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Quantum mechanics of history: The decoherence functional in quantum mechanics
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%e study a formulation of quantum mechanics in which the central notion is that of a quantum-
mechanical history —a sequence of events at a succession of times. The primary aim is to identify sets of
"decoherent" (or "consistent") histories for the system. These are quantum-mechanical histories
suffering negligible interference with each other, and, therefore, to which probabilities may be assigned.
These histories may be found for a given system using the so-called decoherence functional. %hen the
decoherence functional is exactly diagonal, probabilities may be assigned to the histories, and all proba-
bility sum rules are satisfied exactly. %e propose a condition for approximate decoherence, and argue
that it implies that most probability sum rules will be satisfied to approximately the same degree. We
also derive an inequality bounding the size of the off-diagonal terms of the decoherence functional. We
calculate the decoherence functional for some simple one-dimensional systems, with a variety of initial
states. For these systems, we explore the extent to which decoherence is produced using two different

types of coarse graining. The first type of coarse graining involves imprecise specification of the
particle's. position. The second involves coupling the particle to a thermal bath of harmonic oscillators
and ignoring the details of the bath (the Caldeira-Leggett model). We argue that both types of coarse
graining are necessary in general. We explicitly exhibit the degree of decoherence as a function of the
temperature of the bath, and of the width to within which the particle s position is specified. We study
the diagonal elements of the decoherence functional, representing the probabilities for the possible his-

tories of the system. To the extent that the histories decohere, we show that the probability distributions
are peaked about the classical histories of the system, with the distribution of their initial positions and
momenta given by a smeared version of the Wigner function. We discuss this result in connection with

earlier uses of the Wigner function in this context. We find that there is a certain amount of tension be-

tween the demands of decoherence and peaking about classical paths.

PACS number(s): 03.65.Bz

I. INTRODUCTION

Few would dispute that quantum mechanics is a very
successful theory. Indeed, there is, at present, no discer-
nible discrepancy between the predictions of quantum
theory and the results of experiment. Yet the conven-
tional interpretation of quantum mechanics, the
Copenhagen interpretation, is felt to be inadequate: it
rests on an a priori division of the world into a classical
observing apparatus and quantum-mechanical observed

system and places heavy emphasis on the process of mea-
surement [1]. What place is there for such notions in a
world thought to be fundamentally quantum mechanical
in nature? Or in the very early Universe when observers
or measuring apparatus could not have existed?

These questions are not of a purely academic nature.
A variety of recent developments suggest that extrapola-
tion of quantum mechanics to the macroscopic domain
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might not only be of interest, but could even be obligato-
ry. The possibility afforded by superconducting quantum
interference devices (SQUID's) of preparing systems in
macroscopic quantum states has forced a revision of the
notion that only microscopic systems can exhibit quan-
tum effects [2]. And the emergence of the field of quan-
tum cosmology [3,4], in which it is asserted that quantum
mechanics may be applied to the entire Universe, has
necessitated a reconsideration of the foundations on
which the conventional interpretation of quantum
mechanics is based.

Even on the familiar territory of the microscopic level,
quantum mechanics continues to be a source of conceptu-
al difficulty. Although mathematically consistent, and in
full agreement with experiment, it displays a number of
features which are difficult to reconcile with physical in-

tuition and are sometimes described as paradoxical.
Resolution of these difficulties may emerge from the

observation that there is considerable scope for formulat-

ing the theory in different ways while preserving its phys-
ical predictions. For example, nonrelativistic quantum
mechanics may be formulated in the Schrodinger picture,
the Heisenberg picture, or in terms of a sum over his-

tories. The theory looks very different in each of these
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approaches, but they are mathematically equivalent and
their physical predictions are exactly the same. Viewing
the theory from the perspective of these different formu-
lations not only sheds new light on conceptual aspects of
the theory, but also points the way to possible generaliza-
tions.

The conventional formulation of quantum mechanics,
especially in the Schrodinger picture, places heavy em-
phasis on the notion of an event at a single moment of
time: the quantum state of a system, the Hilbert space to
which it belongs, and the "collapse of the wave function"
of conventional quantum measurement theory, all involve
a single moment of time [5]. It is, however, possible to
generalize the usual formulation of quantum mechanics
so that such notions are deemphasized, and one focuses
instead on the notion of a quantum mec-hanical history.
By this is meant, loosely speaking, a sequence of
quantum-mechanical events at successive moments of
time.

The object of this paper is to study such a formulation
of quantum mechanics, developed over the last few years
primarily by Griffiths [6], Omnes [7], and Gell-Mann and
Hartle [3,8,9]. This formulation specifically concerns
closed quantum-mechanical systems and is assumed to
apply to microscopic and macroscopic systems alike, up
to and including the entire Universe. Its most important
feature is that it focuses on the possible histories of a sys-
tem. The formulation is explicitly time symmetric. It
may be used to assign probabilities to noncommuting ob-
servables at different times. It makes no reference to
external observers, classical apparatus, wave-function
collapse, or indeed any of the usual machinery of conven-
tional quantum measurement theory. The physical pro-
cess of measurement may, however, be examined from
within the formulation, and under appropriate cir-
cumstances the familiar results of the orthodox approach
are recovered.

The central goal of this formulation is to assign proba-
bilities to families of histories of a closed system. Howev-
er, as we shall see, interference is generally an obstruction
to assigning probabilities to histories. Attention there-
fore centers around a set of "consistency conditions"
which determine the sets of histories suffering negligible
interference, and therefore, to which probabilities obey-
ing the standard probability sum rules may be assigned.
A set of histories satisfying the consistency conditions are
referred to as "consistent" or "decoherent" histories.
They have the same status as the histories of a classical
statistical system, such as a stochastic process. One may
think of a system described by a set of consistent histories
as possessing definite properties, but for which there are
only probabilities of finding the system to be following a
particular history.

In brief, therefore, in this "decoherent histories" (or
"consistent histories" ) formulation of quantum mechan-
ics many of the difficulties of the orthodox approach,
and, in particular, the difficulties associated with central
role played by measurement and the presumed existence
of a classical domain, are replaced by the issue of satisfy-
ing the consistency conditions. These conditions act as a
regulatory principle, or sieve, systematically sorting out

the statements that may be made about a system into
meaningful and meaningless. They identify the proper-
ties of a closed quantum system which may be regarded
as definite, in an objective sense, that makes no reference
to measurement or external observers.

The authors who developed this generalization of con-
ventional quantum mechanics appeared to have some-
what different aims. Griffiths emphasized the
formulation's potential for shedding light on the concep-
tual difficulties of quantum mechanics [6]. Omnes was
likewise concerned with quantum-mechanical paradoxes,
but, additionally, emphasized the role of formal logic.
He also showed that the consistent histories formulation
is based on fewer axioms than the Copenhagen interpre-
tation, and moreover, on a different set of axioms [7].
The most ambitious point of view is that taken by Gell-
Mann and Hartle, who were concerned with quantum
mechanics as it might apply to the Universe as a whole
[3,8,9]. The motivations for the present work are perhaps
closest to those of Gell-Mann and Hartle. They concern
the issue of the emergence of classical behavior and the
interpretation of quantum cosmology.

As mentioned at the beginning of this paper, the
Copenhagen interpretation posits a classical domain and
is not sufficiently general to explain it in terms of an un-
derlying quantum theory. By contrast, the decoherent
histories approach assumes no separation of classical and
quantum domains, and is taken to have an unrestricted
domain of validity. Consider then, the requirements a
quantum system must satisfy if it is to be approximately
classical [8]. The most fundamental requirement is that it
should be described by a decoherent set of histories. For
then the histories of the system may be assigned probabil-
ities obeying the standard probability sum rules. Second,
the decoherent histories should consist of largely the
same variables at different times. In this paper, we shall
assume this and not explore the manner in which it may
fail to be true. Third, the values of the dynamical vari-
ables at different times should be correlated according to
classical laws. This means that the probability distribu-
tions for the histories should be strongly peaked about
classical histories. There is some uncertainty as to what
other requirements should be imposed. A further re-
quirement discussed in Ref. [8] is that the histories must
be characterized as precisely as is consistent with
decoherence. Here, we will focus on decoherence and
classical correlations.

We feel that the decoherent histories approach is likely
to be both useful and important in the development of
quantum mechanics and especially in quantum cosmolo-
gy. It is therefore of interest to explore its features in the
context of some simple models. This is what we do in
this paper. The purpose is to develop some intuitive feel
for the formalism in familiar circumstances and to obtain
a quantitative understanding of how the decoherence
conditions may be satisfied and the extent to which classi-
cality may emerge. Our work consists largely of calcula-
tions in nonrelativistic quantum mechanics. Although
quantum cosmology is one of our motivations, we will
make no reference to any of its technical aspects. Other
studies of the decoherent histories approach include that
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of Albrecht [10],who considered spin systems, and Blen-
cowe [11], who considered the generalization to field
theories.

We begin in Sec. II by reviewing the decoherent his-
tories approach. The formalism as it currently stands is
largely concerned with histories which satisfy the con-
sistency conditions exactly. However, for most cases of
interest, one has at best approximate decoherence. In
Sec. III, we therefore address this issue and propose a
condition for approximate decoherence. We also derive
some useful inequalities for both the density matrix and
the decoherence functional. A particularly useful model
with which to discuss dec oherence is the Caldeira-
Leggett model, a model for quantum Brownian motion.
It consists of a distinguished particle coupled to a
thermal bath of harmonic oscillators. We review this
model in Sec. IV. In Secs. V —VIII, we calculate the
decoherence functional for this model in a variety of
different circumstances. We summarize and conclude in
Sec. IX.

II. THE QUANTUM MECHANICS OF HISTORY

We have described in the Introduction the motivations
for studying a formulation of quantum mechanics based
on history. We now describe the formalism for handling
quantum-mechanical histories. This section is largely a
review, with elaborations, of the material of Refs.
[3,6—9]. A history is a sequence of events at a succession
of times. Let us therefore first describe what we mean by
an event in quantum mechanics.

about a particle's position. The proposition, "the posi-
tion of the particle is x," is implemented through the pro-
jection operator

P„=/x &(x/ . (2.1)

P (X)= „, f" dx exp —,~x&(x~ . (2.3)
77 0 0'

Generally, we will consider a set of projection opera-
tors P corresponding to a set of alternatives labeled by

a, where a runs over some (possibly infinite and/ or con-
tinuous range). The set of alternatives should be exhaus-
tive, which means that

gP =1, (2.4a)

and mutually exclusive, meaning

This corresponds to an infinitely precise specification of
the particle s position. Of greater interest is the proposi-
tion, "the position of the particle lies in the range 6,"
which is implemented through the projection operator

Pg = dx x x (2.2)

If the particle is described by the state
~
4 ), then its posi-

tion definitely lies in the range 6 if P~~%) = ~'0), and it
definitely lies outside that range if Pt, ~+) =0. The pro-
jection operators (2.2) actually turn out to be rather
cumbersome to use in practice, and it is somewhat easier
to use so-called "Gaussian slits. " This involves using, in-
stead of (2.2), the (approximate) projectors

A. Projection operators and events P Pg=5 pPp . (2.4b)

In classical mechanics, systems are regarded as having
definite properties and statements such as, "the position
of the particle is x," are deemed to have an unambiguous
meaning. In quantum mechanics, by contrast, although a
system may have definite properties if its state is an eigen-
state of some observable, it generally will not. We might
be interested, for example, in knowing whether or not we
can say of the system, at some moment of time, "the posi-
tion of the particle lies in the range 5," or "the momen-
tum is p,

" or "the spin is up. " Formally, possession of
certain properties or the occurrence of events may be
tested using projection operators. A projection operator
associated with some event (or with some "proposition")
is a Hermitian operator P satisfying P =P. The event is

said to occur in quantum mechanics if P
~
4 ) =

~
+ ), and

not occur if P ~4 ) =0. Since any state ~% ) may be writ-
ten as a superposition ~4) =P~0')+(1 P)~4), events—
cannot, in general, be said to definitely occur or definitely
not occur, and one can at best assign a probability to
each possibility. The probability of occurrence, for ex-
ample, is ( %'

~
P

~

4 ) .
A simple example is provided by the two-dimensional

Hilbert space of spin states in a particular direction,

[ ~
1 ), ~

1 ) j. The projection corresponding to the proposi-
tion, "the spin is up,

" is Pt =~1)(1~, for which one
clearly has P& ~ 1)= ~1 ), and Pt ~

1)=0.
Relevant to the rest of this paper are propositions

For the case of the projection operators (2.2), we write
P =P~, and the set of alternatives is the set of intervals,

[b j. This set of intervals must constitute a partition of
the real line into nonoverlapping sets; i.e., U 6 =IR and
b, (lb&=8 if aAP. The Gaussian projectors (2.3) are
exhaustive but satisfy the mutually exclusive condition
only approximately, since one has

1P (x, )P (xz)=, exp
(2mcr )'~

(x, —x~)

20

XP
X) +X2

(2.5)

They are therefore exclusive only to the extent that the
exponential on the right-hand side of (2.5) is zero for
X,&x~. This means that the Gaussian projectors (2.3)
affect a partition of the real line into regions with size of
order o. centered around x, and x has meaning only up to
order o. Quite how many times o one takes each region
to be in size depends on how well one needs the exclusivi-

ty condition to be satisfied, which, in turn, depends on
the situation. We will return to this question in Sec. VII.

For a system in state
~
4 ) at some moment of time, the

probability of the occurrence of the event specified by the
alternative o. is
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A trivial rewriting of this, relevant to what follows, is

(2 6} occurs. We therefore consider the object

(2.12}

(2.7)

where the trace is over a complete set of states.
A projection is said to be coinpletelypne grai-ned if it

corresponds to precise specification of a complete set of
commuting observables. That is, the projectors are of the
form

This will, of course, be zero if the event does not occur,
equal to (2.11}if it does; but generally it will be nonzero
and different from (2.11). Now suppose we evolve further
to time t2 and ask about the event corresponding to pro-
jectors P . We thus obtain the "path-projected state:"

2

—iH(t2 —t) ) —ia(, tl —to)
~aztz, a&ti 0') =P e ' ' P e ' ~%') .

P =)a&&a/, (2.g)
(2.13)

P~ = R x,Rk x,Rk (2.9)

Most generally, a coarse-grained projection is one of the
form

P =gP
a6a

(2.10)

where P is a fine-grained projector, and the sum is over
all u not fixed by a.

B. Quantum-mechanical histories and interference

where the states t ~a ) I are complete. For a particle mov-
ing in one dimension with position x, (2.1) would be an
example of a fine-grained projection. A projection is said
to be coarse-grained if it corresponds to imprecise
specification of a complete set of commuting observables,
precise specification of an incomplete set, or both. An ex-
ample of the first possibility is Eq. (2.2) or (2.3). An ex-
ample of the second (considered in the following sections)
is provided by a composite system consisting of a dis-
tinguished subsystem with single coordinate x and an
"environment" with a set of coordinates Rk. The Hilbert
space for the total system is spanned by the states
I ~x, Rk ) I and a coarse-grained projection corresponding
to precise specification of an incomplete set of observ-
ables is

This state is the evolved state projected onto a sequence
of alternatives at successive moments of time. It is the
state for the history ('0, to )~(a, , t, )~(az, tz ).

Now we wish to assign a probability to this history.
The obvious candidate for the probability of this history
1s

P( az ztait l } & a2t2 altl +~aztz altl (2.14)

If this is to be a true probability, it must satisfy the ax-
ioms of probability theory. These are that the candidate
probability must be non-negative, normalized, and, most
importantly, must satisfy the "probability sum rules. "
These sum rules are that the probabilities must be addi-
tive on disjoint regions of sample space (e.g., the proba-
bility of A or B is the probability of A plus the probabili-
ty of 8, if A and 8 are mutually exclusive). The expres-
sion (2.14} is clearly non-negative. It is also readily
shown to be normalized to one (when summed over ai
and az). The important point, however, is that the prob-
abilities (2.14} will generally not satisfy the probability
sum rules.

To see this, consider another history, similar to the one
above, but in which no projection is made at time t, ; that
is, the history (4', to)~(az, tz ). It has the path projected
state

—iH( t ) to )
~

)— (2.11)

Suppose at this time we ask whether or not the event cor-
responding to some set of projection operators P

I

Turn now to the description of histories. As stated
above, a history is a sequence of events at successive mo-
ments of time. A quantum-mechanical history is there-
fore characterized by a sequence of projection operators
at a succession of times. The goal of quantum mechanics
is to determine the probabilities for certain events, or se-
quences of events; thus, through the use of projection
operators at a succession of times one might hope to as-
sign probabilities to the possible histories of a system, in a
manner analogous to Eqs. (2.6) and (2.7). However, in-
terference generally forbids the assignment of probabili-
ties to histories in quantum mechanics. To see why this
is so, consider the following example.

Consider a system with Hamiltonian H which, at time
to, is in a state ~%'). At time t, , it will be in the state

a&

(2.15)

where the final equality follows from the property (2.4a)
of the projection operators. The probability for this
second history is

P(aztz) =
& aztz, 'P~aztz, 4) . (2.16)

Then an example of the probability sum rules that should
be obeyed is

P(aztz) QP(aztz altl ) (2.17)

But this is not the case: (2.17) is generally not satisfied by
the probabilities (2.14) and (2.16) defined in terms of the
path-projected states. This follows immediately from
(2.15}from which one has
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&a2t2, +la2t2, +)= & &a2t2, a)t, , +la2t2, a)t), +)+ (2.18)

This diff'ers from (2.17) by the presence of the term

& a2t2, a) t), %'~a2t2, a) t), 'It ),
I

QIWQ I

(2.19)

which is generally nonzero and represents interference between different quantum-mechanical histories. It is in this
sense that interference generally prevents probabilities from being assigned to histories in quantum mechanics.

We may, nevertheless, still attempt to identify those sets of histories which suffer negligible interference with each
other, and therefore to which probabilities may be assigned. From the above, it is readily seen that these histories may
be found by studying the object

D(a1 a2~a1 a2) &a2 2 altl +~a2t2 altl

2 1 a& 2
(2.20)

where the trace is over a complete set of states. If Eq.
(2.20) is zero for a,Wa'„we say that the histories
decohere and the probability sum rule (2.17} will be
satisfied. Moreover, the probabilities themselves are
given by (2.20) with a, =a1. The main goal, therefore,
when studying the quantum mechanics of history, is to
study an expression of the form (2.20) and identify those
sets of histories which decohere. This simple example il-
lustrates the key issues arising in any attempt to build a
quantum mechanics based on history, and we now de-
scribe the more general formalism.

C. The decoherence functional

Generally, the system is described by an initial density
natrix p at initial time to, and one considers histories
:onsisting of n projections at times t, &t2 « t„.
Expression (2.20}, the object which tells us whether or
iot probabilities may be assigned to histories and what
;hose probabilities are, is a special case of an object called
:he decoherence functional and is given by

pI to be proportional to the identity operator.
We note the following elementary properties of the

decoherence functional:

D([a) [a'))=D'([a'1 [a]»
g g D([a],[a'])= Trp=1 .
[al [a']

(2.23)

(2.24)

The diagonal elements of the decoherence functional
satisfy

g D([a],[a]}=1
I~]

(2.25a)

(2.25b)

The last property, (2.25b), follows frotn the cyclic proper-
ty of the trace, and from summing out the projections,
starting with the projection at time t„and working in-
wards. The diagonal elements are the candidates for the
probabilities for the histories (p, t t)) ~( a, , t, )

~(a„,t„) and we denote them

p(a„a2, . . . , a„)=D(a„a2, a, la) a2 . a, ) .

(2.26)

tttk —tp)H k tttk tp)H

k k
(2.22)

The superscript k has been added to allow for the possi-
bility to have different types of projections at different
moments of time, e.g., a position projection at t, , a
momentum projection at t2, etc.

A final density matrix p& could also be included at the
end of the string of projections in (2.21), and it would
then be necessary to divide by a normalization factor,
Tr(p&p). This form emphasizes the time-symmetric na-
ture of the formulation [12]. Here, we will generally take

(2.21)

It is a functional of the pair of histories [a],[a'], where
[a] denotes the string of alternatives, a„a2, . . . , a„at
times t& & t2 . . . «t„. The trace is over a complete set
of states for the entire system, and we have introduced

Equations (2.25a) and (2.25b) ensure that they are non-
negative and properly normalized.

Consider now the sum rules the probabilities should
satisfy. For a given set of histories, characterized by a se-
quence of projections P, . . . ,P, one may construct

coarser-grained histories by summing over the finer-
grained projections, as in Eq. (2.10) (although note that
here the P 's need not be completely fine-grained projec-
tions). The coarser-grained histories are therefore
characterized by a sequence of coarser-grained projec-
tions, P, . . . , P . We will be more explicit about the

al ' ' a„
coarse-graining process below. The probability sum rules
to be satisfied are that the probability of each coarser-
grained history should be the sum of the probabilities of
the finer-grained histories of which it is comprised. This
means that

p(a, a2, . . . , a„)= g p(a), a2, . . . , a„) . (2.27)
[a]EIa]
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Here we have used the notation

[a]6[a] a& Ea& a2Ea2 a„E-a„
(2.28)

D([a), [a'])= g g D([a],[a']) . (2.29)
[a]c[a] [a']E[a']

From this it follows that

D([a],[a])= g D([a],[a])
{a]E[a]

where ak E.ak denotes the sum over the alternatives ak
not fixed by the coarse graining ak, and the coarse grain-

ing may be difFerent at each moment of time. Equation
(2.27} should hold for all coarse grainings [a] of the
finer-grained set of histories.

As in the simple example discussed above, however,
the probability sum rule (2.27} will generally not be
satisfied by the diagonal elements of the decoherence
functional, and one cannot assign probabilities to his-
tories in the manner (2.26). Summing over the finer-

grained projections, one obtains the decoherence func-
tional for the coarser-grained histories:

of histories which do not decohere cannot be assigned
probabilities. They are regarded as devoid of meaning
and have no predictive content.

In all cases we are aware of, the real and imaginary
parts of the decoherence functional generally vanish to-
gether (or are small, see below), and it is often convenient
to work with the slightly stronger condition obtained by
omitting the real part condition in (2.31). It would, how-

ever, be of interest to find examples for which one cannot
do this.

Note that it is essential that the complete set of his-
tories decoheres. That is, the decoherence condition
must be satisfied for all possible values of the alternatives
[a]. It might be possible, for example, to find a particu-
lar pair of distinct histories [a],[a ] (i.e., particular
values of [a],[a']) for which the decoherence condition
(2.31) is satisfied, but not, in general, for all other pairs of
values. It would not be correct, however, to say that this
particular pair decoheres. The crucial point is that the
probability sum rules must be satisfied and these sum
rules involve a sum over all alternatives, i.e., over all pos-
sible values of ak for each k The decoherence condition
must therefore be satisfied for all possible pairs of his-
tories in the set.

+ g D([a],[a']) . (2.30)
D. Coarse graining and decoherence

[a]A[a']
[a],[a']a[a]

(2.31)

except when ak=ak for all k. This is also a necessary
condition because the sum over o6'-diagonal terms must
vanish for all possible coarser grainings of the histories;
i.e., all possible sums of the o8'-diagonal terms must van-
ish. The fundamental formula for the quantum mechan-
ics of history may therefore be written

Re[D(+I +2 . . & laI, az, . . . , u„')]

=p(a„a2, . . . ,a„)5, 5aIa I „a„ (2.32)

This is both the condition for decoherence and the rule
for the assignment of probabilities to decoherent his-
tories.

Sets of histories that decohere are the only histories
that are regarded as having meaning in this framework
and constitute the predictive output of the theory. Sets

Here [a]%[a'] means all pairs of histories [a],[a'] for
which akAu'k for at least one value of k. In analogy
with (2.18), therefore, the presence of the sum over off-
diagonal terms generally prevents one from identifying
the on-diagonal terms with the probabilities, (2.26).

For the probability sum rules to be obeyed, it is neces-
sary that the sum over off-diagonal terms vanishes in
(2.30). From the Hermiticity property, (2.23), it follows
that only the real part of the decoherence functional con-
tributes to the interference term in (2.30}. A sufficient
condition for decoherence, therefore, is

Turn now to the question of how to achieve decoher-
ence. First we note a simple but very important case.
The decoherence functional (2.21} is always diagonal in

the final projection D([a],[a'])~5, by virtue of the
~a~ n

cyclic property of the trace. In particular, suppose that
we consider histories characterized by a single event at a
single moment of time. Such histories olwttys decohere,
for one has

Tr[P (ti)pP, (ti))= Tr[pP (ti)]5 (2.33)

(2.34)

and for the moment let the projections be at a discrete,
finite set of times. Then the decoherence functional has
the form

It is perhaps for this reason that the need for decoherence
is not apparent in conventional quantum mechanics,
which largely focuses on events at a single moment of
time. Let us go on, therefore, to study more general his-
tories consisting of events at more than one moment of
time.

The most refined description of history it is possible to
give is a completely fine-grained history. This is one
characterized by a set of fine-grained projections at every
moment of time, i.e., one in which one precisely specifies
a complete set of commuting observables at every mo-
ment of time. With the exception of some special cases,
fine-grained histories do not decohere. To see this, insert
into (2.21) the fine-grained projections
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D([a],[a'])=5, &a„,t„la„„t„,&&a'„„t„la'„,t„

X 0 ~ ~

tpla), t) & & a), t) lap, t) & & ajlp(t) )la' & (2.35)

Even before taking the limit that the projections are con-
tinuous in time, it is evident that a decoherence function-
al which has the product form (2.35) will generally not be
diagonal. This will also be clear from the path-integral
form below. As indicated above, however, there are some
exceptions. For example, suppose that all the projections
commute with each other and with the Hamiltonian (as
would be the case with momentum projections for the
free particle). Then it is not difficult to see that the
decoherence functional will be diagonal for any initial
state. Another special case is that of a pure initial state

l
4 ), with the projections at the times tk taken to be the

state unitarily evolved to that time, P
= l%'(tk ) ) & %(tk ) l (together with its complement,
1 P). It is—not difficult to show that these histories

decohere.
To achieve decoherence, it is generally necessary to

consider coarse-grained histories. There are three princi-
ple methods of coarse-graining histories. The first is to
make projections at not every moment of time. Typically
this involves making projections at discrete moments of
time, but it could also involve making projections in a
discrete set of continuous ranges of time. At the mo-
ments of time when the projections are made, one can
then give imprecise specification of a complete set of

commuting variables, or precise specification of an in-
complete set, or both. This, of course, corresponds to
making coarse-grained projections at those moments of
time, as discussed earlier.

It is an important issue for investigation to determine
the extent to which these coarse grainings lead to
decoherence. This will be the topic of much of the
remainder of this paper. We remark that it is immediate-
ly clear that the first of the three methods does not seem
to be particularly relevant. Specifying a set of fine-

grained projections at not every moment of time is a
coarse graining, but as we saw above, it alone will gen-
erally not lead to decoherence. On the other hand, there
is no reason why coarse-grained projections continuous in
time should not lead to decoherence. We will concen-
trate on the second two methods in the following sec-
tions.

K. Path-integral form of the decoherence functional

The decoherence functional is very conveniently writ-
ten in terms of a path integral, a form we will exploit in
the following sections. Suppose the system is described
by a set of configuration space variables q'(t ). From the
expression (2.21) for D([a, ],[a']), one may derive the
path-integral expression

D([a],[a'])=j Sq'f Xlq" exp(iS[q'] iS[q
"—]) (5q& qt')p(q'o, q—o) .

[a] [a']
(2.36)

Here, S[q'] is the action for the system. The sum is over

two sets of paths q'(t), q'(t), which begin at qo, qo, at
t = to, weighted by the initial density matrix. They end at

tf at a common point q&
=q&, which is summed over,

and the result is independent of t& [this follows from the
trace form of the decoherence functional, (2.21)]. The
paths also satisfy restrictions at times t, t„corre-
sponding to the projections P" (tk). The path-integral

form is most useful when the projections are onto posi-
tion. In this case, the paths are restricted to pass through
certain ranges (i.e., pass through gates) on the time slices
t, t„, but are otherwise free. Projections onto mo-
menta are possible in a phase-space path-integral version
of (2.36) [9].

The pat¹integral form of the decoherence functional
provides an alternative way of seeing that completely
fine-grained histories do not decohere. Suppose we pro-
ject onto precise values of the coordinates at every mo-
ment of time; e.g. , project q' onto some value Q', say.
Formally, this involves inserting into the path integral at

x 5( Q~
—

Qt )p( Qo, Qo ) . (2.37)

This expression is the decoherence functional for com-
pletely fine-grained configuration space histories, Q'(t),
Q (t ). It is clearly not, in general, small for distinct his-
tories.

In the path-integral form of the decoherence function-
al, the two most important coarse grainings involve speci-
fying not all of the q' but only some of them, and specify-
ing the q' only imprecisely by projecting them onto some
range. The sum over histories also affords the possibility
of coarse grainings more general than those that can be

implemented by projection operators in the trace form of
the decoherence functional. The underlying notion that
permits this generalization is that of a partition of the
paths. Projection operators partition the paths according

every time t a 5 function 5(q'(t) —Q'(t)}. It is not
dificult to see that the decoherence functional then takes
the form

D([a],[a'])= exp(iS [Q'] iS [Q' ]—)
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(2.38)

to their properties at a particular moment of time, e.g.,
the particle either does or does not pass through the re-
gion of configuration space 6 at time t. In the sum over
histories, they can be partitioned without reference to
time. For example, one can partition the paths into those
that do or do not pass through the region 6 at any mo-
ment of time. Such a partition cannot be effected by a
single chain of projection operators at fixed moments of
time, yet it can in the sum over histories, and is some-
times a useful and interesting one to consider [13]. The
sum-over-histories version of the decoherence functional
is therefore more general than the trace form (2.21) in
that it permits these more general coarse grainings, but it
is also less general in that it is restricted to coarse grain-
ings involving only positions and momenta.

As an aside, we note that the path-integral form of the
decoherence functional may also be written

D([a],[a'])=f 2)q'exp(iS[q'])p(qo, qo ) .
[~l (~'l

Here, the sum is over all paths q'(t) beginning at qo at
t = to, moving forwards in time to t = tf passing through
the gates [a], and then moving backwards in time pass-
ing through the gates [a'], ending at qo at r =to gp(a&, . . . , a„„a„)=p(a„.. . , a„,) (2.40)

operators. Using this formalism one can construct the
probability for a sequence of measurements: it is given by
(2.39). In this case there is no obligation to show that the
probabilities (2.39) obey probability sum rules, and, in

general, they will not. This is because the probabilities
for different sequences of measured alternatives corre-
spond to different physical situations, and there is no
reason in general why these probabilities should be relat-
ed. For example, a sequence of measurements at times t„
t2, and t3 is a quite different physical situation to the se-

quence in which the measurement at tz is omitted be-
cause of the physical disturbance the measurement at t2
necessarily produces.

Of course, in standard quantum measurement theory,
there are special measurements, quantum nondemolition
measurements, which do not physically disturb the sys-
tem. A sequence of such measurements mill lead to a
probability (2.39) which does, in fact, satisfy the probabil-
ity sum rules. Also, it should be noted that expression
(2.39) satisfies a limited set of probability sum rules for
any set of measurements, namely, the rules

F. Decoherent histories and quantum measurement theory

Much of the formalism described in this section bears
close resemblance, at least mathematically, to the famil-
iar machinery of standard quantum measurement theory.
Indeed, the diagonal part of Eq. (2.21),

p(a, , . . . , a„)
= Tr[P" (r„) P' (r, )pP' (r, ) P" (r„)],

(2.39)
is a familiar formula of quantum measurement theory. It
is the probability of a sequence of measured alternatives
with an initial state p and with unitary evolution between
measurements. It is, however, important to understand
the distinction between this approach and the decoherent
histories approach.

The decoherent histories approach concerns closed
quantum systems. It makes no reference to the process of
measurement or to collapse of the wave function. The
projection operators are not models of measurement by
an external agency or of interactions with other
systems —they cannot be because the system is closed.
The projections serve only to characterize the possible
histories of the closed system. These histories are as-
signed candidate probabilities via the formula (2.39). The
candidate probabilities are only true probabilities if they
satisfy the consistency conditions. The sole predictive
output of the theory consists of the probabilities for a set
of consistent histories.

By contrast, conventiona1 quantum measurement
theory concerns quantum systems that are not genuinely
closed. They are not closed because they are occasionally
subjected to the inAuence of an external, classical, agency
that performs a measurement. The state of the system
evolves according to two laws of evolution: unitary evo-
lution, when isolated, and nonunitary evolution (collapse
of the wave function) when a measurement takes place.
This measurement process is modeled by projection

for all n. This follows from the exhaustive property of
the projections and the cyclic property of the trace. But
neither of these features should detract from the fact that
the interpretation of the mathematical formalism in
quantum measurement theory is very different to its in-
terpretation in the decoherent histories approach con-
sidered in this paper.

These, then, are the differences between the two ap-
proaches, but the connections between them should also
be stressed. As indicated in the Introduction, an analysis
of the quantum measurement process may be carried out
from within the framework of the decoherent histories
approach. Because the decoherent histories approach ap-
plies to genuinely closed quantum systems, the system
carrying out the measurements must be included in the
total closed system. One could, for example, consider a
closed system consisting of two interacting subsystems,
observer and observed, and study the correlations be-
tween them. In this way is may be shown that the
Copenhagen view of quantum measurement theory out-
lined above emerges as a special case of the more general
decoherent histories approach. The precise conditions
under which this approximation is appropriate are de-
scribed in Ref. [3].

This completes our survey of the general formalism of
the quantum mechanics of history. As stated in the In-
troduction, we feel that this approach to quantum
mechanics has considerable potential, on the one hand,
for clarifying many conceptual issues, and on the other,
as a possible tool with which to do quantum cosmology.
It therefore becomes an interesting issue to calculate the
decoherence functional for various models. Not only will
this allow us to develop some feeling for how the formal-
ism works in the context of simple examples, but, also, it
mill allow us to obtain a quantitative idea of the
effectiveness of the coarse grainings discussed above. In
particular, in the following sections, we wish to exhibit
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the decoherence explicitly and quantitatively as a func-
tion of the coarse graining.

III. APPROXIMATE DECOHERENCE
AND SOME INEQUALITIES

[a]&[a']
[a],[a']E [a}

ReD([a], [a']) & e g D( [a],[a])
[a]&[a]

(3.1)

In Sec. II, we described the formalism of the quantum
mechanics of histories and gave the condition, Eq. (2.32),
that must be satisfied if probabilities are to be assigned to
sets of histories. This condition is the condition for exact
decoherence, i.e., for the probability sum rules for his-
tories to be satisfied exactly. While it is sometimes possi-
ble to exhibit histories which decohere exactly, it seems
reasonable to expect that, in general, decoherence will
not be exact, but will be approximate. This is the case,
for example, for the models considered in this paper. It
therefore becomes an interesting and important question
to understand what is meant by approximate decoher-
ence. This question is the topic of the present section.

A. Approximate decoherence

Recall that the probability sum rules to be satisfied are
Eq. (2.27), i.e., that the probability of a coarser-grained
history must be the sum of the probabilities for its con-
stituent finer-grained histories, and that this must be true
for all coarser-grained histories. The natural generaliza-
tion of this is to demand that the probability sum rules
are satisfied to order e, for some constant e(1. By this
we mean that the interference terms do not have to be ex-
actly zero, but only suppressed by a factor e; i.e.,

P =P +P, (3.2)

This means that the alternative ak consists of n& or o.k.
Let us then demand that the probability sum rule for this
coarser graining is satisfied to order e. It is simple to
show that this means

for all possible coarser grainings [a] of the alternatives

[a].
In the case of exact decoherence, e=o, condition (3.1)

is equivalent to the much simpler condition (2.31), that
the real parts of all the off-diagonal terms of the decoher-
ence functional vanish. This enormously simplifies the
problem of checking the probability sum rules. For the
case of approximate decoherence considered here, howev-

er, in the worst possible case, we might have to check the
probability sum rules for all possible choices of coarser-
grained histories. It could be, for example, that the de-

gree to which the sum rules are satisfied depends on the
particular sum rule in question. Let us therefore ask, is
there a particular sum rule which, if satisfied to order e,
will imply that all other sum rules are satisfied to the
same order or better?

To address these issues, consider the finest coarser
graining possible, in which two alternatives at time tk are
combined:

iReD( al, i
'ak''')l«[p( &I, ')+p( &k' ')] (3.3)

One might contemplate generalizing this type of condi-
tion to the case in which the nk's were different on each
side of the decoherence functional for all values of k, not

just one value, as in (3.3). The right han-d side might then
involve some kind of arithmetic mean of the correspond-
ing on-diagonal terms.

However, for reasons that will become clear below, it
turns out that the condition (3.3), or its generalizations,
are not the most appropriate ones. A condition that we

have found instead to be more useful is

QWQ

a, a'Ga
QWQ

a, a'Ga

and taking the case in which [a] and [a '] differ only in

the values of the alternatives at time tk and no other.
Now consider what condition (3.4) implies for the more

general coarser grainings of the histories. Consider first

the strict upper bound on the left-hand side of (3.1). One

has

iR i &e[R R ~ ]'

where we have introduced the convenient notation

(3.4)
QWQ

'

a, a'Ea

(3.7)

R ~
= ReD([a], [a']) . (3.5)

We therefore take the geometric mean of the diagonal
terms on the right-hand side rather than the arithmetic
mean.

First of all, note that (3.4) implies (3.3). This follows

(apart from a factor of 2) using the relation R &he+R (3.8)

To streamline the notation we temporarily drop the
square brackets notation [a] in favor of a simple a.

We need an expression involving a sum over probabili-
ties, as in the right-hand side of (3.1). We therefore write
(3.7) as

[R R ~ ~ ]'i =
—,'[(R +R ~ )

—(R —R ~ ) ]'i

& —,'(R +R ~ ~ ) where

QWQ
'

a, a'Ea
aE.a
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aXa '

a,a'Fa

(3.9)

a%a'
all a, a'

R =0, (3.10)

where all a, a' means over all (N N) values (i—n distinc-
tion to a, a'Ea). This follows from (2.30}. (The only
other thing of value we know about R ~ is the inequality
derived below, but this will not be needed here. )

Without more detailed information about the R 's, a
useful way to proceed is to assume that N is large and
perform a statistical analysis. We are given a set of
(N —N) R .'s. Equation (3.10) implies that their mean
value is zero. The quantity we are interested in is the re-
stricted sum over R .'s for a particular choice of coarse
graining e, i.e., the quantity

(M —M)Y = g R
a%a

a, a'Ga

(3.11)

The quantity Y is therefore an approximate "measure-
ment" of the exact mean value of the R 's. The ques-
tion is, how close is this approximation? The central
limit theorem supplies the answer: for large M, the dis-
tribution of Y approaches the normal form centered

It is not dimcult to see that the factor 5 will generally be
much greater than 1, meaning that more general proba-
bility sum rules will not be satisfied to the same degrees
as the basic condition, Eq. (3.4), but will be satisfied to
degree he, a number generally much greater than e.

The above analysis gives rigorous bounds on the proba-
bility sum rules, but these bounds are perhaps not the
most relevant ones. The sum over off-diagonal terms on
the left-hand side of (3.7) will typically involve a large
number of positive and negative terms, and it is reason-
able to assume that terms of a particular sign will not be
favored. This means that there will be a considerable
amount of cancellation, and the upper bound (3.8) is not
representative of the typical value of the sum over off-

diagonal terms. It is like a random walk in one dimen-
sion, with random step lengths and equal probabilities of
stepping left or right. If the average step length is l, and
the number of steps is N, the maximum distance one can
walk is lN. However, if N is large, walks of such length
are exceedingly rare, and it may be shown that by far the
most probable walks have lengths of order lX' or less
[141.

More generally, the central limit theorem permits an
estimation of the typical value of the size of the left-hand
side of (3.7}. Consider the off-diagonal terms of R ~ . If
the n's run over N values, there are (N N) off-di—agonal
terms in the decoherence functional. (We are therefore
restricting attention to the case in which a is a discrete
label, but N may be infinite. ) A coarse graining a of a
corresponds to selecting a subset of, say, M a's from the
N a' s. There are therefore (M —M) terms in the sums
in Eq. (3.7). We have very little information about R
but one thing we do know is that

about the mean, with width cr(M M—) ', where cr is
the standard deviation of the off-diagonal R .'s [14].
This implies that "most" approximations to the mean Y
will lie within a few widths of it. For example, 98% of
them will lie within four times the width. Up to factors
of order unity, therefore, most Y 's will satisfy

I Y-I &0(M —M) (3.12)

The standard deviation is given by

1

N —N X
all a, a'

2R (3.13a)

But since M is taken to be large, a reasonable approxima-
tion to (3.13a) is

~2 1

M —M
a, a'6a

2R (3.13b)

Combining (3.11), (3.12), and (3.13b), the factors of
M —M all drop out, and we are left with

1 /2Ri ~ (3.14)R
a%a'

a, a'Ea
a/a'

a, a'6a

as the bound on typical values of the left-hand side of
(3.7).

Now we repeat the above analysis using (3.14). Using
condition (3.4), it is straightforward to show that (3.14)
implies

a%a '

a, a'Ea

R ~ &Ee+R
aEa

(3.15)

b='gR
a6a

='g R,
aEa

' 1/2R R
a%a '

a, a 'E'a

R '2 —g R
aEa

1/2

(3.16)

It is readily seen that 6 1. This is the main result of
this section: given condition (3.4), most probability sum
rules are satisfied to order e or better, where "most" is
understood in the sense explained above. We anticipate
that the result will continue to hold, in some form, in the
case where the a's are continuous labels, although we do
not demonstrate this explicitly here.

There will, of course, be situations in which our statist-
ical assumptions must fail. For example, one could
choose coarse grainings in which all the M —M R a 's
summed over in (3.11}are of the same sign. This would
therefore be a very bad approximation to the mean value,
and the probability sum rules would then be satisfied only
to the much poorer degree indicated by the strict bound
(3.8). Also, we have implicitly assumed that the N N-
R 's are distributed reasonably evenly, without particu-
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lar bias towards positive or negative values. One could
envisage decoherence functionals for which most of the
R 's were positive, say, but the negative ones were

sufficiently large for (3.10) to hold. Samplings of the
R 's would therefore also possess this bias, and the sta-
tistical reasoning given above would be less accurate. But
these situations are exceptional, and they may have some
special significance which it would be of interest to inves-

tigate. Moreover, they do not detract from the above
analysis, the point of which was to define what is meant

by the "typical" case and explore its properties.
It may be enlightening to explain why condition (3.4) is

more appropriate than (3.3). The main difficulty with
(3.3) arises when the coarser graining a involves a sum

over an infinite number of u's. This happens in the mod-
els of this paper, for example. For, suppose one repeated
the above analysis using (3.3) in place of (3.4), then in the
expressions replacing (3.7) and (3.16), one would obtain
expressions in which R are summed over both a and

0. ' and would therefore diverge.

B. Some inequalities

with equality if pf is pure. The case of a pure pf and

mixed pp is essentially the same.
The case of general pf and p~ is a little more complicat-

ed. Write pf =SfSf and pp=SpSp. Then the decoher-
ence functional may be written

D([a],[a'])=N g (pIA~ Ip), (3.24)

For simplicity of notation, introduce

Y,=(plw. a'. , Ip&'." .

Then (3.25) reads

(3.25)

(3.26}

(3.27)

where we have introduced A =SfC Sp. One therefore
has

ID«], [a'])I ~N &1&pIA. A.' Ip&l

&N y (pla~'Ip)'"(plw, x', Ip)'"

p„,=( A IplB & . (3.17}

Now p is a non-negative Hermitian operator. This means
that there exists some operator S such that p=S S. It
follows from the Cauchy-Schwarz inequality that

I
& A Is's IB & I' ~

& A Is's
I
A & & BIs's

I
B ) . (3.18)

We therefore have the inequality

We now derive some inequalities which wi11 be useful

and lend support to the approximate decoherence condi-
tion, (3.4). Consider the matrix elements of the density
operator p is an arbitrary basis, [ I

A ) j. It is given by

ID([a],[a'])I ~N gX&Y& .

Also,

D( [a],[a])D ( [a '], [a'] )
=N g Xtt Y

P, y

Now consider the inequality

g (Xp Yr —X,, Yp) ~0 .
P, y

This implies that

(3.28)

(3.29)

(3.30)

lpga I
—p g g pgg (3.19) g Xp YpX Y~ ~ g Xp Y2

P, y P, y

(3.31)

for all A AB with equality if and only if p is pure.
An analogous result also holds for the decoherence

functional. Write the decoherence functional

and hence that

g Xp Yp ~ g Xp~Y2

P , P, y

(3.32)

D( [a],[a '])=N g (Plpf C poC IP), (3.20)

where we have explicitly written out the trace over a
complete set of states, [ IP ) ], and we use the notation

C =P (t„) P (t, )P (t, ) . (3.21)

ID([a],[a ])I [D([a],[a]}D([a ],[a ])]'" (3.23}

For generality, we have also included a final density ma-
trix pf. The normalization factor X is given by
N '= Tr(pfp).

For simplicity, consider first of a11 the case in which pf
is mixed but the initial state po is pure, pa=i+0)(Vol.
One then has

D([a],[a '])=N('POI Ct pf C
I Po) . (3.22)

Since we may write pf =SfSf, it fo11ows from the
Cauchy-Schwarz inequality that

Comparing with (3.28) and (3.29), we therefore again ob-
tain the inequality (3.23). This is the main result: the
decoherence functional satisfies the inequality (3.23), with
equality if the initial and final states are pure.

It is not true that equality is obtained only if the initial
and final states are pure. It is not difficult to construct
examples with a mixed initial state in which all but one of
the probabilities for a set of histories are zero. But one
then has equality in (3.23) because both sides are zero.

The inequality (3.23) lends support for the use of our
approximate decoherence condition, (3.4). The degree of
decoherence is basically the amount by which the left-
hand side of (3.23) is less than the right-hand side. A
search for other, more concrete measures of approximate
decoherence would clearly be both useful and interesting.

IV. THE CALDEIRA-LEGGETT MODEL

An important class of systems in the study of decoher-
ence are those in which there is a preferred split of the to-
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tal system into a distinguished system, and the rest, sum-
marily referred to as the environment. A natural coarse
graining in such composite systems then consists of pro-
jecting onto the distinguished system only while tracing
out over the environment. Models of this type have been
considered extensively in the context of the reduced den-
sity matrix approach to decoherence [15]. Here, we will
consider such a model in the context of the decoherence
functional. The model is the Caldeira-Leggett model,
originally proposed as a model of quantum Brownian
motion [16]. This model is, in turn, based on earlier work
of Feynman and Vernon [17].

The Caldeira-Leggett model is a comparatively simple
model for decoherence in which the evolution of the re-
duced density matrix may be determined exactly. It con-
sists of a distinguished system A with action

S„[x]=f dt[ ,'Mx —,'Mcg —x—) (4.1)

coupled to a reservoir or environment B consisting of a
large number of harmonic oscillators with coordinates
Rk and action

t, the most complete quantum description of A only is
given by the reduced density matrix

p(x,y, t)= fdRdQ5(R —Q)p(x, R,y, Q, t), (4.4)

where p(x, R,y, Q, t ) is the density matrix of the com-
bined system.

The evolution of a pure state would be given by the
usual propagator for the total system, which may be ex-
pressed in path-integral form:

(xf Rf r~xp Rp 0) =f2)x 2)R exp(iS[x, R] ) . (4.5)

Here, S[x,R] is the total action for the system

S[x,R]=S„[x]+Sii[R]+St[x,R], (4.6)

x(0)=xp, x(r)=xf, R(0)=Ro, R(r)=Rf . (4.7)

The solution of the total density matrix is therefore given
by

and the sum is over paths (x(t),R(t)) satisfying the
boundary conditions

Ss[R]=g f dt[ ,'mRk —,'mtp—k&—k] .

The coupling is described by the action

S,[x,R]= —y f 'dt C„Z„x,

(4.2)

(4.3)

p(xf, Rf,yf Qf&r)= f dxpdypdRpdQp

X (x,R, r~xp, Rp, 0)

X (y, Q, r~y„Qp, o)"

Xp(xo~Ro yo Qo~0) . (4.S)

where the Ck's are coupling constants.
The object is to study the quantum evolution of this

system, but focusing on the system A only. At any time

Using (4.5) and (4.8), we may therefore obtain a path-
integral expression for the evolution of the reduced densi-
ty matrix:

p(xf yf, r) =f dx dy dR dQpdRfdQf2)x 2)y 2)R2)Q 5(Rf —Qf )

X exp(is& [x] iS& [y]—+isti[R] —i St[iQ] +isz[x, R] isz[y—, Q])

Xp(xp Rp yp Qp 0) (4.9)

Next, it is assumed that the initial density matrix for the
total system has the form

9[x,y;r)= fdR dQ dRfdQf5(Rf Qf)ps(Ro, Qp, 0)

X R exp iS& R —iS&
p(xo, Rp, yp Qp 0)=pg(xp yp 0)pt (Rp Qp 0) . (4.10)

For then it is possible to completely integrate out the en-
vironment in the path integral (4.9). The resulting ex-
pression may then be written

J(xf yf, &lxp yp, 0)

=f2)x 2)y exp(is& [x) is~ [y])9'[—x,y;r),
where 9'[x,y; ~) is the influence functional:

(4.12)

p(xf, yf r)
=f dxpdyp J(xf yf 7 ~xp yp 0)pg (xp yp 0) . (4.1 1)

Here, we have introduced

+ist [x,R]

—is, [y,Q]) . (4.13)

The quantity J defined in Eq. (4.12) is the central object
of interest in the Caldeira-Leggett model because it de-

scribes the evolution of the reduced density from any ini-

tial total density matrix of the form (4.10). It will also
turn out to play an important role in the decoherence
functional described in the next section.

The influence functional (4.13) may be evaluated exact-
ly given the initial density matrix of the environment B.
A useful choice, taken by Caldeira and Leggett, is to take
the environment to begin in thermal equilibrium at tem-
perature T, with the density matrix
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2' sinh(cok lkT)pa(R Q)=

mcok
exp — . [(Rk +Qk ) cosh(cok /kT) —2Rk Qk ]2sinh ~, tkT

J

(4.14)

(4.15)

(4.16)

and

Ck
az(s —s')= g 2pl cok

coth coscok(s —s'), (4.1'7)
2kT

at(s —s') = g sincok(s —s') .
2m cok

(4.18)

The inhuence functional is then given by

V[x,y;r) = exp —f f(s }
0

where
2f(s)= f ds'ds[x(s) —y(x)]

0

X a+ (s —s')[x(s') —y(s')]
2+i f ds'ds[x(s) —y(s)]

0

X ai(s —s') [x (s' ) —y (s') ]

S[X,g] = f dt( ,'MXf -,'Mco~—X—g MyX—() (4.24}

and

y[X,(]=2MykT f dt g' .

Two features that will be important in what follows are
first that P depends only on g, and second that X occurs
linearly in $[X,(].

Now we review the evaluation of J, (4.21). This will be
useful for the next sections. It is convenient to expand
about the extremum of S. The extremum is the paths
X„(t),g„~(t ) satisfying the equations of motion

(4.25)

troduction of dissipation characterized by y, and the
suppression of contributions from widely differing pairs
of paths in (4.21) through (4.23). It is this latter effect
that will lead to decoherence.

It is particularly useful to introduce the variables
X=x+y, g=x —y. In terms of these variables, the
above expressions are

Caldeira and Leggett next choose to take a continuum
of oscillators in the environment, with density pD(co),
which involves the replacements

g ~f dcopD(co), Ck~C(co) (4.19)

4Mmyco 0 f Q
2

0 if co)Q (4.20)

in (4.17) and (4.18). Furthermore, a high-frequency cutoff
in the sum over co is taken of the form

D[+~X:X+2&X+cogX=0

D(-)0=—4 —2yk+~z 0=0

subject to the boundary conditions

X( 0 ) =Xp X( r ) =Xf g( 0 ) =gp g( 7 ) =gf

The solutions are

e
—yt

X„(t)= . [Xfer'sincot+Xp sinco(r —t }],
slncoT

pt

g,~( t ) = . [gfe r'sincot +gp sinco(r —t ) ],
sin C07

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

The result has the general forIn

J(xf,yf rlxp yp 0)

x yexp iS x,y — x,y (4.21) L(r)Xpgf N(r)Xfgp (4.31)

where co =mz —y . The action S evaluated on these
solutions is

S,&=K(r}Xfgf +K( r)Xpgp

and

—My(x —y)(»+y)] (4.22)

P[x,y]=2MykT f dt[x(t) —y(t)] . (4.23)
0

The environxnent therefore has three effects of
significance: renormalization of the frequency ~, the in-

The effect of tracing out the environment leads,
amongst other effects, to a renormalizing of the frequency
of the distinguished oscillator from cu to co~. We will

work in the Fokker-Planck limit, for which kT&)Q
&&co+. One then has

S[x,y]= f dt[ 'M»' 'My' 'M—co&»'—+—,'McoR—y—'—
where

K(r) = ,'My + —,'Mc—o c—otcor,

K(r) = +—,'My+ —,'Mco cotcor,

L( )
Mcoe

2 slncov

Mcoe r'
2 sinus

Now write

X(t)=X„(t)+5X(t), g(t) =g„(t)+5/(t),
where

5X(0)=0, 5X(r) =0, g'(0) =0, 5$(r) =0 .

The path integral (4.21) now becomes

(4.32)

(4.33)

(4.34)

(4.35)

(4.36}

(4.37)
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J(Xf,gf, r~Xp, gp, 0)= exp(iS, &)f2)(5X)2)(g)'exp —i f dt 5XD~ ~g' —P[g,&+5/]
.M

2
(4.38)

However, since the exponent is just linear in 5X, the in-
tegral over 6X is readily performed to pull down a 5 func-
tional 5[D~ ~5g]. Integrating over g, the only contribu-
tion thus comes from 5/=0, and a prefactor of
( det[D~ ~])

' appears. This prefactor was evaluated by
Caldeira and Leggett, and we denote the result F (r).
The final result is therefore of the form

J(Xf (fpr~Xp, gp, 0)=F (r) exp[iS, &

—P[g,&(t )]]

(4.39}

where

I= ,'y(y—2+co ) '(e r'cos2cor 1)—

+ 'to-( y2+ tp2) 'e ~r' sin2tpr,

J= ' tp—(y~+tp~) '(e r'cos2tpr 1)—

+ 'y(yz+tp~) 'e r'sin2tor .

(4.44)

(4.45)

Here, P[g„(t)]has the form

P[g„(t ))= A (r)g+B(r)gf gp+ C(r)gp . (4.40)

( )
yk e

( r&

sin col 4f
(4.41)

2My kTeBr=
sin cov

costor
(

2r~ 1 )
2r

+I costor+ J sintor, (4.42)

Explicit (but rather lengthy) expressions for
coefficients A, B, C are given in Ref. [16],and we do not
give them here. However, they simplify enormously in
the Fokker-Planck limit considered here, in which case
they are given by

For future reference, we note that, in the short time limit,

each of A(r), B(r), and C(r) are approximately equal to

', Myk—Tr+O(H}

U. THK DECOHERENCK FUNCTIONAL
FOR THE CALDKIRA-LEGGETT MODEL

We are going to calculate the decoherence functional
(2.21) for the system described in the previous section,
consisting of a distinguished harmonic oscillator coupled
in an environment consisting of a thermal bath of har-
monic oscillators to provide decoherence. The projection
operators will be projections onto the position of the dis-
tinguished oscillator. For mathematical simplicity, we
will use Gaussian projections, (2.5).

C(r)= MykT 1
(e r' —1) I cos2tor-

Sin 607

J sin2cos (4.43}

A. The decoherence functional

The decoherence functional is written down most
readily using the path-integral form (2.36). In our case it
1s

D[xkiyk ] fdxfdyfdRfdQfdxpdypdRpdQpDx 2)y 2)QSR5(xf yf )5(Rf Qf )pg (xp yp)ps(Rp Qp)

X exp(iS& [x ] iS„[y]+—iS&[R] iS& [Q]+—iSt [x,R] iSt [y,Q—] )

[y(tk }—yk ]'
X exp —g 2k=1 k=1

(5.1)

For convenience, we will omit preexponential factors in Secs. VA —VC. (These can always be deduced, if desired, by
appealing to normalization conditions. ) The sum is over histories (x(t },y(t), R(t),Q(t)), where t runs from t =tp to

tf t + t and the histories satisfy the boundary conditions.

X(tp)=Xp y(tp)=yp X(tf )=Xy y(tf )=yf

R(tp)=Rp Q(tp)=Qpq R(tf )=Rfq Q(tf )=Qf

(5.2)

(5.3)

On the initial surface, t = tp, the initial density matrix of the system is folded in and is taken to have the form (4.10) and
(4.14); on the final surface at t =tf, the 5 functions enforce xf =yf, Rf =Qf, and then xf and Rf are summed over.
The histories are obliged to pass through the Gaussian slits at positions xk,yk at times t = tk, for k = 1, . . . , n. It will be
convenient to work always in the Fokker-Planck limit.

Because the projections refer only to system A and not the environment B, the environment coordinates may be com-
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[x(tk ) —xk ]
X exp

k=1

pletely integrated out. One thus obtains

D [x„,yk ]=f dxt dye dx pdy pX)x 2)y 5(xt. —yt )p g (xp yp ) exp(iS „[x] —iS & [y ] )9[ xy; r)

[y(tk } yk ]

k=1
(5.4)

where V[x,y;r) is the influence functional introduced in the previous section (in the Fokker-Planck limit). We then
have

D [xk yk ]=f dxt'dyIdxody pl)x Sy 5(xt' yt' )p g (xo yo ) exp(iS [x,y ]—&t&[x,y ] )

[x(t„)—x„] fy(t„)—y„]
X exp

0'k k=1
(5.5)

where S[x,y ] and P(x,y ) are given by (4.22) and (4.23), respectively.
Because the projections reside only the discrete set of slices t = tk, for A: = 1,2, . . . , n, it is convenient to rewrite (5.5)

in terms of integrals on these slices and propagation between them. It is also useful to go to the variable X, g, defined by
X=x+y, g=x —y. We then have

DIXk rk) = fdX. +id'. + idX. dr. ' dXodko&(k. +1)PA(Xo ko to)

tl n (Xk —Xk)~
X g J(Xk+„gk+„tk+,lxk, gk, tk) exp

k=0 k=1 k
4 —4

2
k=1 +k

(5.6)

where S[X,g;tk+ „tk ] and /[X, gtk +tk ] denote the

quantities (4.22) and (4.23}, respectively, but with the in-

tegration domain [O, r] replaced by [tk, tk+i]. Also, for
convenience we have made the redefinition 2o.

k
~o.k. As

in the previous section, Eq. (5.7}may be evaluated exactly
with the result

J(Xk+1&(k+1& k+ilXk&kk& k )

=Fk+, k exp(iSk+, k pk+, k), —(5.8)

where Fk+, k =F(tk+, tk) with —F(t) as in Eq. (4.39).
Also,

Sk + i k
=S,i (Xk + i gk + i, k + i I

—Kk+ i kXk+ lkk+ i+Kk+1 kXkgk

~k+i, kXkkk+1 +k+ i, kXk+ ikk (5.9)

where Kk+i k=K(tk+i —tk) with K(t) given by (4.32),

and similarly for Kk+, k, Lk+, k and Nk+, k. Likewise,

Here,

J(Xk+1&kk+l&tk+ilXk&(k& k )

=faxing exp[iS[X,g;tk+„tk) /[X, g;—tk+„tk)]

(5.7)

given by Eq. (4.14). The propagator between slices t = tk

and t =tk+i, i Eq. (5.7), comes from expressions of identi-
cal form, but with the change of domains of integration
noted above. It is perhaps surprising, however, that the
propagator from tk to tk+, should involve the density
matrix pz at t =t0. The reason for this is that the envi-

ronment in the Caldeira-Leggett model is taken to be
essentially infinite. This means that, although the system
3 is itself affected substantially by its interaction with the
environment 8, A has negligible effect on the dynamics of
the environment. To a good approximation therefore,
the environment is always in thermal equilibrium, de-
scribed by the density matrix (4.14) for all time.

Our task now is to evaluate the decoherence functional
(5.6) for various choices of initial density matrix p„. All

the integrations are Gaussian and may therefore be car-
ried out in closed form. A direct assault on the integra-
tions is possible, but for the purposes of exhibiting the
qualitative features of the decoherence functional (our
aim in this section), we have found the following method
to be convenient. Recall that, in Sec. IV, the evaluation
of the propagator J was considerably eased by the simple
observation that X occurs linearly in the exponent. Be-
cause of the presence of the projections, X does not occur
linearly in the exponent of the decoherence functional.
However, the following trick turns out to be extremely
useful. Write

2 2
4k+ i, k ~k+1,kkk+1+Bk+i, kkk+lkk+Ck+i, krak

(5.10)
exp

(Xk —X„)
2

with Ak +, k
= A (tk+, —tk ), etc.

As an aside, we note the following point. The propaga-
tor J from t =0 to t =r is given by Eq. (4.12), which in-

volves the influence functional (4.13). This, in turn, in-

volves the density matrix of the reservoir B at time t = t0,

2iPk
—f dPk exp Pk+ (Xk ——Xk ) . (5.11)

k k

Now inserting (5.8) and (5.11), the decoherence functional
becomes



46 QUANTUM MECHANICS OF HISTORY: THE DECOHERENCE. . . 1595

D[Xk,gk]= fdX +Id( +I o go g ($„+I)pw(Xo,go, to) exp g [iSk+I k pk+I, k]
k=0

2iPk (gk
—

gk }'
X exp —g Pk+ (Xk —Xk)+ 2Ok

I

(5.12)

The exponent of the decoherence functional is now en-

tirely linear in the variables Xk, and we may proceed with

the evaluation, beginning with the integral over Xk.
A change of variables is useful. Consider the classical

solution for X(t) connecting the initial and final points,
(4.29}. Write it as

5xo =0=5X.+I (5.17)

Under this shift of integration variables, one 6nds that

where ak =a(tk ), 13k
=p(tk ). It follows from the above

that 5Xk obey the boundary conditions

X,l(t ) =X„+la(t )+Xllp(t ) . (5.13)
n

g Sk+I k S,l(Xf j—gf, tf ~Xojko~to)+S
k=1

(5.18)

Here, a(t ) and P(t ) are solutions to the field equations for
X whose exact form may be found by comparison with

(4.29). They satisfy the boundary conditions

where S,l is given [from (4.13)] by

Sj.I =E(r)goXp N(r)goXf (5.19)

a(tll)=0, a(tf )=1,
p( to ) = 1, p( tf ) =0 .

Now perform the change of variables

Xk =Xk'+ 5Xk

(5 14}

(5.15) n

2 [ ~k+1,kkk+I+(~k+ 1,k+I~k, k —I gk
k=1

Nk, k Ih— I]5X-k- (5.20)

X + Iak +Xppk +5Xk (5.16}
Using the above results, the decoherence functional may
now be written

D [X,, g„]= fdX„,dX, d g,d "(5X)d"gd "Pp„(X„(„to)

X exp ik(r)Xoko iN(r)X„+Iko+'S g 0k+I, k(4 @+I)
k=0

2iPk (4 —4)'
Plj + (X„+\ak+XPPk +5Xk Xk }+

k =1 Crk Ok
(5.21)

The integrals over X„+,and 5Xk pull down the 5 functions
r

k+I, kgk+I+(~k+1, k++k, k —14k Nk, k —leak —I 2 5 N( 40+2
ak k=i

The integrations over go and 5/k may then be performed. The only contributions come froln

(5.22)

N(r) k, Irk

k
(5.23)

and from the value of gk satisfying the diff'erence equation

~k+1,kf @+I+~(@+I, k++k, k —I 4k Nk, k —ilk —I (5.24)

for k =1,2, . . . , n, with the boundary conditions that g„+I=0. Equation (5.24) may be solved explicitly, but the exact
form of the solution will not be needed. It will be linearly dependent on go and Pk. We will hereafter assume the in-
tegrations over go and gk have been done, and use go to denote the right-hand side of (4.23) and 5/k to denote the solu-
tion to (S.24). The feature of go and g'k to keep in mind is that they are both linear in Pk. We now have
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n

D[Xk kk ]=JdXod
"Pp~ (Xo ko to }exp i«r}Xoko g 4k+1, k(kk gk+] }

k=0

( k
—k)'

Pk+ (Xopk —Xk }+
(Tk ok

We will now consider the evaluation of this expression for various diferent forms for the initial density matrix.

(5.25)

B. %'ave-packet initial states

We first consider an initial density matrix corresponding to a pure state consisting of a wave packet of approximate
momentum p centered about the point xo. One thus has

(Xo —Xo )

p ~ (Xo ko to ) = e"p 'p ko
ko

0 2
(5.26)

n ~k Pk
0k+1,k(kk 4k+1)+tXo ~(r}(02

k=0

Co
D [X„,gk ]= fd "P exp ip go

2
O' I kPk

I(. (r)go —2 $4 k=1 &k

where Xo =2xo. Inserting this into the decoherence functional, the integration over Xo may be performed, and one ob-
tains

2iPk (gk —
gk )'

Pk +k + (5.27)

The important step now is to organize the exponent into terms quadratic and linear in Pk. We therefore write the
decoherence functional in the form

n n n n

D[Xk, gk]= Jd"P exp —g g PkMkJP~+ g (Uk+iVk)Pk —g 2
k=1 j=l k=1 k=1 +k

(5.28)

where

0
, + g (t'k+i, k(4 4+i}

k=1 J=l 0 k=o

Now let
T

p k(r)ak+ ak+4 Xo .
N r N r (5.33)

~kPk+ k(r)go —2 g4 0-k

2

+ g Pk+
k=1 +k

n kg UkPk=2 X 2 4
k=1 k=1 +k

and

n i kPk
& VkPk=pko+Xo @&}ko—2 X

k =1

+2 g Xk.

In particular,

2 — p — K'(~)
Vk Xk ak Xo ak ~k

o k X(r) N(r)

(5.29)

(5.30)

(5.31)

{5.32)

The significance of this is as follows. Consider the classi-
cal solution for X(t ) given by (S.13). This is the solution
for fixed initial and final X. However, Hamilton-Jacobi
theory together with Eq. {4.31) give

as
P((to) = — = k(r)Xo+X(r}X—I,ag,

(5.34)

where Pt is the momentum conjugate to g, and we can
use this relation to obtain the classical solution for fixed
initial X and P&.

q( o} Z(~)X„(t)= a(t)+ a(t)+i3(t) X, . (5.35)
X(r) X(~)

When the decoherence functional is diagonal, x =y =
—,'X,

and since P& =
—,'MX, we can identify p =Mx, the momen-

tum conjugate to x, with P&. %e therefore have the re-
sult that Yk =X„(tk)=2x„(tk), where x,&(t) is the classi-
cal solution with initial position xo and initia1 momentum

P.
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The integral over Pk may be carried out, with the for-
mal result

D[Xkgk]= exp +—U M 'U ——U M V

2
——V M V—g 4

24 k=1 ~k
(5.36)

in an obvious matrix notation. Equation (5.36) may be
rearranged into the form

D[X'4]= exp ——g kkMkj g,
——U'M-'V

kj

kj

k k 1 j Yj
Mk

'
C7

kJ (5.37}

where Mk may be found from the above. It will be posi-
tive definite because the decoherence functional is by con-
struction normalizable. Similarly, it follows from (5.29)
that Mkj is positive definite.

We may now see that the decoherence functional has
the expected qualitative features. The first term in the
exponent of (5.37) shows that the decoherence functional
is small for large values of gk, i.e., that distinct histories
decohere. The second term, which is linear in gk, is pure-
ly imaginary. It does not affect decoherence and, in fact,
vanishes when gk is set to zero. The third term clearly
shows that the diagonal part of the decoherence function-
al is peaked when the slit positions Xk lie along the classi-
cal trajectory, Xk = Yk.

Note, however, that this is the decoherence functional
specifically for the wave-packet initial state and it is yet
to be seen whether these features continue to hold for

more general initial states. Furthermore, it should be
noted that the peaking of the (modulus of the) decoher-
ence functional about gk =0 is, at best, a crude qualita-
tive indication of a tendency towards decoherence. A
much better quantitative indication is the condition (3.4),
and this is what we shall use in what follows.

At this stage, the full advantage of writing the slit pro-
jections in X in terms of their Fourier transform is clear.
The qualitative features of the decoherence functional-
decoherence of distinct histories, and peaking about clas-
sical trajectories —are clearly exhibited. The detailed ex-
pressions for the widths of the peaks are rather compli-
cated. But use of the identity (5.11) leads to a clean sepa-
ration of the terms giving the configuration about which
the decoherence functional is peaked from the terms giv-
ing the width of the peaks: the former are linear in Pk in
(5.28) and the latter are quadratic in Pk. It seems likely
that this simple trick will be similarly useful in calcula-
tions of more complicated decoherence functionals.

pa(Xo ko to)= f dpoe IV(po Xo} (5.38)

where IV(po, Xo) is the Wigner function and is obtained
in terms of pz using the inverse of (5.38). The Wigner
function has many properties shared by classical phase-
space distributions and has often been proposed as an in-
terpretational tool [18,19]. Inserting (5.38) into (5.25),
one obtains

C. General initial states: The %igner function

For more general initial states, we have found that
some of the qualitative features of the decoherence func-
tional may be exhibited using the Wigner transform of
the initial density matrix. We therefore write the initial
density matrix,

n

D[Xk 4]= fdpodXod"P IV(po Xo)exp E[po+&(r}Xogo g 0k+1,k(kk 4k+1)
k=0

( k
—k)'

Pk+ (Xopk —Xk )+
CTk

(5.39)

where, recall, go and gk are given by (5.23) and (5.24). In-
serting the expression for go, some elementary arrange-
ment of the terms yields an expression very similar to
(5.28):

Here, Uk is given as before by (5.30), but Mk, is given by
n n n

X X PkMkj+g= X 4k+i, k(4 4+i)
k=1 j=l k=0

D [Xk ~ kk ] f dp o dXo d "p W'( p o,Xo )

n n

X exp —g g PkMkP.
k=1 j=1

+ g (Uk+tVk }Pk
k=1

+ g Pk+
k=1 ~k

Also, Vk =2(X„—Yk )/o. k, where Yk is given by

Po fc(r)
Yk = uk+ X(r) &k+Pk Xo.

(5.41)

(5.42)

k=1 ~k
(5.40)

This differs from (5.33) only in as much as p and Xo have
been replaced by pp and Xp.

Again, one can formally carry out the integration over
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Pk, with the result

D[Xt„gt, ]=f dpodXo W(po, Xo)

ing the explicit form for P, (4.23), one finds that the
decoherence functional satisfies the approximate decoher-
ence condition

Xexp +—U M 'U ——U M 'V
4 2

2

——V M V— ka

4 k=1 ~k

ID[x,y]l ~ exp 2—MykT f dt [x y—]

X(D[x,X)D[y y])'~~ (5.46)

(5.43) This indicates that paths separated by distances of order I
decohere on a time scale of order

In particular, setting gt, =0, we see that the diagonal part
of the decoherence functional is given by tD —(2MykTl ) (5.47)

p[Xa]=f dpodXoW(po Xo)
T

g, —Y, , X, —Y,-
X exp

kj k

(5.44)

This, then, is the forrnal result for an arbitrary initial
density matrix.

The form of (5.44) is suggestive of an ensemble of clas-
sical paths, with the Wigner function of the initial density
matrix giving the probability distribution of their initial
values of coordinates and momenta. This cannot be quite
correct, however. First, the Wigner function is not al-

ways positive, whereas (5.44) is by construction. Second,
(5.44) is a probability distribution on a sequence of posi-
tion samples and makes no reference to momenta. The
connection with phase-space distributions is obtained by
considering histories consisting of position samplings at
two moments of time. By taking the time very close to-
gether, one thus obtains an approximate position sam-

pling together with a time-of-Aight momentum sampling
over a short time interval. The resulting probability dis-

tribution turns out to be the Wigner function smeared
over an A'-sized region of phase space —just suScient to
make it positive. These results are described in more de-

tail in a separate paper [20].

As noted by Zurek, this time can be very short indeed
[21].

This simple case therefore explicitly indicates the gen-
eral tendency of the environment to induce decoherence.
But it also illustrates a subtlety. To obtain decoherence
of the set of histories [x(t)] to some degree e(1, it is
necessary that

exp 2MykT —f dt[x y)2— (5.48)

VI. EXPLICIT EVALUATION
OF SOME SPECIAL CASES

However, the set of histories [x(t)] are completely fine

grained. It follows that it will always be possible to find

pairs of histories x(t),y(t) which are distinct, yet for
which fdt[x —y] is so close to zero that (5.48} cannot

be satisfied. Clearly what is needed is further coarse
graining of the histories [x(t )], so that x has significance
only up to some length scale 1, say [22]. The moral of
this, therefore, is that, to satisfy an approximate decoher-
ence condition of the form (3.4), in this model both types
of coarse graining are necessary —tracing out the envi-
ronment and smearing over position.

D. Decoherence

D[x(t ),y(t )]=5(x&—
y&) exp(iS[x,y ]—P[x,y ] }

pa(xo~yo) . (5.45)

Using the density matrix inequality (3.15) for p„, and us-

The complexity of expressions such as (5.37) makes it
diScult to obtain more than qualitative information
about decoherence and classical peaking. More precise
quantitative calculations for simpler cases will be the sub-

ject of the following sections. Here we note one particu-
lar simple case showing some important quantitative
features of decoherence. First of all, take the projections
onto the distinguished system to be at every moment of
time, from to to t&. Secondly, take their widths to zero,
so that the histories for the distinguished system are corn-

pletely fine grained. From (5.5), one thus obtains

In Sec. V, we evaluated the decoherence functional for
the case of an arbitrary number of projections in the
Caldeira-Leggett model. Or rather, we evaluated it to the
point where its qualitative features could be seen:
decoherence and peaking about classical trajectories.
However, we were not able to evaluate it to the point
where we could obtain a quantitatiUe idea of the degree of
decoherence. In this and the next section, therefore, we

will evaluate the decoherence functional completely for
the simplest nontrivial case, namely, the case of histories
characterized by projections at just two moments of time.
This involves evaluating (5.6) for the case n =2.

As we have seen already, the decoherence functiona1
has the property that it is diagonal in the fina projection,
although in the present case this is only true approxi-
mately because the Gaussian slit projectors obey the mu-

tually exclusive property only approximately. Neverthe-
less, to the extent that it is true, Eq. (5.6) for the case
n =2 reduces to
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(Xq —X~)

o 2
2

(Xl —Xl )

o2
1

D(X1 X2 41) J dX2dk2dXl dfldXod(o'5(42)PA(XO 40 to)F2, 1F1,o exp(iS2 1
—
p2 1+iS1 O

—p, o)

X exp
CT )

(6.1)

where F, S, and lI) are defined by Eqs. (5.8)—(5.10), and for
convenience we have performed the redefinitions
2o.k~crk for k=1,2. The difference between exact di-
agonality in the final projection [assumed in (6.1)] and ap-
proximate diagonality [exhibited by (5.6)] amounts to an
overall factor of exp( —gziaz). Our approximation
therefore involves taking it to be equal to one.

For the initial density matrix, we will take a general
Gaussian

P A(Xo ko to) = exp( aoXo ~oko 7'oXOCo

+POXO+ &oko+ &o) (6.2)

Here, ao and Po are real and yo is imaginary. Clearly

ao) 0 for normalizability, Trp=1. The density operator
p„must be a positive operator, i.e., ( P~p„~P) )0 for all

normalizable states ~f). This may be shown to imply
that Po )ao [20].

To evaluate the decoherence functional (6.1), we could,
of course, just use the method used for the general case in
Sec. V and quite simply evaluate the final expression for
this particular case. However, this turns out to be rather
cumbersome and we have found it easier to employ a
different method. In particular, we shall proceed as fol-
lows.

Step (i). Perform the integrations over Xo and go, thus

obtaining the evolution of the reduced density matrix
from to to t&..

p(X, ,g, , t, )= JdXod(OF', exp(iS, P, )—

p(X„g, t, ) =mF, .oh, o~ exp( —a,X, —P,g
Y 1X1kl +P 1X1

+&ill+ &»

where

~l,o=ao(&o+ ~l,o) ,'—(r—o t&—l'o)',

and

2
oao

1 4Q

1
[ —B l, oao+L l, o(&o+~1,o)4h) 0

+'11,0B1,0(1'0 '&10)]+, ~1,0

1
pl = [ 2iNl, o—B, oao

1,0

Ll, ONl, o(yo ill, o)] iEl, o ~—

1 l
Pl [ iNl, oaovo+ Nl, oPo( Yo l~ 1,0)]

2h) 0
' 2

1
iL l, o(~o+ Cl, o )Po Bloaovo,2b)0

(6.6)

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)

XP~(Xo ko to) . (6.3) + 2( Yo i~1,o)(1~ 1,0+0+Bi,oPo)] (6.12)

Step (ii). Multiply by the projectors at time t, and then
evolve to time t2,' i.e., calculate the quantity

D(X1,X2,$1 )=IdX1 d glFz 1 exp(iSz 1
—

pz 1)

X
o 2 o 2

Xp(X„g„to), (6.4)

where we may use the fact that /~=0 in S2, and Pz, .
Step (iii). Finally, multiply by the single projector at

time t2 and integrate over X2.-

D(X„X~,g, )

1
1 4g [(~o 1,0)po+aov0

1,0

('Yo '~ l, o )povo]+ &o (6.13)

This completes step (i).
As an aside, and by way of a check, we compare these

results with the calculations of Caldeira and Leggett for
the evolution of the reduced density matrix [16]. They
took as their initial state a wave packet of approximate
momentum p, centered around x =0 and with width o..
The corresponding initial density matrix is

P~(XO ko to)

= J dX2 exp
(X2 —X2 )

D (X„X2,g, ) . (6.5)
O2

Xo+ko
=(2mo )

'~ exp ipgo
8o

(6.14)

Beginning with step (i), a tedious but straightforward
calculation yields the result

From the above, we find the reduced density matrix at
time t, tobe
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p(X„g, t, ) =vrF, oA, o/ exp
Q2

x — ~
320 61 O N1 O

2 2

2

X exp tKi oXigi —i
&1O,- p(4o. K, oL, o B—, o) X, —

160-2a, , ' ' '
N1, o

(6.15)

where

Pi = 3 i o+2o' L i o

1 2 A 2(B, o
—4o L, oK, o)

32~ a, ,
and

(6.16)

But the integral (6.18) is now of the same form as (6.3),
and we may again use the results of step (i), recalling that
we may set gz=O in the expressions for Sz, and iI)z i. We
thus obtain

D(X, X g ) %2F& F2 g —1/2g —I/2
i

320- ~1,O=80 K1,0+4 C1,O+2 = 2 2 1
(6.17)

where

&«xp( —aiX~+yiX&+ &&) * (6.21)

This agrees with the results of Caldeira and Leggett (up
to a number of numerical factors which we take to be
typographical errors in their paper).

Now consider step (ii). With the results of step (i), Eq.
(6.4) may be written

D(X„Xi,g, ) =irFi, F i ob, , o

X fdX, dg, exp(iS, ,
—Pz, )

X exp( —a,X, —f3,g —y,X i g,

+PiXi +vip, +Z, ), (6.18)

and

~2, 1 al(Pl+ C2, 1) (3 1 ~2, 1)

N22, (x,
2

1

2, 1

+ 2», iei(ri —«i, i))

(6.22)

(6.23)

(6.24)

where

1 — 1
ai a 1+ i ~ ~1+

01 01

2X, 2g,
P, =P,+, ~, =~, +

1

(6.19)

X, +P,
Z1 =E'1

1 1

1

(6.20)

1ep= [Pi+Cd, )p, +a,y
2, 1

(1 i IE2 i )plVi ]+Pl (6.25)

We could at this stage proceed to step (iii), but it turns
out to be easier to first simplify expression (6.21). Some
lengthy algebra leads to the result

D(Xi»z k»=~'Fz, iF i, o~z, i'"~i,o"exp— 1

2 4+1 +1~2, 1

X exp ~ i z' Xzg—, +
~1~21 40 1~2, 1

J1
4aivi 2() i iKp i ) pi+2

0'1

X exp
N

X + V

2 l
40,62, N2,

J1—i(y, iKz, )—
2, 1

2
O, 1N2 1 V,.

X2+i
&2, &

P1—i(y, iK~ i)—
2a1N2 1

'2

O!1 P1
(C~, +B, ) Xi

~1~2, 1 2CX1

2 2
P1

E'1 (6.26)

The final step, step (iii), is now readily performed using the identity
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X2 exp
(X2 —X2 ) —a (X2 —a) —b(X2 —p) +icX2$1

0'2

(o2 +a+b) ' exp
1

g2 +a+&
2

2+ X2
+aa+Pb

(X2 —a ) — (X2 p—) ab—(a p—)
o 2 0 2

2 2

(6.27)

Using the above identity, we obtain the final result, which is conveniently written in the form

D(X X g )
—~5/2@2 ~2 g —1/2g —1/2(a —2+a )

—1/2

$1N2
Xexp i —a,(X2-

o,(a2o 2+ 1)b,2,
y, —it2,

0.(X~ )

X exp —l 'g, '—(X—Y)rM(X —Y)+e, +
4a)

(6.28)

Here,

Q) r, , a',
l = — + —2 4 2oi o1~2, 1 ( 2+a2 )o1~2, 1

M=

where

Mii Mi2
(6.33)

1 a&

o'1 o,(a2cr z+ 1)62,
(6.29) 1

M)) =
0 2

1

C2 1+Pl + ( Yl it2, 1) N2, 1

o id, 2 1
16o t(a2+a2 )Az

As in Sec. IV, we have introduced the notation

Xj Y)
Y=

2.
where

P1Y)=
2a)

Y2 = i —+i ( y 1 it2 1
)—

2 1
'

2a~%2,

Also

(6.30)

(6.31)

(6.32}

C2, +pi+(1/4)o2N21

&1(a2&2+ 1)~2, 1

(y, it2 1 )N2 1—
M)2=M2) =—i

4(a2oz+ 1)o 162,

(6.34)

(6.35)

+2,1a1
M22 =

4(a2o z+ 1)52 1

(6.36)

Using this notation, and also using (6.8)—(6.13), Eq. (6.28)
may be rewritten

D(X X g )
—ir5/2F2 F2 g —1/2g —1/2(o —2+a )

—1/2

X exp 4i
2 [M22(—X2 —Y2)+M12(X1 —Y1)]o.)N2 )

X exp —l g, —(X—Y) M(X —Y)+@0+
4a, (6.37)

Note that the matrix M must be positive definite by con-
struction since the decoherence functional must satisfy
the normalization conditions (2.24) and (2.25b). Equation
(6.37) is the decoherence functional for the class of initial
density matrices (6.2) for histories characterized by posi-
tion projections at two moments of time. We note that

the decoherence functional for histories characterized by
projections at three or more moments of time could be
calculated by recursive use of the relations (6.8)—(6.13},
but we will not pursue that here. In the next section we
will evaluate the expression (6.37) for particular initial
states.
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VII. DKCOHKRENCE
AND CLASSICAL CORRELATIONS

We will now evaluate the decoherence functional (6.37)
for specific choices of the initial state contained in the
Gaussian ansatz, Eq. (6.2). We will look for decoherence
and for the degree of peaking about the classical paths.

A. Single wave packet

Let the initial state be a wave packet centered around
point a, with width o., and momentum centered around p:

g2

2o&
(7.7)

to ensure that the nonexclusivity of the projections clean-
ly separates from the issue of obtaining decoherence. The
rapid decay of the exponential will ensure that this condi-
tion is readily satisfied.

Inserting the explicit forms for 1 and M», one finds

not expect to obtain decoherence to a degree better than
this. If we seek to obtain decoherence to order e, there-
fore, we should choose lg, l to be sufficiently large that

%o(x ) = exp ipx- (x —a)
o 2

The associated density matrix is

(7.1) C2 i+p) —ai+(I/4)cr2N2,
crf(l —M, i )=

~ i(~2~2+1)~2, i

and some straightforward manipulation shows that

(7.&)

pa= exp — + X+ipg
X +g 2a . 2a2

20 o o'

That is, it is of the form Eq. (6.2), with

1&o=po=, )'o=o,
20

2a . Za 2

PP
— 2, VO= lP, 6P=

(7.2)

(7.3)

(7.4)

0~o, (l ' —M„)~1 . (7.9)

It follows that the decoherence is most effective when
cr i(1 —M» ) is very close to 1.

After decoherence to the requisite degree is achieved,
we are interested in determining the degree to which the
diagonal part of the decoherence functional is peaked
about the classical paths. The diagonal part is given by

One can now calculate all the terms entering Eq. (6.37).
One finds that ai, pi, and pi are real, y i and v, are imagi-
nary, and e, is complex. The quantities Y, and Y2 in
Eqs. (6.31) and (6.32) are real. Denote by x,~(t ) the clas-
sical solution at time t with initial position a and initial
momentum p. Then, Y(t, ) =2x,~(t, ) and Y(t )2
=2x,~(t2). The coefficient of g, in the decoherence func-
tional (6.37) is purely imaginary.

Consider now the condition the decoherence functional
must satisfy for the probability sum rules to be satisfied to
order e It is give.n by (3.4), which in the present case
reads

exp[ —(X, —y, ) (1 —M»)]&a (7.6)

(apart from prefactors, which are of order 1).
To see what this implies, we need to be precise about

what is meant by "x,Ay i" in condition (7.5). Recall that
we are not using true projections but the Gaussian slit
projections, (2.3). At a fixed moment of time, these pro-
jections partition the configuration space into regions
with size of order a few times the width o &. The variables
x& and y, label the regions, and thus have significance
only up to a few times the width. It follows that
"x,Wy&" means that lg&l should be greater than a few
times the width. How many times the width? The
Gaussian slit projections are exclusive only to the extent
that exp( —

P, /2o &) is approximately zero, and we should

lReD(x„x2lyi, x2)l

«[D(x),X2lx, X2)D(yi, x2ly&, x2)]'" (7.S)

for x, Wy, . Inserting the expression (6.37) for the
decoherence functional, it is not difficult to show that this
condition will be satisfied if

( detM )
exp[ —(X—Y) M(X —Y)] . (7.10)

The degree of peaking is determined by the size of the ei-
genvalues of the matrix M, in comparison to quantities of
the form (X, —Yz), (Xz —Y2) . The latter quantities,
when nonzero, are greater than a few times o, , oz, be-
cause X, ,X2 are defined only up to these widths. A con-
venient measure of the degree of peaking, therefore, is the
quantity

o. ,o.
z detM = 1+ +

O )lX) O 2')%2 )

One has

(7.11)

o )o.2detM ~ 1 (7.12)

K(r) =K(r) =L(r) =N(r) =
27-

(7.13)

Also, h2, =~»/4, 4& p=~
& p/4, and e&=cup. It fol-&2 &2

lows that

and thus the probability measure (7.10) is most strongly
peaked when o. &o.z detM is very close to 1.

We now evaluate expressions (7.9) and (7.11) in a
variety of interesting cases and see whether the require-
ments of decoherence and classical peaking are met. %e
will consider the cases of the free particle and the har-
monic oscillator, with and without environment, in the
limits of the time intervals (t2 t, ) and (t, —to—) both
large and small.

(1) No environment. In the case of no environment, we

may set A, B, and C to zero, and also the dissipation y to
zero. In the short time limit, with both (t2 —r, ) and

(t, —to) small, the free-particle and harmonic-oscillator
cases coincide, and one has
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thermal energy of the environment. Classical peaking is
obtained when this quantity is large. Physically, this is
not surprising since it is the condition that the particle
has sufficient inertia to resist the thermal fluctuations of
the environment. However, decoherence demands that
F10-1 be small. This is again to be expected physically be-
cause, on general grounds, decoherence demands a cer-
tain amount of interaction from the environment. Again,
therefore, there is a certain amount of competition be-
tween decoherence and classical peaking, but again a
compromise can be reached if the parameters of the mod-
els are chosen such that a101 1.

An important feature to note is that the quantity (7.20)
controlling decoherence is independent of the initial den-
sity matrix. We have therefore exhibited the degree of
decoherence as a function of the coarse graining for the
class of initial states contained in the Gaussian ansatz
(6.20), not just for wave-packet initial states.

It should also be noted that the fact that we obtained
decoherence without an environment in the short time
limit is a feature peculiar to the initial state consisting of
a single wave packet. The density matrix for this initial
state is peaked along the history traced out by the wave-

packet evolution and is essentially zero elsewhere. The
off-diagonal terms of the decoherence functional essen-
tially sample the density matrix along two different his-
tories. But if the density matrix is nonzero along one and
only one history, the off-diagonal term of the decoherence
functional will clearly be small.

oi(1 —Mii)= 1+o f +1 1

20 0'
(7.14)

and

0102 detM = 1+20 +1 1

02 02
2 1

(7.15)

Each of the quantities has to be close to 1. Equation
(7.14) indicates one should take o»o „while (7.15) indi-

cates one should take o, »o and o2»o. There is,
therefore, a certain amount of conflict between the
demands of decoherence and classical peaking, but a
compromise is possible. For example, if one takes
20.-0.1-02, then

o f(l —M„)=o fcr2de™-,', (7.16)

which can be sufficient for satisfactory decoherence and
classical peaking.

In the long time limit for the free particle, E, E, L, and
n all go to zero, as do a&, P&, y„and b,z, . One thus has

o ~(l —M~~)~0 (7.17)

and therefore there is no decoherence. Similarly,

(7.18)&1+2detM ~0 .

B. States corresponding to a set of classical solutions

Because of the special nature of wave-packet initial
states, it is important to consider other initial states more
representative of the general case. A more general initial
state leading to classical behavior will generally predict
not just one classical solution, but a set of classical solu-
tions, with a probability measure on that set. A simple
example of a wave function of this more general variety is
one of the form

(7.22)%o(x)= exp( Fx ) . —

For the special value F=—,'Mco, this is, of course, the
ground state of the harmonic oscillator and remains in
this state under unitary evolution. However, if
F=Fz+iFI is allowed to be an arbitrary complex num-
ber, with Fz small and FI large, F will evolve from its ini-
tial value. Wave functions of this type arise as wave
functions for scalar Geld fluctuations in inflationary
universe models. An earlier heuristic analysis suggests a
prediction of a set of classical histories, satisfying
Mx=p= —2Flx, and with probability proportional to
exp( 2Fzx ) for a give—n initial value of x [18]. We will
show how these features emerge from the present ap-
proach.

An initial wave function of the form (7.22) gives an ini-
tial density matrix of the Gaussian form (6.2},with

The quantity o,(l —M») is dominated by Cz, and

%21, and one has

o, (1 —M„)- 1

a10-1+ 1
(7.20)

Similarly, it is readily shown that

CEO 0112
021022d

(a,o, +1}(a~o.~+1)
(7.21)

Both of these features might have been anticipated given
the spreading of the wave packet for the free particle.
However, by choosing the mass of the particle to be
sufficiently large, one could ensure that it remains
decohered and peaked about the classical path for a long
period of time.

For the harmonic oscillator, the quantities
o,(l —M») and o fo2detM oscillate without tending
to fixed values in the long time limit, but return to their
short time limit values when both co(t2 t&) and-
co(t, to) are simu—ltaneously equal to integer multiples of
2K.

(2) With environment. In the short time limit, the
quantities A, B, and C are all linear in time (see Sec. IV),
and it is not difficult to see that all dependence on the en-
vironment drops out, reducing to the case of no environ-
ment. In the long time limit, P& and y& tend to oscillatory
functions, C(r) and X(r) grow like e2r', and

2

A1
+t,o M(y +co ) (7.19)

1,0

Decoherence and classical peaking are therefore con-
trolled by the quantity a&o &

(or a&oz). Loosely speaking,
this is the ratio of the energy of the particle to the

ao=Po= ,'~~ yo=&FI— (7.23}

and Pp=vp=E'p=O. It follows that Y1=F2=0. Again,
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the coefficient of gi in (6.37) is purely imaginary. The
decoherence condition is again (7.6).

In the short time limit,

o i(1 —M„)= 1+o, ao+2 —2 2 1

Oz
(7.24)

p(Xi X~)= de™
exp( X MX) (7.25)

This probability is not peaked about a particular classical
path, but as mentioned above, we anticipate that it pre-
dicts a set of classical paths with a certain initial distribu-
tion of x. To illustrate this, we proceed as follows.

The probability of finding a given value of X, at time
t, is

so decoherence can be achieved if apo, « 1 and o, « o.z.
In the long time limit, with an environment, the degree of
decoherence becomes independent of the initial condi-
tions, and the discussion reduces to that of the single
wave-packet case discussed above.

The diagonal part of the decoherence functional is
given by

1 2F
xz= (t, —t, ) . (7.31)

1+(1/2)o, F~.

lf —,'aiFz « 1, (7.31) is the classical path from x, to x2,
with initial momentum p = 2—FIx E.quations (7.2g) and
(7.31) therefore indicate that the heuristic interpretation
described above may be maintained if —,'cr &Fz « 1.

Another way to arrive at the same result is to write
x2 =x, +k(t2 t, )/—M, and use (7.25) to derive a proba-
bility distribution p(x„k), for k and xi, in the limit of
small (tz t,—). This yields a joint probability distribution
for a position sampling and time-of-flight momentum
sampling at approximately the same time. This was
briefly mentioned in Sec. V C and carried out in detail in
Ref. [20]. These results show that the initial distribution
of positions and momenta are given by a smeared version
of the Wigner function of the initial state. In particular,
the Wigner function (and its smeared version) are peaked
about p = —2Flx, if FI is large and F~ small, consistent
with the above analysis.

The degree of peaking about the classical path in (7.29)
is determined by the quantity o.zMzz. In the long time
limit, this is given by

exp

It may be shown that

detM

Mzz

CX)

o iQi+1

p(X, )=fdX~(Xi,X, )

' 1/2

mMzz

detM —2

Mzz
(7.26)

(7.27)

2
cx )o'2

O2M22
cx(o'2+ 1

(7.32)

Comparing with (7.21},we therefore see that the discus-
sion of classical peaking (and the tension between classi-
cal peaking and decoherence) is essentially the same as
that of the single wave-packet case.

VIII. SUPERPOSITIONS

Letting t, ~tp, a, ~(xp= 2' ~ Then, it is easily seen

that, if —,
'o. &F+ «1, one has

1/2

p(X, )= 2' exp( ,'FRX, ) . ——2 (7.28)

p(X2,X, )

p(X2 X, )=
p(X, )

1/2
Mzz M)z

exp —Mzz Xz+ X&
Mzz

2

(7.29)

The conditional probability (7.29) is peaked about

The initial distribution of x is therefore proportional to
exp( —2F~x } (recalling that X=2x ).

To see that (7.25) is peaked about the classical path
connecting a given value of X& to Xz, consider the condi-
tional probability of Xz, given X, . This is given by

%e now study an important but simple illustrative
case, namely, that in which the initial state is taken to be
a superposition of two wave packets. This example
shows most clearly how interference is an obstruction to
assigning probabilities to histories, and how interference
is destroyed by coupling to an environment. This exam-
ple is essentially the double-slit experiment but paired
down to its most basic form.

A. Without environment

Consider a particle moving in one dimension, in a pure
state whose wave function at t =Ep is a superposition of
wave packets far apart, but moving towards each other.
So

where I4+(io })is a wave packet at x =L )0, with width
cr «L, and with momentum —p. Similarly, I'll (to) ) is
located at x = —L, has the same width, but momentum p.
Explicitly,

M)z y) —F2 )X)=i ' X) .
N2, (cr,a, + 1)

(7.30) {8.2)
(x L)—(x I'0+(to)) = exp —ipx—

This may be shown to be a classical solution in (t2 t, ). —
To discover the initial data this solution satisfies, let
(t& t, ) become small, an—d let t, ~to One obtains.

(x I4 (to)) = exp ipx—(x+L ) {8.3)
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The wave packets are therefore approximately orthogo-
nal at t=to, up to terms of order exp( L—/o ). Let
them meet at the origin at time t&. We will assume that
the parameters such as the mass of the particle are
chosen so that the wave packets do not spread appreci-
ably. In fact, we could consider a harmonic oscillator in
which they do not spread at all.

The form of the wave function might tempt one to as-
cribe definite properties to the history of the particle. In
particular, one might wish to say that the particle is in
the neighborhood of either x=L or —L at time tp and
then in the neighborhood of the origin at time t„with
some probability for each of these two histories. We sha11

show explicitly, however, that this view is not tenable be-
cause this pair of histories does not form a decoherent
set.

At. time tp, it is sufficient to ask whether the particle
lies on the positive or negative x axis. This is effected
through the projections

Pp= f «lx&&xl, P =f dxlx&&xl . (84}

It is easily seen that

P I%' (t )&=IV (t )&, P IV —(t )&=o (8.5)

up to terms of order exp( L —/o ). At time t„when the
wave packets meet, we will ask whether the particle lies
in a region of size 5 around the origin, where 6 is much
less than the wave-packet width o.. This proposition is
effected by the projection

Pt, =f dxlx&&xl .—6/2

One has

P, le, (t, )&=lx=o&&x=ole (t, )& .

(8.6)

(8.7)

An exhaustive set of alternatives at time t, consists of Pz
together with its complement 1 —P~.

The candidate probabilities for the histories in which
the particle was either in x (0 or x &0 at tp, and then
near the origin at t, are given by the diagonal elements of
the decoherence functional:

D(+,+)= Tr[P~e
' " 'P+I+(to)&&+(to)IP+e' ' '].

using (8.5), and then evolving to time t„this becomes

D(+,+)= Tr[Pt, le+(t, ) & &'ll+(t~ }I]

=
I & +„(t,)lx =0&

I (8.9)

But if these probabilities are to satisfy the probability sum rules, it is necessary that the off-diagonal terms of the
decoherence functional are zero, or at least small. The off-diagonal terms are given by

D(+, +)= Tr[P&e ' 'P+IV(t 0) &&%'(t o)IP+e ' '
]

= Tr[Pt, e

=&+,(t, )Ix=o&&x =ole, (t, ) &, (8.10)

ID(+, v )I =D(+, +)=D( (8.11)

and it is not possible to satisfy the condition of approxi-
mate decoherence:

again using (8.5). But &x =ol%'+(t& ) & and
&x =OIV (t, ) & are essentially equal. One therefore has

p =p(++ )+p(- —)+p(+ - )+p(-+» (8.13)

where, from (8.2) and (8.3),

to which the wave packets move), and the time t, at
which the wave packets mee. is modified. The initial
density matrix has the form

ID(+, +)I «[D(+, +)D( ——)]' (8.12)
(xo —L )

p~ ~(x,y )= exp ip(x —y )—

The set of histories are therefore not decoherent and the
assertion that "the particle was either in x (0 or x )0 at
tp, and then near the origin at t, " is meaningless.

(y, L)'—
02 (8.14)

B. With environment

Suppose we now couple this system to an environment
using the Caldeira-Leggett model described in earlier sec-
tions. The main difference is that the evolution of the ini-
tial density matrix is no longer unitary, but is instead de-
scribed by the Caldeira-Leggett propagator, (4.39). A
second difference is that the environment introduces dis-
sipation into the classical equations of motion (according

(xo L)—
p~+ ~(xo,yo}= exp ip(xo+yo}—

g 2

(yo+L )

g 2 (8.15)

P( ) and p( +) are obtained by letting p —+ —p and
L ~ L in (8.14) and (8.15), respe—ctively.

The decoherence functional is given by
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d! /2
dx) f dxo fd,yop(xo yo to)J(x),x), t(lxo yo to)—6/2 a u'

(8.16)

and similarly for f( ) and f( +). Then, in the coordi-
nates X=x+y, (=x —y, it is readily shown that one has

(X() 2L )—
(++)(xo yo) = exp —Cg-

2o
(8.20)

Here a and n' denote the integration ranges at time tp,
which may be the positive or negative axes. The four
possible terms of the decoherence functional D(+, + ) and
D(+, + ), are thus obtained by integrating over each of
the four quadrants in the xpyp plane. J is the Caldeira-
Leggett propagator, (4.39), which we write

J(x»x„t(lxo,yo, to)= exp[ig —C(x, —y, )']

where C=C) o and is given by (4.43) with r=t) —to
The explicit form for S will not be needed.

The desired result will be obtained by focusing on the
size and location of the maxima of the integrand of (8.16)
in the xpyp plane. Let

f(++)(xo,yo)

= exp[ —C(xo —
yo ) ] Ip(++ )(xo,yo ) I, (8.18)

f(+ —)(xo»o)
= exp[ —C(x —

yo ) ] lp(+ —)(xo»o I (8.19)

value of C ) but their magnitude is suppressed by the fac-
tor (8.22). These terms therefore contribute at worst the
same as f(++), but multiplied by (8.22). By far the dom-
inant contribution to the integral, therefore, will come
from f(++), whose peak lies well inside the integration
domain. Similarly, D ( —,—) will be dominated by

f( ), and will be the same order of magnitude.
Now consider the oft-diagonal term D(+, —). It is ob-

tained by integrating the same integrand over the fourth
quadrant x, & 0, yo (0. The peak of f(+ ) lies inside the
integration domain and one would expect this to provide
the dominant contribution. The peaks of f(z+) are far
from the integration domain, but they are not suppressed
by (8.22). Their contribution would therefore be compa-
rable to that of f(+ )

. Similarly, the peak of f ( + ) may
also be comparable, since it can be close to the integra-
tion domain. The important point, however, is that it is
clear that aH four terms are suppressed by the factor
(8.22) compared to the contribution f(++) makes when
the same integrand is used to calculate D(+, + ). A simi-
lar argument goes through for D( —,+ ), and we may
therefore write

L2C
ID(+, + )I = exp —2 [D(+,+)D( —,—)]'" .

o C

(8.23)

L
f(+ —)(xo,yo)= e"p C ko

o C

LZC
X exp —2

2~2C

Xp

2o

(8.21)

In the short time limit, C= ', MykT(ti ——to) so

(8.24)exp —2 = exp[ —,'MykTL (t, —to)] . —L, 'C 2

o. C

f(++) L C—exp 2 (8.22)

where f '" denotes the maximum value of f.
Consider now the evaluation of D(+, +). It is ob-

tained by integrating xp, yp over the first quadrant xp &0,
yo & 0 in (8.16). Recall that we are assuming that L »cr.
The peak of f( )

is far from the integration domain so
its contribution will be very small, of order
exp( 2L /o ). The peaks of f(+—+), on the other hand,
can be close to the integration domain (depending on the

where C=C+1/2o . Similarly, f( )
and f( +) are

obtained from (8.20) and (8.21) by letting L ~ L-
The integrand of (8.16) is the sum of the four f's, apart

from phases. From (8.20) and (8.21), it therefore has four
peaks: at x=y=+L and at x= —y=+L/(2o C).
When C is small, the latter pair are close to
x = —y =+L, but for large C they approach the origin.
The widths of all four peaks are the same. But, most im-
portantly, the size of the peaks of f(++ )

are suppressed
in comparison to the peaks of f(++) by the exponential
factor.

2y(t
l
—to)In the long time limit, C goes to infinity like e ' ', so

L'C 2L, '
exp —2 = exp

o. C o.
(8.25)

We therefore have very efFective decoherence. Probabili-
ties can be assigned to the histories, and it becomes mean-
ingful to say that "the particle was either in x & 0 or x )0
at tp, and then near the origin at t, ."

C. The double-slit experiment

Finally, it is perhaps enlightening to comment on how
these considerations might affect the fully Aedged
double-slit experiment. Consider the standard double-slit
arrangement, in which one has a source (of electrons, say)
incident on a pair of slits with a screen behind, with the
whole setup in an evacuated box. The probability distri-
bution of the electron's position at the screen will be the
well-known interference pattern. Now ask whether it is
possible to think of the electrons producing the interfer-
ence pattern as having gone through one slit or the other.
Differently put, ask whether the probability distribution
for the interference pattern might be regarded as a sum of
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two probabilities —the probabilities for the histories in
which the electron went through one or the other slit.
This question is affected using projection operators of the
form (8.4) at the time at which the electrons were in the
neighborhood of the slits (where the x direction is parallel
to the screen and the slits). However, from an analysis
very similar to that given above, it is readily shown that,
due to the presence of interference terms in the decoher-
ence functional, one cannot write the interference pattern
probability distribution as the sum of these probabilities.
It is therefore not possible to think of the electron as hav-

ing gone through one slit or the other.
Now suppose we gradually introduce an environment

into the box, say a gas of photons. As in Sec. VIII B, the
environment will induce decoherence of the histories, and
then it wi/I be possible to assign probabilities to the two
possible histories of the electron. The interference pat-
tern may then be written as the sum of the two probabili-
ties. But, the interference pattern will be changed. It
will, however, be changed gradually as the environment is
introduced into the box. In particular, one will find that
there is complementarity between the sharpness of the in-
terference pattern and the degree of decoherence.

This sort of analysis of the double-slit experiment is
well known (see, for example, Ref. [23] and references
therein). Typical analyses involve the notion of actually
measuring, to some precision, the position of the electron
in the neighborhood of the slits. They thus yield a com-
plementarity relation between the sharpness of the in-
terferenee pattern and the precision of the measurement.

In the decoherent histories approach, rneasurernents do
not play a central role. Precision of the measurement is
replaced, in the eomplementarity relation, by the more
fundamental notion of the degree of decoherence —the
degree to which probabilities may be assigned. Of course,
the distinction is perhaps not so great in that an actual
physical measurement might involve observing the pho-
tons scattered off the electrons, from which the location
of the electron could be deduced. It is, however, perhaps
satisfying to see how, in the decoherent histories ap-
proach, the notion of complementarity appears, but
without reference to any notions of measurement.

Finally, we note that detailed calculations of the full
double-slit experiment, exhibiting nondecohering his-

tories, have been given by Omnes [24], but the coupling
to an environment in order to induce decoherence was
not considered.

IX. SUMMARY AND CONCLUSIONS

The purpose of this paper has been to explore some of
the features of a formulation of quantum mechanics for
closed systems which deals directly with quantum-
mechanical histories. After reviewing the formalism, we
addressed the issue of approximate decoherence. A con-
dition for approximate decoherence was proposed. The
form of this condition is partially motivated by a simple
inequality satisfied by the decoherence functional, which
we derived. We argued that our condition ensures that
most probability sum rules are satisfied to approximately
the same degree. Our argument, however, relied on some

assumptions about the statistical distribution of the off-
diagonal terms of the decoherence functional. It would
be interesting to understand the significance, if any, of
the situations in which these assumptions do not hold.

We calculated the decoherence functional for the
Caldeira-Leggett model, and derived the general form of
the decoherence functional for linear systems, for his-
tories consisting of approximate samplings of position at
an arbitrary number of moments of time. It was seen to
display the desired formal properties, namely, decoher-
ence, and peaking about classical paths along the diago-
nal. Both types of the coarse grainings employed (tracing
over the environment and smearing over position) were
found to be necessary to achieve decoherence. We also
found that the probabilities for the histories involved a
smeared version of the Wigner function in an essential
way.

A more precise evaluation of the decoherence function-
al was achieved by specializing to the case of histories
characterized by approximate position samplings at two
moments of time. We studied initial states consisting of a
single wave packet, and a wave function corresponding to
a set of classical paths. In each case we obtained a quan-
titative measure of the degree of decoherence and classi-
cal peaking as a function of the coarse-graining

parameters —the temperature of the bath and the width
of the position projections. We found that there is an ele-
ment of conAict between the requirements of classical
peaking and decoherence; but, in our cases at least, there
seemed to be a compromise regime in which each require-
rnent could be adequately satisfied.

An important case we considered is that of an initial
state consisting of a superposition of wave packets.
Perhaps more clearly than any other, this example illus-
trate some of the key features of the decoherent histories
approach. First, it provides a very concrete example of a
set of histories which do not decohere, and therefore, to
which probabilities cannot be assigned. Secondly, it
clearly shows how decoherence can be very effectively
achieved by coupling the system to a larger environment
and then tracing it out.

Some of the work, and in particular that of Secs.
V-VIII has much in common with that of Gell-Mann
and Hartle [3,8,9]. We have not attempted to be as gen-
eral as they were, and indeed, some of our results, such as
the observation of the tension between decoherence and
classical peaking, and the appearance of the Wigner func-
tion, are special cases of their results. We have, however,
been more explicit and precise in our calculations, and
have exhibited in detail the features of the formalism for
specifi ehoiees of initial state.

Interference in quantum mechanics is best thought of
as the failure of the probability sum rules for histories.
Decoherence as destruction of interference is likewise
best understood as the recovery of these rules. In the
decoherent histories approach, (exact) decoherence is
therefore defined in a precise and unambiguous fashion,
namely through the condition (2.32). Decoherence and
classical correlations have also been studied using density
matrices at a fixed moment of time [15]. In these ap-
proaches, the destruction of interference is associated
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with the tendency of the density matrix towards di-
agonality, with the establishment of correlations of the
system with the environment, and with the stability of
certain system states under evolution in the presence of
an environment. Although these approaches have a
strong intuitive appeal, we feel that none of them supply
a set of criteria for decoherence as precise as that sup-
plied by the decoherent histories approach (see however
Ref. [25]). In particular, the fact that the probability sum
rules are automatically satisfied for histories consisting of
events at a single moment of time [see Eq. (2.33)]
highlights a possible tension between the decoherent his-
tories approach and the density matrix approach.
Reconciliation of these differing approaches will be the
topic of future publications.

Note added in proof. Some additional bibliographical
remarks are in order. Approaches to quantum mechanics
focusing on histories are certainly not new. Wigner has
stressed that all of conventional quantum measurement
theory is essentially contained in the formula (2.39) (Ref.
[26]). It contains both the unitary evolution of the state,
together with the collapse of the wave function as a result
of a measurement. Approaches based on continuous
measurement have also been considered [27,28]. That
quantum-mechanical probabilities for histories do not
satisfy the probability sum rules was noted by de Broglie
[29], and also by Feynman in his seminal paper on the

path integral approach to quantum mechanics [30]. See
also the later work of Srinivas [31]. All of these ap-
proaches are concerned with measurement by an external
agency. As stressed in Sec. II F, their interpretational as-
pects are therefore quite distinct from the decoherent his-
tories approach considered here, although the mathemat-
ical machinery is very similar.
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