P+ s =g cosh(,

t =r) sinhg

rj= '(/(P+s )
~ —t ~

t(=arctanh +s
(2.15)

F(s, t)=a f dy f dpTexp[ —[5+(P+s}coshy

t sinh—y ]QpT+ m '],
The last integral will be evaluated in Appendix B and

reads

(2.13) F(s, t)=4ma —+—e Ko((e)ri),m 1
(2.16)

where the y integration can easily be done and gives

F(s, t ) =4na f ee s'Ko(crt)de . (2.14)
m

Here, we have made a change of parameters:

in the limit of small argument of the Bessel function, with
(e) given by (B7).

By introducing this F(s, t) into (2.9) and (2.10) we
have, as wi11 be shown in Appendix C,

'n —1

C= —2n(n —1)(4m.a)" 'e '" " —+—
2

exp[ —P(W —gpT+m coshy)]
X ln 1— expM' e rgo In(2/e re) In(2/e rgo)

(2.17)

and
'n

n —nm5 m
D = 2nn(—4ma)"e " —+— ln

M2 erg

'n —1
1

—1/2

1—
ln(2/e rgo)

n
exp

ln(2/e rgo)
(2.18)

where

M' =(W—Qpr+m coshy) (PL —Qpr—+m sinhy) =M 1 — Qpr+m cosh(y —Y)+ (2.19)

is the squared mass of the remaining system after the subtraction of the single particle that is being observed. In (2.17)
and (2.18), go is given by (C9) and go is obtained from it by replacing M and n, respectively, by M' and n —1.

We are now ready to calculate ( nk ) by introducing C and D given above into (2.8). First, let us approximate

2 = 2
1n =1n

erg' er

2=1n
e 4

1+ 1n
2

erg

1+ 1n
2

ergo

' —1

in-
to

I

. ln +1n 1+ 1n
(n —1)M erg

' —1

in-
to

2 1 n+pT+m cosh(y —Y)
=ln exp 1—

e r( [ln(2/e rgo) —1](n —1) M
(2.20)

where we have assumed

QpT+ m cosh(y —Y) «M' & M .

Then,

d n (n —1)5 e —s+pT+m'
e

dy dpT 4n(m5+ l)ln(2/ergo)

(2.21)

X exp
1 n ln(2/ergo) —

—,
'

1 ——
ln(2/e rgo) (n —1 )[ln(2/ergo) —1]

—2 QpT+m cosh(y —Y} (2.22)

This expression is identical to (1.2), provided
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T =M
ln(2/ergo)

ln(2/e rgo) —
—,
'

1—
( n —1)[ln(2/e rgo) —1]

(E)ln(2/eg 0)

1 ——2 ln + ln —— ln
1 2 2 1 2
n ergo ergo 2 ei'go

(2.23)

Here, however, E is the particle energy in the rest frame
of M. The last term of the denominator of (2.23) is usual-

ly a small number, so it may be neglected in the lowest-
order approximation. We emphasize that in such a case

Tz depends only on (E ) and not on M and n separately.
The latters affect T~ only through the corrections in the
denominator.

To complete the derivation, we have checked the
large nap-proximation which, starting from (2.8), (2.11),
(2.17), and (2.18), has led to the exponential form (2.22}
and verified that, in the entire range of multiplicity and
0(q=y (5 where data exist, the error is less than 5%.
Moreover, the asymptotic form of the one-dimensional
phase space as argued by Chao [10] is correctly repro-
duced by our method.

III. COMPARISON WITH DATA

We shall begin by examining the CYY analysis, the
main results of which are summarized in Table I
(columns 2—4). Compute T by replacing CYY's (E)
into the asymptotic form of (2.23). For doing so, (e) is
to be estimated by using (B7) with m5=0. 790 which
gives the CYY value of (pz.(0) ) =0.381 GeV, in the limit
of 5T ))1. Numerically, it corresponds to (e) =2.58m
=0.361 GeV. One sees that the results are in excellent
agreement with the input T~, except at the lowest-n, h in-
terval, where ho~ever we do not expect such an agree-
ment. For example, in the range n, h =41-50, the com-
puted Tz is =6.53 GeV, which is only 4% smaller than
the input T . The deviation becomes slightly larger
( -5% ) and changes sign ( T~ =7.11 GeV) if one includes
the correction in the denominator of (2.23).

Now, in CYY 5 has been fixed constant, Tz determined
by fitting (1.2) to experimental dn /dg in each n, h inter-
val [3] and finally (E ) calculated from the curve itself.
Then, if one computes (pz.(0)) by using m5=const

and

dll 1

(1+cosh'/5T )
(3.1)

2T f dq(1+5T /cosh') '/cosh'
(E)=„.(3.2)f drt(1+5T /cosh') /cosh'

Equation (3.1}shows that in partition-temperature for-
malism the semi inclusiue g-distributions depend only on
the product (5T& ), in the limit of m =0, and not on 5 and
T separately. This means that we can retain the form of
dn Idri curves by keeping 5T~ constant. We use this con-
dition to redefine CYY's T values. With 5T held con-
stant, (3.2) indicates that (E ) is proportional to T . So,

given above and their Tz values, one sees that it decreases
as n, h increases. However, this behavior is just opposite
the well-known tendency shown by data [9] in the
central-y region ( ~y ~

(2.5, see Table I}. So, unless we re-
gard 5 as a new free parameter (in addition to T ), the
model cannot accommodate simultaneously both semi-
inclusive dn/dri and (pz.(0)). Even if this is actually
done, still it is not evident a priori that the good agree-
ment shown above remains valid when (pz (0) ) is fitted
to the existent data.

In order to check this new version of the partition tem-
perature, namely, with 5 taken as a free parameter, we
first estimate 5 by using (pr(0}) data [9] with neglect of
T ' with regard to 5. Then, ( e ) for each n, h is deter-
mined through the use of (B7}. Now, as we have changed
5, we need new values of (E ), in order to compute our
T with (2.23) and (C9), and also new values of CYY's T
to compare with. In the zero-mass limit where all the ex-
pressions become simpler and the results are, in general,
good enough, one obtains

TABLE I. Comparison of the partition temperature T~ as given by (2.23) and by using independently estimated 8'with the one ob-
tained by fitting the experimental der/dg (fourth column). The data marked with an asterisk have been taken from Ref. [1].

ch, pb$

)71
51-70
41-50
31—40
21-30
11-20

(10

+ ch, cal

99.4
73.3
55.0
44.2
33.0
21.2
10.7

Av. energy per
particle in

central region
(E)* (GeV)

1.64
2.06
2.17
2.57
3.35
4.36
6.63

T*
(GeV)

4.38
6.25
6.80
8.84

13.8
23.8

183

Experimental [9]
(p (0) &

(GeV)

0.471
0.468
0.456
0.442
0.414
0.380
0.340

Our results
Total central

energy
8' (GeV)

522
423
369
348
252
183
126

Tp
(aeV)

12.8
14.9
19.0
24.6
25.3
35.0

101
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a comparison with (2.23) tells us that in the lowest-order
approximation the agreements obtained before remain
valid after the corrections are introduced to fit (pr(0)).
Anyhow, a more exact comparison can always be done
with the use of (3.2) and (2.23) and one gets, for instance,
in the range n,&=41—50, T =8.91 GeV, whereas the
corrected (CYY) input is T =8.29 GeV, with -7.5%
deviation.

Thus, provided 5 is regarded as a free parameter and
(pr(0) ) is properly taken into account, it seems that the
CYY proposal of partition temperature is basically
correct and that the semi-inclusive distributions are
essentially determined by the pure phase space. Howev-
er, before establishing such a conclusion, let us examine
some other features of multiparticle production. What
about (pr(y) ) as function of y (or alternatively (pr(r) ) )
as function of ri)? (pr(ri) ) in the zero-mass approxima-
tion has a particularly simple expression and reads

(p, (q) ) = (m =0) .
2

+cosh'/T
(3.3)

It is clear that as rt increases (pr(rf) ) decreases tending
to 0 for large rf. This happens also for (pz(y)) and is
one of the main features of the partition-temperature for-
malism. Now, what are the corresponding experimental
results? Although such semi-inclusive data are not yet
available as a function of y at v's =540 GeV, the in-
clusive data [11] at &s =630 GeV seems to indicate a
near constancy of (pr(y)) in a wide rapidity range
( ~y ~

& 5.0=y&„—l. 5 ), decreasing only near the
kinematical boundary. It is also known [12] that at ener-
gies of the CERN Intersecting Storage Rings (ISR) the y
dependence of (pr ) in semi-inclusive data is weak in the
entire region ~y ~

&y&„—1.5=2.5, the maximum lying
at the shoulder of d 0. /d q. Probably this property
remains valid also at &s =540 GeV, as already suggested
by the UA7 inclusive data [11]. Explicit computation of
(pr(y)) in the range n,&=41—50, with the parameters 5
and T fixed above shows that it varies from 0.445 down

to 0.182 GeV, when y goes from 0 up to 5, i.e., CYY's
(pr(y ) ) becomes -2.5 times smaller than the expected
value at y =5=y&„—1.5. This implies of course an im-

portant underestimate of (E ) in CYY.
Let us now calculate T as given by (2.23) by making

an independent estimate of ( E ) (or $V). Assuming

(pr(q)) =const, which is approximately valid if
(pr(y)) =const, and using its values given in Ref. [9]
and dcridr) of CYY's Fig. 2, one obtains for 8' the
values which appear in the Afth column of Table I. Now,
forward-backward symmetry as in CYY means %=M
and P =0 in our notation. So, with an additional assump-
tion of n =3n,& /2, T is readily obtained and the results
are shown in the last column of Table I, where a huge
discrepancy with CYY's values is evident, even after the
correction due to (pr(0) ) as discussed above has been in-

troduced. These results have also been checked by a
Monte Carlo method with random-event generation ac-
cording to (1.1). For y( —g) &5, the results so obtained
compare with the analytical ones with a few percent devi-
ation in the highest n, & values, giving additional support

to our result (2.23). At larger values of y, the analytical
curves deviate from the Monte Carlo results, but it is not
expected that our approximation remains valid in such a
kinematical region.

Thus, going back to the question we raised in the In-
troduction, one is forced to conclude that although nice
Pts haue been obtained with (1.2) by CYY, the parameter
T thus determined has nothing to do with the "true" par-
tition temperature. If one assigns more realistic values to
(E ), pseudorapidity distributions within the physical hy-
pothesis of forward-backward symmetry become too low
and too broad to reproduce the data.

One may think at this point that the phase-space calcu-
lation is nonsense and the concept of partition tempera-
ture is completely meaningless in hadronic collisions.
However, one may also be a little less categorical and try
to see whether it can be used meaningfully, once some
precaution is taken. It is clear from the forward-
backward asymmetry observed in the multiplicity distri-
bution [4] that event-by-event fluctuation both in multi-
plicity and energy partition between the two hemispheres
is not at all negligible or, in other words, the hypothesis
of forward-backward symmetry is valid only globally but
too strong if applied to each event as implied by the use
of (1.1) as in CYY just to one hemisphere. Evidently, if
one takes the center-of-mass motion of the n-particle sys-
tern into account without changing the event multiplicity
and W, particles will appear more concentrated in its
proper frame, i.e., with smaller T . Another nice feature
of this hypothesis is that in doing so we move the max-
imum of (pr(y)) from the center of mass as in (1.2) to
y = Y'as in (2.22).

In Ref. [6], such a calculation has been done under a
simplified assumption of a constant mr=Qpr+m and
with two uncorrelated leading particles with a ffat x dis-
tribution, which is the standard picture of the hadronic
multiparticle production. As can be seen in their corn-
parison (Fig. 4 of that paper), the agreement is still not
satisfactory. The difficulties arise especially in the low-
multiplicity data (n,z 20), where the maximum in the
large-g values cannot be reproduced, but also arise in
higher-multiplicity data where the overall width seems to
be systematically wider than the experimental trends.

In a previous work [13],we have used a fragmentation
model and obtained a quite good description of the semi-
inclusive pseudorapidity distributions in the low- and
intermediate-multiplicity region (n,z & 35). In that mod-

el, one or both of the incident particles were excited into
high-temperature states, with a subsequent expansion and
decay according to a one-dimensional hydrodynarnical
model [7]. If we apply the phase-space calculation or
equivalently the partition temperature concept to such
objects, the results are probably not far from the earlier
ones. The distinct ingredient here as compared to Refs.
[1] and [6] is the account of the so-called "diffractive"
component which is usually assumed to be excluded from
the "nondiffractive" data. However, except when the
mass of such an excited object is very small, it is hard to
recognize this kind of event as "diffractive, " even though
the forward-backward asymmetry still remains. Thus,
the combination of a large fluctuation in the forward-
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backward multiplicity distributions and the semi-

inclusive pseudorapidity spectra with large-
~ g ~

peaks
seems to indicate that the incident-particle fragmentation
as described above plays an important role in multiparti-
cle production.

IV. CONCLUSIONS

Starting from the transverse-momentum-cut phase
space (1.1}, we have derived in this paper the single-
particle momentum spectra which, as expected, turned
out to be an exponential in particle energy. The inverse
of the coeScient in the exponent is to be identified with
the previously introduced partition temperature, which is
now a definite function of M and n.

Care must be exercised in applying this formalism to
analyze the data, because it may lead to a completely
wrong conclusion especially with respect to the total cen-
tral energy. We conclude that a simple application of the
model to semi-inclusive particle distributions assuming a
forward-backward symmetry does not give consistent re-
sults if pr distributions are also considered. The event-
by-event fluctuation in forward-backward multiplicity
distributions, which in general show a large asymmetry,
is one of the fundamental features of multiparticle pro-
duction and cannot be neglected.

An inclusion of the fluctuation mentioned above
through uncorrelated leading particles is not enough to
correctly reproduce the semi-inclusive data. We find that
a possible way to give a better account of the existing
data is the consideration of particle fragmentation pro-
cess which clearly contributes to large fluctuations and
gives the momentum distribution a more asymmetrical
form. Whether or not this mechanism is important may
be decided experimentally through a study of pseudorapi-

dity distributions with fixed multiplicities n, h and fixed
forward-backward multiplicity ratios R =nF/nz. An ex-
perimental study of semi-inclusive (pz. (y ) ) distributions
are also required to test this mechanism.
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APPENDIX A

In this appendix, we shall give a detailed derivation of
(2.5}and (2.6), which have appeared in Sec. II.

First, following Giffon, Hama, and Predazzi (GHP)
[14,15], let us rewrite (2.1) by replacing the energy-
momentum-conservation 5 functions by Fourier-Laplace
representations and also the multiplicity-fixing Kroneck-
er 5 by its Fourier representation:

~ f E'p+1 oo

P([nl})= ' f ds exp
(2n. ) (2@i) '0

N

W —g n(E( s
1=1

g)+ l oo

X
E I cc

1

N

dt exp —
&I,

—g n&p«
1=1

N
X uT exp —i PT — n1p» uT

1=1

2' N
X du exp i n —g—n, u

0 1=1

n
1

9'1

n1!

n~
9N

nNf
(A 1)

where ep) E, in order to ensure the convergence of the integral (2.7).
Then, the numerator A of (2.4) can easily be handled and written

0 ' I 2m ( W —Ek )s —(PL ~Lk )t —i(PT ~Tk )'UT —i(n —1)u

(2~) Ep I 00 E'] l ~ p

[qIexp[ —(Eis pir t)+i pz&.u&+iu] }
'—

"rr r
1=1 n =0

I

» the»mi«f 4 V, ~0 and N ~~, this may be rewritten, on account of (2.2) and

EI +PTl+ m coshyl Pal +prl+m sinhy&

(A2)

(A3)
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; f(y, pT)dy dpT f ds f dt f duT f du

Xexp[( W —V pT+m coshy }s—(PL —QpT+m sinhy)t —i(PT —pT) uT —i(n —l)v]

Xexp dy d pT y PT exp — pT+m' s coshy —tsinhy +ipT.uT+lv (A4)

Recalling that
oo ilv

exp[e'"] = g (A5)

So, we have finally

(e) =m exp
1 —e Ei( —m5)

1+m5
(B7)

the integration in U may easily be effected, giving (2.5) of
Sec. II.

The denominator 8 of (2.4) is computed in a similar
way, resulting in (2.6).

APPENDIX B

APPENDIX C

1.et us compute D defined by (2.10), with F(s, t) ob-
tained in the preceding appendix. The evaluation of C is
entirely similar, so we shall omit it here.

Define

F(s, t)=4ma f ee 'Kz(ate)de,
m

where

(Bl)

In this appendix, we shall evaluate the integral in
(2.14), namely, W=M coshY, M) 0,

P~ =M sinh Y .

Then, D may be rewritten

(Cl)

i=r+(P+s ) t— (B2) n

As will become clear later when computing C and D in
(2.9) and (2.10), the precise behavior of F(s, t ) is required
when ~g~ is small. Since Ko(ate} is logarithmic in this
limit, a convenient approximation would be to evaluate it
at e =m and put it out in the integration sign. So

D =(4na)" —+—e
g2

X exp —M cosh Y
C+

F(s, t ) =4@a —+ e Ko(mr)) .
m l

g2
(B3) +My cosh(g —Y)]dg,

(C2}

F(s, t)=4m a —+ e Ko((e)ri) .
g2

(B5)

By recalling that Ko(ge) = —ln(edge/2) in the small
argument limit, we can easily estimate ( e) from Eq. (B4)
by partial integration.

m5+1
e ln(e) = ee 'lnede

m

A somewhat better estimate is obtained by taking
Ko(ate) at a point e= (e) =m such that

f ee '[Ko(rie) —Ko(rt(e) )]de=0, (B4)

in which case we have exactly
r

where a is a small positive constant and integration paths
C+ are as shown in Fig. 1. The integral in g has been

computed previously (see Appendix C of Ref. [12]) and
reads

exp[ —MI3 cosh Y+M g cosh(g —Y) ]d gC+

=2mie ~"'" Io(Mrt)+ . Ko(Mq}
1

(C3)

The last term in (C3} may be dropped because, when

integrated over q, it does not give any contribution.
Thus,

m5+1
e lnm

$2

e —Ei( —m 5)+
5

(B6)

~

(4 )n + —Mgcoshr —nmsm 1

g2

x f"'"
[K,( & e)~) ]"1,(M~ }gd q . (C4}

a —i co

Since M »n (e) =nm, the integrand above is rapidly
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If imp&0 Imp
')x/a drg ()}}

0 Re)

I=&e&-'f'""[K,(g}]"I g /de

)
—2f +' 4(g) dg

a —i co

where we have put

(C5)

-m/z+ arg t)}}
4(g)=ln [Ko(g)]"Io (C6)

)I'
If Imp(0 Imp

n:/a- far(I t)}}]

The saddle point go is on the real axis and, as usual, ob-
tained by equating the first derivative 4'(g) to 0, namely,

nK((go) MI, (Mgoj& e) )

K,(g, )

- mjz+ [ar|}t)}}]

Now, a direct numerical computation of e '~' shows
that, for typical values of M( =400 GeV) and n( =100),
go is in the range go=0.01-0.02. So, recalling (87), we
may neglect the last term in (C7) and replace there

2 1
Ko ( go ) —ln K ) (go }-

ergo
'

Co

FIG. 1. Integration paths C+ which appear in (C2).

dominated by Io(Mr}}when iris'~ ~, so as stated below
(B2) only the dominant behavior of Ko for mr}~0 is
needed to evaluate this integral. Let us evaluate it (call it
I) by the saddle-point method. We have

and

o Mgo

&e) ' &e)

We have, thus

exp(Mgo /&e) )

(2~Mgo j&.& } i2

(C8)

n&e) n&e)
M ln(2/ergo) M ln((2M/em &e) )ln{(2M/e "n &e))ln[(2M/em &e)) ]] )

In the same approximation, we have

(I)"(go) = ln —1
M 2

n &e&' ergo

1n
2

erg

Then,

so, (I)"(go) & 0 for M and n values of our interest as it should be. As for 4(go), it is given as
' 1/2 'n

n
exp

ln(2 je re)

(C9)

(Cl 1)

l 2'
& e)' (I)"(go)

' 1/2
4($0)

e

r

i)1 2 1
1n 1—

M e rg'o In(2/e rgo)

' —1/2
n

exp
ln(2/e re)

(C12)

So, by inserting this I into (C4), we have finally

n
m 1 1 2

D = 2mn(4na)"e —" . —+ 1n
5 M ergo

n —1
—1/2

1 lt1— exp —MP cosh F+
ln(2/erg ) ln(2/e re)

(C13)
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