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We describe a new approach to quantum gravity, based on a kind of mean-field approximation. The
action, which we choose to be quadratic in curvature and torsion, is made polynomial by replacing the
inverse vierbein by its mean value. This action is used to compute the effective action for the vierbein
and hence its vacuum expectation value. Self-consistency is then enforced by requiring that this vacuum
expectation value be proportional to the mean field. We have explicitly carried out this self-consistent
procedure at one loop in the case of a mean field corresponding to Minkowski space, de Sitter space, and
in the long-wavelength limit for a generic space. General relativity is recovered as a low-energy approxi-
mation.
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I. INTRODUCTION

From the point of view of elementary-particle physics,
Einstein's theory of gravity has many features in common
with nonlinear chiral models of QCD: Both theories have
derivative couplings, nonpolynomial interactions, a di-
mensionful coupling constant, are not renormalizable,
etc. [1]. All this originates from more basic similarities at
the kinematical level. In fact, it has been known for a
1ong time that the metric carries a nonlinear realization
of the group GL(4), linear with respect to the Lorentz
subgroup O(1,3), and therefore is similar to the field vari-
ables of a nonlinear 0. model with values in the coset
space GL(4)/O(1, 3) [2]. Another fruitful analogy is the
one between gravity and Yang-Mills theory. This is par-
ticularly striking in the vierbein and first-order formula-
tions, where the Lorentz connection is an independent
dynamica1 variable and the theory is invariant under lo-
cal Lorentz transformations, in addition to coordinate
transformations [3].

At first sight these two analogies have little in common
and one may think that on1y one of them can be pursued
at the time. However, this is not so. In fact, one can give
a locally GL(4)-invariant reformulation of general rela-
tivity which tnakes both analogies apparent [4—6]. The
best analogy is then between general relativity and a
chiral model in which the flavor group has been gauged.
In this formulation, in addition to a GL(4) connection,
there are two nonlinear fields: the soldering form and an
internal Lorentzian metric. The nonlinearity arises from
the constraints that the soldering form be nondegenerate
and the internal metric have a Lorentzian signature. Ei-
ther one of these fields (but not both at the same time)
can be gauged away, leaving us with general relativity in
either a metric or vierbein formulation. Without the

soldering form, the theory would describe a gauged
GL(4)/O(1, 3)-valued nonlinear o model. So this is more
than just an analogy: One may say that gravity is very
literally a soldered gauged 0. model.

If one takes this point of view seriously, one is led to
believe that general relativity should not be quantized,
but rather be regarded as a low-energy limit of some
more fundamental theory. Now the dynamical variables
of QCD (quarks and gluons) are different from those of
the chiral models (mesons): The former are described by
spinor and vector fields, the latter by nonlinear scalar
fields. In the same way it may well be that the fundamen-
tal variables underlying gravity could have little or noth-
ing to do with the metric, vierbein, or connection. This
possibility has been discussed for some time in the so-
called "induced-gravity" program, where the Einstein ac-
tion was seen as part of the effective action of some
matter fields [7,8]. String and membrane theories also go
in this direction. Our attempt here will be less radical:
We shall assume that the familiar objects which appear in
general relativity (metric, vierbein, and connection) are
indeed fundamental variables. However, we shall try to
go beyond the picture of an effective induced theory.

A nonlinear cr model can always be regarded as a
linear Higgs model with some constraint of the form
N'+'=const, which forces the field to lie in an orbit of
the gauge group. This constraint can be regarded as the
effect of a Higgs potential in the strong-coupling limit. A
similar picture can be applied also to gravity, but with an
important difference. In the usual models considered in

particle physics, the constraints are holonomic and there-
fore the orbits of the gauge group are lower-dimensional
submanifolds of the space of the linear Higgs fields. On
the contrary, in gravity the constraints are of the anholo-
nomic type and therefore the orbits corresponding to the
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nonlinear bosons are open subsets in certain tensor
spaces. This geometrical fact means in more physical
terms that while in particle physics the linear theory has
more degrees of freedom than the nonlinear one, in the
case of gravity the linear (unconstrained) theory has the
same number of degrees of freedom of the nonlinear (con-
strained) theory.

Thus, if we were able to construct a theory of gravity
in which the soldering form and the metric were not con-
strained a priori to be nondegenerate, then without hav-
ing to introduce new degrees of freedom this theory
would be more akin to a Higgs model than to a nonlinear
o inodel [9]. Its quantum properties would presumably
be improved, and even if was not to be regarded as a fun-
damental theory, it would probably have the same status
of the standard model of particle physics. As an addi-
tional bonus, a theory of this type would provide a natu-
ral framework for the unification of gravity with the oth-
er interactions [10,6].

Our aim in this paper is to discuss the construction and
quantization of such a "Higgs-like" or "unconstrained"
theory of gravity and its relation to the usual theory of
general relativity. In order to simplify the discussion, we
will assume that the internal metric is nondegenerate and
choose the GL(4) gauge so that it is equal to the Min-
kowski metric g,b. Furthermore, we will also assume
that the GL(4) connection is inetric, i.e., reduces to an
O(1,3) connection. Thus we will effectively work within
the framework of the vierbein formulation, but we will
not assume a priori that the vierbein is nondegenerate or
that the torsion is zero.

In the construction of our model, we try to follow as
much as possible the example of the Higgs model as used
in elementary-particle and condensed-rnatter physics. In
doing so we encounter two different but related
difficulties. First of all, if the metric is allowed to become
degenerate, then it is impossible to define its inverse,
which is needed in the Lagrangian for contracting covari-
ant indices (e.g. , on derivatives). The other difficulty has
to do with the construction of the potential, which is
needed to guarantee that the vacuum expectation value of
the Higgs fields (here the soldering form) is not zero. One
can easily convince himself that it is impossible to write a
nontrivial potential for the vierbein. For example, sup-
pose we try to write down a term containing two vier-
beins, no derivatives, and invariant under coordinate and
local Lorentz transformations. The only possibility is
g""0'„0 g,b, where g„ is the spacetime metric. If 0 is
unrelated to g, this would be a true mass term for 0.
However, in gravity, one has the relation g„=0'„0
and so the term written above is not really quadratic: It
is independent of 0 and equal to 4. For the same reason
one cannot write potential terms of higher order.

The origin of both these difficulties can be traced to the
double role which is played in the gravitational Lagrang-
ian by the metric (or vierbein). In any field theory one
needs a metric to contract indices in the Lagrangian and
to define the volume element; in this role, the metric pro-
vides the geometrical standard according to which
lengths and angles are measured. In addition, in the
theory of gravity, the metric also plays the role of a

dynamical variable. This duality is the source of the
beautiful geometrical interpretation of the classical
theory, where the two roles coexist peacefully. However,
it is also at the root of most difficulties, both conceptual
and practical, which are encountered in the quantization
of gravity. For example, the nonpolynomiality of gravi-
tational Lagrangians is due to the fact that covariant in-
dices must be contracted with the contravariant (inverse)
metric. Also, the fact that the theory must contain a di-
mensionful coupling constant can be traced to the fact
that geometrical and field-theoretic arguments lead to
different dimensions for the metric.

We overcome the two difficulties mentioned above by
considering a mean-field quantum theory of gravity in
which the two roles of the metric are kept separate: We
assume that lengths and angles are not to be measured
with the dynamical, fluctuating metric, but rather with
its vacuum expectation value (which we will refer to as
"mean value" ), assumed to be nondegenerate. On the
other hand, the dynamical metric (or vierbein) can fluctu-
ate without constraints and evolves on the background
provided by its own mean value.

We modify the gravitational action by replacing the in-
verse metric g" by the inverse mean metric g" . Since
the mean metric is assumed nondegenerate, the first
difficulty does not arise anymore. The second difficulty is
also avoided because one can now write terms such as
g" 0'„0 g, which are part of a genuine potential for the
vierbein. The action will then look like a Higgs-model
action in a fixed background metric. One can use this ac-
tion to perform quantum calculations in which the mean
metric is kept fixed. Among other things one can com-
pute the vacuum expectation value of the composite
operator g„„=0'„0",g,b. The whole scheme is self-
consistent if one finds that this vacuum expectation value
is equal (up to a dimensionful multiplicative constant l )
to the mean metric that one had postulated in the begin-
ning.

For technical reasons it is easier to compute the vacu-
um expectation value of 0 rather than that of g. In this
case self-consistency means that the vacuum expectation
value of 8 is equal (up to a dimensionful multiplicative
constant l ') to the mean vierbein 8, where
g„„=8'„8„r),b Note . that since (g„„)
W ( 8'„)(8,)rl, b, the two procedures will lead to
different values for the fundamental length I, although
qualitatively the results should be the same.

In Sec. II we will introduce a particularly simple action
which incorporates the ideas illustrated above and dis-
cuss in more detail the general outline of the mean-field
approach.

In Sec. III we discuss the case in which the mean field
corresponds to the flat Minkowski metric. In this partic-
ular case one can use Fourier analysis and the computa-
tions follow the familiar pattern from elementary-particle
models. We are led to an effective potential for the classi-
cal vierbein which is of the Coleman-Weinberg form.
The minima of this potential occur at multiples of the
unit matrix, thus ensuring self-consistency.

In Sec. IV we begin to take into account curvature
effects by considering a de Sitter mean field. In this case
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one can still compute the one-loop effective action exact-
ly. A closed form for the minimum can be given in the
limit of large de Sitter radius, and in this approximation
self-consistency can be explicitly checked.

In Sec. V we consider a generic mean field g and evalu-
ate the first three terms in the long-wavelength, low-
momentum expansion of the effective action. Evaluating
this action at its minimum yields an effective action for
the mean field which contains the Einstein term. Thus, at
large distances, general relativity is recovered as an in-
duced effect.

Finally, Sec. VI contains further remarks and con-
clusions.

II. SIMPLE MODEL

In order to make the previous discussion more con-
crete, we will illustrate the mean-field approach to quan-
tum gravity by discussing a particular model. We work
within the context of the vierbein formulation of gravity,
taking as independent dynamical variables the vierbein
8'„and an O(1,3) gauge field A„'b (here a, b =0, 1,2, 3 are
internal indices and p, ,v=0, 1,2, 3 are spacetime indices).
The spacetime metric is given by

a bg„,=0 „0 g,b, (2. 1)

where i),b
=diag( —1, 1, 1, 1). The analogy with the Higgs

model of elementary-particle physics suggests an action
quadratic in the curvature of the O(1,3) gauge field,

and in the covariant derivative of the order parameter,

V„0'.=a„0',+g~„',0".—r„'.0',

[g is the gauge coupling constant and I are the
Christoffel symbols of the composite metric (2.1)).

The simplest such action has the form

5(8, A)= J d x&~detg~[ '—g"—~g" g„g "F„„'bF

,'—g"—'g"n.bV„8'.V,8".) .

(2.2)

It is manifestly invariant under local Lorentz and general
coordinate transforrnations. A more general action of
this type would contain several other terms in which the
indices are contracted in different ways, each term
weighted with a different coefficient. For the purposes of
this paper, it will be sufficient to consider the particular
case (2.2).

As discussed in the Introduction, the vierbein has two
roles in the theory: It defines the geometry of spacetime,
and at the same time it is a dynamical variable. One can
identify occurrences of the vierbein in the action where it
plays the role of geometrical standard and others where it
plays the role of dynamical field. If one compares (2.2)
with the action of the Higgs model, the only place where
0 plays the role of dynamical variable is under the covari-
ant derivative. The mean-field approach consists in re-
placing 0 by a "mean vierbein" 0 in all other places. Be-
cause of the particular form of the action, this is
equivalent to replacing everywhere the composite metric

g bygpv 0 p0
As already mentioned, at this stage it becomes also

possible to add to the action a potential term. In fact, we
will see later that to ensure renorrnalizability one has to
consider terms containing arbitrary powers of the curva-
ture tensor of g and up to four powers of the field 0.
Since we will restrict ourselves to one-loop calculations, it
will be sufficient to consider terms linear in curvature and
quadratic in 8, and terms quadratic in curvature (which
we do not write). Thus our starting action will be of the
form

S(8, A;g ) = f d x+
~
detg

~

—
—,'g " g

" g„q F„bF« 'd —
—,
' g "g

' qb V„8',7~8

2
~2——'(m +gR )trX — (trX) — tr(X )

2 4 4
(2.3)

where X'b=g" 0'„0' g,b, R is the scalar curvature of g,
V denotes the covariant derivative constructed with A

and the Christoffel symbols of g, and m, g, A, „k2 are cou-

pling constants. We shall refer to the second line in (2.3),
with opposite sign, as the tree-level potential V' '.

The step from the action (2.2) to the action (2.3) is not
entirely unambiguous. The second term in (2.2) can be
rewritten in terms of the torsion e„' =V„0',—V 0'„,
and using the identity

one can rewrite

—
—,'g" g g,b V„0' V 0

= —gag-~ e e' —-'g~p0-' 0-' e'e b
'Dab p v p o- 4g a b pv po

I

Had we started from the action S written in this alterna-
tive way, we would have arrived at an action S with a
different kinetic term for 0. One could eliminate this am-
biguity by restricting the possible forms of the kinetic
term for 0. Anyway, the preceding discussion is meant as
a motivation for, not as a derivation of, the action S. Our
main reason for choosing the action (2.3) is that it leads
to a simple form of the propagator.

Taking the coordinates to have dimensions of length
and the "geometric" metric g to be dimensionless, the
dynamical fields A and 0 have canonical dimension of in-

verse length. Thus m has the dimension of squared
mass and the coupling constants A, A,2, and g are dimen-

sionless, as usual. Note that if we assumed the composite
metric (2.1) to be dimensionless, as required by geometric
considerations, then for the field 0 to have canonical di-
mension one would have to introduce in (2.1) a dimen-
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sionful constant 1. This is the approach that was adopted
in [6,11]. Here we will let the composite metric (2.1) have
dimension of mass squared, as required by the canonical
dimension of 8, and g be dimensionless. The constant I
will then reappear in the self-consistency conditions
which relate g to g (or 8 to 8).

We emphasize that nothing goes wrong in the action S
when the dynamical field 8'„becomes degenerate or even
becomes identically zero. So, in quantizing the theory
with action (2.3), one need not worry at all about this as-
pect and one can functionally integrate over 8 without
constraints. Unlike the original action S, S is polynomial
and contains interaction terms which are at most quartic
in the dynamical fields; it has exactly the same type of in-
teractions of the usual Higgs model. Thus the theory
defined by (2.3) is power-counting renormalizable in flat
space.

Since in the action S the metric g has to be treated as a
fixed background, general coordinate invariance is lost.

8 p 8(cl) p+g p &

24 p b A (~])~ b +COp b

the quadratic action has the form

(2.4a)

(2.4b)

The choice of the mean vierbein 8 would also break local
Lorentz invariance, but since 8 appears only through the
combination g„=8 „8 „riab, the action (2.3) is invariant
under local Lorentz transformations. Furthermore, if we
allow the transformations to act also on the background
g, the action (2.3) has the same invariances of the action
(2.2).

We will evaluate the one-loop efFective potential for 8'„
using the saddle-point approximation, treating g as a
fixed background. As is well known, this reduces to the
calculation of a functional determinant. We first expand
S up to second order around a classical solution A(,&),

8(,&)
of the field equations. In the expansion of S, terms

linear in the fluctuations are then absent. Defining

[~~] [~~] co8 8
S' '(y, co;8(,)), A(„)',g)= —,

' fd»+~detg~tr (co()())
[v~] Ical .

,' f—rI—'» ldetgl[~„'b8[coro] a c vd+2% p8[pu]a c ~vd+f p8[q&y]a b 'f v].

This linearized action is invariant under the linearized gauge transformations: The fields

a a a a b1—
~p b ~p~ b& 0 p ~ b8(cl) p

(2.5a)

(2.5b)

(2.6)

are null vectors for the operator 8, which is the block matrix operator appearing in (2.5a). We therefore have to fix the
gauge. We choose the 't Hooft gauge and add to the linearized action the gauge-fixing term

f1» ~detg~[g ~ (V Cd b+Qgri b8( )) (p )]2'
Collecting all terms, the operators governing the dynamics of small fluctuations are

(2.7)

8[„~)„ba5, 5b 5„—V),V — 1 ——V„V' R„' +4g—5;F(„)„b) 5„M(„),b'—
a (2.8a)

where

[0a&]a@

[n la)

vcd 2g5[cV v8 d]
a (cl) p &

bv —5b5v[V V &(, (m 2+JR )] ~ bv

(2.8b)

(2.8c)

cd 2 fc d] 2 (c p d]
M(cl)ab g 5[aX(cl)b] g 5[a 8(cl)b] 8(cl) )»
N( )) =ag 5 X( )) +A)[X( )) 5 5 +28( )) 8( )) ]+F2[X( )) 5 +5 X( )) +8( )) 8( )) ]

(2.9a)

(2.9b)

Here and in the following, indices are raised and lowered
with g,b and g „and transformed from Latin to Greek
by means of 8. The ghost operator is

I' "(8(,) ), A (,)),g ) = —,
' ln det8 —ln det8[sh) . (2.11)

cd c d A, cd
8[gh)ab 5 a5b VA V M(c'l)ab' (2.10)

In order to compute the functional determinants, one has
to continue analytically the differential operators to the
Euclidean sector. This amounts simply to changing the
overall sign of the operators (2.8) and (2.10). The one-
loop effective action is then formally given by

The explicit evaluation of these determinants requires a
regularization because of the presence of ultraviolet
divergences. In the subsequent three sections, we will use
a simple cutoff, g function, and heat kernel regularization
for the cases when the mean field is Bat space, de Sitter
space, and a generic space, respectively. These methods
will be found to give entirely consistent results.
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If the regularization procedure respects general coordi-
nate invariance, as is the case with the method we adopt
in Sec. V, the effective action (2.11) will have the same in-
variance properties of the classical action S. In particu-
lar, it will be invariant under coordinate transformations
when all fields, including g, are transformed.

The vacuum expectation values (0) and ( A ) are ob-
tained by minimizing the total effective action
I =S+I'" with respect to 0(,&)

and A(,&). These minima
depend upon g. Since we want to interpret the back-
ground vierbein 8 as the vacuum expectation value of 9,
the theory will be self-consistent if (0)=I 8, where I is
a constant with the dimension of length. In the next sec-
tions we shall see that self-consistency can be achieved in
the case of a flat or de Sitter background and, in the
iong-wavelength limit, for a generic background.

III. FLAT SPACE

By the equivalence principle, any macroscopic metric
can be approximated in suSciently small regions by a flat
metric. On the other hand, quantum gravity is supposed
to supersede the c1assical theory precisely at short dis-
tances. Thus it is perfectly appropriate that quantum
gravity should begin by explaining fat space. Note that
in view of the analogy with the Higgs model, the Min-
kowski metric is already a nontrivial background: It is
the same as having a constant nonzero Higgs field.

We take then gp, =np, and 8'p=bp For the. classical
fields we choose A(,&)

=0 and 0(,])=const. The operators

governing the dynamics of small fluctuations become, in
momentum space,

vcd
8[«)~)

V cd
~p.M(cl )ab (3.1a)

(3.1b)

8[«},„"=5,5„"(—k qk —m ) N(—„),„"",
ed [c d] ed

8[gh}ab ~[~~y} ) k + (cl)ab

(3.1e)

(3.1d)

Because of (3.1b), the one-loop effective action reduces to

I'"=
—,'ln det8[ }+—,'ln det8[«}—In det8[s), }

. (3.2)

Indet8= g J 1 k In(k2+A, ;),
(2n )

where A is an ultraviolet cutoff. The integration over k
can be performed explicitly, and one finds, for A large,

Since the classical fields are constant, the effective ac-
tion is the spacetime integral of the effective potential V.
For every k the matrices in (3.1) can be explicitly diago-
nalized. This is achieved by first bringing 8(,1) to diagonal
form by means of independent global Lorentz transfor-
mations on the internal and spacetime indices. Up to an
irrelevant multiplicative factor, the eigenvalues of every
operator 8 are of the form —(k +A,; ). Then, in the Eu-
clidean regime,

3 p p M(c1)' 2A tlM( i) + tr M( &)
1n

64m A

1

2

1 2 2 2 aM( 1)'20'A trl( 1)+& tr M( )}
64vr A

1 2 N(cl)+ '2A trX(,1) +tr X(,1) ln
64m. A

1

2
(3.3)

where N(,&)=m +X(,&), the traces are over double indices, and an infinite, field-independent constant has been
dropped. In (3.3} the first term is the contribution of the transverse components of co, the second term comes from the
longitudinal components of co and from the ghosts, and the last term is the y contribution. This effective potential con-
tains divergences proportional to trM(, i), tr(M(, i) ) and trN(, i),tr(N (,i)). These terms are proportional to trX(, i) and to
suitable combinations of (trX(,i) ) and tr(X(,i) ), and thus of the same form of the potential terms in the starting action.
The infinities in (3.3) can then be absorbed in a renormalization of the coupling constants of the tree-level potential V' '.
In fact, we see that the addition of the tree-level potential was necessary to ensure renormalizability of the theory. This
is very similar to what happens in scalar eIectrodynamics, where renormalizability of the meson-photon interaction
demands the presence of a quartic self-interaction of the scalars.

%ith a suitable choice of the renormalization scale p, the total renormalized effective potential takes the form

V= V' '+ V'"=—m trX(,i)+ (trX(,i)) + tr(X(,)) )+ (3—a )tr M(,i) In
7T' p

—0. 1nn trM(c1),
3 2

&(c])+ tr N( 1) 111
64m. p

3

2
(3.4)

where the coupling constants are the renormalized ones.
Note that, for +=0, the 't Hooft gauge reduces to the
Landau gauge; in that case, the potential (3.4) reduces,
modulo a finite redefinition of the renormalization scale
p, to that already computed in [11].

The minimum of the effective potential (3.4) cannot
easily be written in analytic form. To simplify calcula-
tions we follow [12] in setting m =0 and assume that the
coupling constants k, and X2 are of order g . Then, in
the last term of (3.4}, the dependence on A, ( and A.2 can be
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+ a lna 5„'
32772

(3.5)

and global Lorentz transformations thereof. Thus the
quantum dynamics of the model drives the vacuum ex-
pectation value of the vierbein to be nondegenerate. This
is a gravitational analogue of the so-called Coleman-
Weinberg mechanism [12]. In fact, the vacuum expecta-
tion value of 8 is proportional to the mean vierbein 8,
with the proportionality constant I ' of the order of the
renormalization mass p. We will show in Sec. V that I
can be identified with Newton's constant.

The effective potential (3.4) and its minimum (3.5) de-
pend explicitly on the gauge parameter a. This is a com-
mon feature of efFective potential calculations [13]. In or-
der to obtain a gauge-independent result, one could com-
pute the Vilkovisky-DeWitt effective action for our prob-
lem [14]. We do not expect this to yield qualitatively
different results. In any event, note that the existence of
a nondegenerate absolute minimum is guaranteed for any
finite value of a (an infinite value for a is in any case ex-
cluded because it would give rise to an effective potential
unbounded from below). Flat space is then a self-
consistent solution of the theory in any gauge.

neglected. For a physically acceptable range of the pa-
rameters A, A,2, and g, the absolute minimum of the
effective potential (3.4) occurs for

1 16m. 4~ i+~z
0~,&) „— exp

gF(cl)(lv b 8 P pv a8 b

Using this, one can verify that Eqs. (4.2) solve the classi-
cal equations of motion. %'e will now compute the one-
loop effective action, which will depend on the propor-
tionality constant p and, parametrically, on the radius r.

With the assumptions above, the differential operators
(2.8) and (2.10) simplify; in particular,

(4.3a)

"=[ag~+ 2(2A, , +A., )]p 5,5„"

+2k, (p 8,„8 "+A2(o 8 "8 „. (4.3b)

Also, 8[.m]=0, so that r(" is again given by (3.2}.
Also, 8[„]=0,so that I'" is again given by (3.2).
In order to deal with the nonminimal term V„V" in

8[„„],it is convenient to decompose co in its transverse
and longitudinal parts, satisfying, respectively,
V„co ",b=0 and co „,b=V„e,b. The operator 8[ ] maps
transverse fields to transverse fields and longitudinal
fields to longitudinal fields. Therefore

+(cl)ap

lndet8[ ]=lndet 8[ ]+lndet 8[„].

Using the formula

8[caca]gab ~v cd ~p(8 ab cd ) (4.4)

that the quantum dynamics of the theory requires p to be
nonzero. The curvature of A~,&)

is related now to the
Riemann tensor of the mean metric by

IV. DK SITTER SPACE

3 — 12
s~ r r

(4.1)

where r is the radius of the de Sitter space (related to the
cosmological constant A,o by r =3/A, o). For the classical
fields we take

0(cl) p p
]M &

g~(cl)A, b ~ p~A, ve b +~ ]M~A~ b

(4.2)

with p a constant with the dimensions of mass. We thus
reduce the freedom in the classical vierbein to a single
constant p, and our task in this section will be to show

In this section we start to take into account effects due
to the curvature of the mean metric. We choose g to be
the de Sitter metric, which enables us to compute the
one-loop effective action exactly. The results we obtain
will also be used as an independent check of more general
calculations in the next section. One-loop effective ac-
tions in de Sitter space have been computed before in a
variety of contexts [15—20]. Since calculations are per-
formed in the Euclidean sector, de Sitter space is just a
four-dimensional sphere. We will not need to choose a
coordinate system to write down the metric explicitly.
The only properties that we will need are

1
~llvpa 2 (g/lpgvcr gpagvp)r

where 8',b' =(1/a)8[sh]ab'", we can rewrite
lndet 8[ „]=lndet8'. On the other hand, when the
operator 8[ „]acts on transverse fields, the nonminimal
term drops out.

The spectrum of the operator 8[ ] on transverse fields
and the spectra of 8', 8[++],and 8[sh] can be determined
explicitly using group-theoretic arguments. We begin by
decomposing the fields co and y in their irreducible com-
ponents with respect to the group O(4). Transforming all
indices to Latin by means of 8, we have

=2 1 d
abc 3( abc acb )+ 3 ( Iabvc lac b )+Sabcd

m.b P.b+X.b + ri.b
—&

(4.5a)

(4.5b)

where

abc 2 abc bac ) 6( Iac~ db+ abc~ da ) 3 )ahab dc

carries the 16-dimensional representation ( —,', —,')(]i(—,', —', ),
and w =

—,'c,b«co
'" carry the 4-dimensional

representation ( —,', —,
' ), g,b

=
—,
'

(y,b +yb, ) —,' ri, b qf, trans-—
forms according to the 9-dimensional representation
(l, l), y,b= —,'(y, b

—
pb, ) transforms according to the 6-

dimensional representation (1,0)e (0, 1), and r=
—,'qF,

transforms according to the 1-dimensional representation
(0,0) [21].

It can be shown that the transverse part of co is given
by the tensor t and the longitudinal parts v and w of
the vectors v and w, while the longitudinal part of co is
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given by the transverse parts of v and w. This is made
plausible by observing that the 18 degrees of freedom of
co match the 16 of t plus one each for U and w; simi-
larly, co has 6 degrees of freedom, matching the ones of
v and w . A rigorous proof of this result is given in the
Appendix. When acting on transverse fields, the operator
8(„)respects the O(4) decomposition. Symbolically,

Co 8( )Cg =3t8(«)t+3V 8 I, L, U +6W 8 L LN

(4.6)

8(xx)= —VqV +z

zx=m +
2 g+p (4A, , +A~+g2a),12

r

8(„)= —VqV "+z, ,

z, =m +
2 g+p (12k, , +3A2+g a) .

12

r

(4.9b)

(4.9c)

where

L L 8 L L V V +z
[v v j [w w ] ~ r2

(4.7a)

(4.7b)

Finally, 8(sh) and 8' act on the antisymmetric tensor rep-
resentation (1,0)g(0, 1).

The spectra of all these operators can be determined
using the method explained in [22]. The eigenvalues A,„
and the corresponding multiplicities d„are given in Table
I.

+8(~g)+ =&8(~~)&+&8(xxt+4'8(-)'
where

(4.&)

z~=m + g+p (4A, , +3A2+g a),12
2

(4.9a)

with z =g p (tensor indices have been suppressed since
these operators are multiples of the identity in the ap-
propriate tensor space). Similarly, one finds

We note that for p=0 the operators 8 «and
[v v j

8( L i. have five zero eigenvalues each. This is because
fw w ]

for p =0 the linearized Lagrangian (2.5) is the one of pure
Yang-Mills theory for the group SO(4)=SU(2)XSU(2),
and the classical field A[,&~

is the direct sum of an instan-
ton and an anti-instanton. Thus these are the familiar
zero modes due to the O(5) invariance of the instanton
background [15]. When m =0, (=0, the operator 8(„)
also has a zero eigenvalue for p =0.

The complete one-loop effective action is given by

I'"=
—,')ndet8(«)+ —,'lndet8( i, L, +—,'lndet8 I, L, +—,'lndet8'

+ —,'In det8(&&)+ —,'ln det8(xx)+ —,'ln det8(„)—ln det8(sh) .

For each operator 8, we define the dimensionless zeta function g(8, s) =g„d„(r A,„) ' [23]. Then

In(det8/p ) =g d„ln(A, „/p, )= —g'(8, 0)—in(p, r )g(8,0),

(4.10)

where the prime signifies a derivative with respect to s and )M is the renormalization scale. These g functions can be
evaluated exactly in terms of digamma functions [18,20]. The complete expression is complicated and not very reveal-
ing. Instead, we will present the approximated form of I' "for rp large and a@0:

Operator

TABLE I. Eigenvalues k„and corresponding multiplicities d„.

d.

@In]

@[ah]

r (n~+3n +2)+z
r (n +3n —2)+z
r (n +3n —4)+z

r (n +3n 2)+zy
r (n +3n —6)+z~
r (n +3n —8)+zy
r (n +3n —2)+z

r (n +3n)+z,
r (n + 3n —2)+~z

—'(n +4)(n —1)(2n +3)
n (n +3)(2n +3)

—'(n + 1)(n +2)(2n +3)
6 (n —1)(n +4)(2n +3)

—'n(n +3)(2n +3)
6(n + 1)(n +2)(2n +3)

n (n +3)(2n +3)
—'(n +1)(n +2)(2n +3)

n (n +3)(2n +3)

n ~2
n~2
n~ 1

n ~2
n 2

n~2
n~1
n&0
n&1
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I'"(p;r)= —r z ln ——+3r z ln —1 + ln
3 42 z 3 2 z 59 z

p2 -p2 10 p2

3 zy 3 3 zy 9+—r z ln ————r z ln —1 + ln
8 ~ p2 2 2 & p2 20

L

+—r z ln ———r z ln —1 + ln
zx 3 2 x &9 x

4 2 30p
r

z& 3 $ z& 29 z
+ rz, ln ————rz, ln —1 + ln

24 ' p2 2 6 '
p 180 p

1 4 2 2 az 3 2 az 19 az——r a z ln ——+r az ln —1 — ln
4 p2 2 p 30 p

(4.11)

We assume again m =0, (=0, and A, , =Az=g . The one-loop effective potential V"' is defined by
I'"(p;r)=Q(r)V'"(p;r), where Q(r)= sm r i—s the volume of de Sitter space and p is constant. The effective potential

is given to orderg by

1 (9+Sa )z ln ——+—z a lna
5 22

3277 p

4 2A, )+A2+— 9—5a —18
2

g
2

2A, i+ A.2
z ln

2
— 9—5a+ Ina 5a+ 18

p

560 1 z
z + —ln

3 4 2
(4.12)

2
P =Po

r g 9+5a

an additive p-independent constant has been dropped. Note that in the flat-space limit r~~ only the first line
remains. It coincides with the one-loop effective potential in flat space discussed in Sec. III, when we set 8~,&]=p8.
Therefore the method of the g function and the method of the cutoff give the same result for the effective action in flat
space.

The minimum of the total effective potential V= V' '+ V"' occurs, for any finite nonzero value of the gauge parame-
ter a, at a nonzero value of z, whose explicit expression cannot be given analytically. However, expanding around the
flat-space minimum H~,i&'„=p05„' given in (3.5) and keeping only terms of lowest order in r, one gets

+~2 g Po 2A, 1+A,29—5a —18 ln —5a lna —18( 1+lna ) +0 — . (4.13)
g p g P

For large pr, the minimum of Vis in the region for which
the expression (4.12) can be trusted.

For small values of p, the exact expression of the one-
loop effective potential is found to be logarithrnically
divergent. This is not surprising since, as observed, the
operators 8( L, L,

)
and 8( L L,

)
have five zero modes each

[v v ] fw w ]
at p=0. These clearly give the dominant contribution to
the effective potential, which then diverges as in(p/p) for
p close to zero. Of course, this behavior cannot be trust-
ed within the one-loop approximation. Indeed, as briefly
discussed in the following, by resumming an infinite num-
ber of loop contributions due to the zero modes, one gets
a sensible (finite) result. Similar behavior had been ob-
served before [24]. Note that (4.11) and (4.12) are also
logarithmically divergent for z close to zero: however,
these infinities are not significant since they occur for
values of p for which those expressions are no longer val-
id.

In order to compute higher-loop contributions to the
effective action, it is necessary to go beyond the quadratic
approximation in the expansion of the action (2.3), taking
into account also interaction terms in the fluctuating
fields co and y. Since it is v and w that have zero
modes, we shall concentrate on the quartic self-

interactions (g /27)(v „v ") and 3g (w „w ") and add
them to the quadratic part of the action, symbolically
given by the last two terms in (4.6). Other quartic in-
teraction terms can be added, but the ones written above
will be sufficient for our purposes.

We shall now compute, in the limit of small p, the con-
tributions to the effective action given by graphs with an
arbitrary number of loops generated by these new in-
teraction terms. %e use the method of the auxiliary field,
as explained, for example, in [25]. We introduce two aux-
iliary fields P, and Pi and rewrite the action for v and
w as

Jd x+~detg~ —', u 0( I, L, )u +6w 6( I. I.)w

(p g2p2)2 (p g2pi)2
g

(4.14)

where 8( L, ~ and 8[w w ] are given by (4.7b) in which
z is replaced by P, and P2, respectively. Then the one-
loop effective action, parametrically depending on Pi and

$2, is formally given by
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I (p, g&, $2,'r)= —,'Indet8( L, & +—,'lndet8

, f d x+ldetg l[(P& —g'p')'

+(6—g'p')'] .

(4.15)

3n.
g

2 2 p
2

5I (p, Pi, P~;r)= —ln
p

(P g2p2}2 (4.16)

where Pi and Pz are now constant. The dependence of I
on the auxiliary variables Pi and $2 can be eliminated by
using their corresponding equations of motion:

5 2
1P;=g p +, i=1,2.

120
(4.17)

Inserting the solutions of (4.17) back in (4.16), one obtains
the expression of the effective action, which includes the
contributions of the zero modes to all loop orders. The
first terms in the expansion for small p of the total
effective potential can be easily determined:

As already observed, only zero-mode contributions need
to be included in the computation of the determinants, so
that one finds

V. GRAVITY-INDUCED GRAVITY

The fact that the dynamical variables of our theory
have the right tensorial structure is not enough to qualify
it as a theory of gravity. This comes from the
identification of (g ), via g, with the classical, macroscop-
ic metric. Further indications come from studying the
effective dynamics for g. Such a dynamics can be ob-
tained by evaluating the effective action I'(9~„~, A~„~,g)
at its minimum values for 0[,&~

and A ~,&~. It is, of course,
impossible to compute exactly the one-loop effective ac-
tion for a generic g, but one can study its behavior at
large distances. Note that this is really all that is needed,
since g is supposed to represent the macroscopic metric.

In computing the Euclidean one-loop effective action
(2.11) for an arbitrary g, we will use the method of the
heat kernel. Given an operator 6, acting on a space of
tensors possibly carrying also internal indices, we define
its determinant through the formula

lndet8= —f ds s ' f d x+ldetgltrE(x, x;s),
1/A

(5 1)

where A is an ultraviolet cutoff and K is the heat kernel
of the operator 8, satisfying

(deeds)K+6K

=0, and tr
means trace over both tensorial and internal indices. For
small s the trace of the heat kernel has the well-known
asymptotic expansion

15 32m. p r"
16~2r4

"
Sg2

5+
2

' 1/2 f d x+ Idetg I trK(x, x;s)

=B0s +B2s '+B4+O(s), (5.2)

—(3g —4A,
&

—
A, 2)p + (4.18) where B„=fd4x+ldetgltrb„(x) For an. operator of

the form 8= —V&V +Z, one has [26]
where again we have set m =0 and (=0. The resumma-
tion of a certain class of graphs (the so-called "daisy
graphs") has thus eliminated from the effective potential
the logarithmic divergence of the one-loop contribution,
producing a regular power-law behavior.

In conclusion, we have found that for a large radius of
the background de Sitter metric g, the effective potential
has its absolute rninirnum for some nonzero value of p
and hence de Sitter space gives a self-consistent solution
of the theory. The constant 1 appearing in the self-
consistency condition 6I[,&]

= I 0 is given just by
l=p[ ';„]. For reasonable values of the coupling con-
stants, the second term on the right-hand side (RHS) of
(4.13) is negative, and so 1

' decreases for decreasing
values of r (increasing curvature). We expect that, as in
similar models [17,18], p will go to zero for some
sufficiently small value of r. This is usually taken as a sig-
nal of a phase transition. In the present model it also sig-
nals a breakdown of self-consistency. %e then come to
the remarkable conclusion that for given values of the
coupling constants, only a certain range of values of the
radius may be permitted.

I

1
b =

(4m )
(5.3a)

1 R
b,=, —X —Z

6
(5.3b)

1
b4 2 [(180 p p~ 180(4m. )

+ —,', R + —,', V„V"R)l
—

—,'RZ —
—,'V'„V "Z+—,'Z + —,', 9'„,7""],

(5.3c)

where 4 is the unity in the appropriate internal space and
2 acts both on spacetirne and internal indices and is
defined by [V„,V„]=V„. In order to be able to apply
these formulas to the operators 6 and 6(s„}given in (2.8)
and (2.10), we choose henceforth the Feynman —'t Hooft
gauge for which a = 1. To extract the dependence of I (1)

on 0~,&~, we split 6=8+Q, where Q contains all the
terms of Z quadratic in 8~,~~

and 8= —V&V +Z. Then

f d x+ ledtg tlr[ b(08) s +b2(6)s +b4(8)s '+ ]

= f d x+ldetgltr[b0(6)e '~s +b2(6)e ' s +b4(8)e '~s '+ . ] . (54)
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Inserting in (5.1), the integration over s can be performed explicitly. The result is

A 2 Alndet8= f d x+~detg~tr — bo(8}—A bz(8) — ln
z

—y b4(8)
p

+—bo(8}Q ln ———b2(8)Q ln —1 +b4(8)lnz Q 3 — Q Q

p 2 p p
(5.5)

where y is Euler s constant. The first line contains all the divergent parts, while the second contains only finite terms.
We will use a renormalization procedure which amounts to taking the second line as the definition of the finite part of
ln det8.

In the case of the operator 8 given in (2.8), in the gauge a = 1, Z =Z+ Q, where

vCd Z[coco]gab [coy]gab
Z

[geo]a]M, [yg)]ay.

d] —v v [c dl c v
5[a5b]R& 4gF—(cl)p [a 5b] 2g5[a~p8(cl)b]

—2g5 'V "8 " (m +JR )5'5' (5.6)

vcd cv
Q[a)ro]gab Q[coq&]gab

vcd cv
Q[em]a)

V cd
5+M(c() ba

0 CV
+(cl)ay

(5.7)

For the ghost operator, Z[ h] =0 and Q[ h] =aM(, )). It is now a straightforward task to insert these formulas into (5.3)
and (5.5) and compute the traces. The part of the one-loop efFective action (2.11) that contains the divergent contribu-
tions is given by

I d;„'=
2 fd x V

~
detg

~

—7A +A [Sm +8(g —
—,
' )R + trM(„) + —,

' trN(„) ]
(4m )

2

ln —y —,'trM(„)+ —,'trN(„)+ —trM(, l)+ —,'[m +(g' ——,')R]trN(, l)
IM

+4m [1+2m (g—
—,
' )R ]—"R„„R"'—l' + —„R„Q""

5 2—
[24

—4(g —6) ]R + F(d)~~abF(a))"" +3g Vi8(d)'), V 8(,l)

(5.8}

3 1 2 N(d) 3+—tr N ln
2 2 ( 2 2p

It has terms that are either of the same form of the starting action (2.3) or quadratic in the curvature of 8. The former
can be eliminated by a suitable renormalization of the coupling constants of (2.3), while the latter are canceled by add-
ing suitable counterterms [we did not write these terms in the action (2.3) because they are independent of the dynami-
cal variables 8 and A]. The remaining finite part, written in terms of the renormalized coupling constants, reads

I'"=— fd xV ~detg~ tr M(„) ln

2— M(,l)+—Rtr M ln —1(cl) 2p
2 1 x(„)+ m + g ——R tr N ln —1(cl)

p

+(—"R R—""(' +2 R R""——'R ——'V V R)tr ln180 PvP~ 45 Pv 36 10 2
p

M(„)+(2g 5;V„8(,l)b'V "8(„)"„—", g 5;F(„)„„b'F—(„)~", ) ln
cd

+ —'(R R ""l' RR "")+—'(g ———') R ——'(5g —1)ViV R

m4+ +(g—
—,')m R tr ln

5a VA.8(cl) pV 8(a))a
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b &(ci)

p

ap

bv

(5.9)

p 16~ 4k&+ k2
p = exp 1—

g 7 g

R 8w

7g 3g

4A, ]+A, 2

7 g4
(5.10)

Note that since p has to be a constant, self-consistency re-
quires R =const. In particular, this condition is satisfied
by all solutions of Einstein's vacuum equations.

One can now obtain an effective action for g by
evaluating I at its minimum (5.10). The explicit compu-
tation gives

This formula reduces exactly to (4.11) in the case of de
Sitter space and for 0~,&]=p0. This shows two things.
First, the expansion in inverse powers of the de Sitter ra-
dius used in (4.11) coincides with the expansion in powers
of curvature used in (5.9). Moreover, the renormalization
scheme we have adopted here to extract the finite part of
the effective action is equivalent to the renormalization
procedure which is implicit in the g-function approach.

To proceed further one needs to compute the vacuum
expectation value of the fields 0 and A. These are the
solutions of the equations of motion obtained by varying
the total effective action r =S+r'" with respect to 0~,&]

and A[„]. For simplicity, we shall keep in I only the
dominant parts in the long-wavelength expansion, those
containing at most terms linear in the curvature of 0 and
without derivatives of the classical fields. As in the previ-
ous sections, we set m =0, assume X, =X2=g, and
choose (=—,

' to simplify a bit the expressions. The total
effective action I is then given by the potential terms in
(2.3) plus the first three terms in (5.9).

We note that to this order I is independent of A [,&], so
that the vacuum expectation value ( A ) is left arbitrary.
This slightly unpleasant fact depends on our choice of ac-
tion (2.3) and is not a general consequence of the mean-
field approach. If we added to the action (2.3) a term
linear in the curvature, such as the second term in (6.1)
below, this term would appear in I to the order we are
discussing and by itself would give vanishing torsion as
an equation of motion.

The variation of I with respect to 0~,&] gives the equa-
tion for (8). Since we have to impose self-consistency on
the theory anyway, we shall look for solutions for which
(8) is proportional to 9 and check that the minimum of
I occurs for a nonzero value of the proportionality con-
stant p. Indeed, one finds that in our approximation the
absolute minimum of I occurs for

I (g ) =fd x+
~
detg

~

r

P2 16~2 4k] +k2X,exp 1—

6 4X, +X2
X 1 —— R+

7 g4
(5.11)

where I has been normalized such that it vanishes in flat
space. The Einstein-Hilbert action is thus recovered as
the action that governs gravity at large distances. The
mechanism by which this happens is very similar to the
one discussed in [27]. There are also close ties with the
"induced-gravity" program [7,8] and with the ideas in

[28], where the method of the effective potential was ap-
plied to the gravitational field. Newton's constant Gz,
which appears in the Einstein-Hilbert action in the form
—(16~6~ )

' f d x R, is seen to be of the order of the re-

normalization point p, which in turn appears in the
theory as an arbitrary dimensionful constant. Newton's
constant therefore appears in this theory to arise through
a sort of dimensional transmutation.

VI. CONCLUSIONS

The original motivation for this work was the recogni-
tion that the metric and/or vierbein play in the theory of
gravity the role of order parameter. In particular, one
can see a kind of Higgs phenomenon occurring already in
the standard formulation of general relativity [6]. Since
the Higgs phenomenon plays such an important role in
the description of elementary-particle physics, it is tempt-
ing to try and construct a theory of gravity following the
same lines. The questions that the Higgs model is
designed to answer are the following: Why is the order
parameter nonzero? What is the origin of the mass of the
gauge fields? In the context of gravity, the analogous
questions are as follows: Why are the metric and/or vier-
bein nondegenerate? Why is the connection metric and
torsion-free? These are the questions that we have tried
to answer with our mean-field model of quantum gravity.

In the traditional approach to quantum gravity, it is

implicitly assumed that the geometry of spacetime is
determined by the quantum metric or, in the path-
integral framework, by the fluctuating metric. One could
try to give some conceptual foundation to the mean-field

approach by postulating that lengths and angles should
not be measured with the quantum (fluctuating) metric,
but rather with its vacuum expectation value. Having
thus two metrics at our disposal, we can write the action
S given in (2.3) in which the mean and fluctuating metrics

play different roles. In several respects this action lends
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itself better to treatment by traditional field-theoretic
methods than an action of the form (2.2). All quantum
calculations are to be performed by keeping g fixed, and
so the technical aspects of our approach are identical to
those of quantum field theory in a fixed curved back-
ground metric, a well-studied subject [29]. The difference
with more traditional approaches to quantum gravity lies
in the appearance of the vacuum state in the action
through g, so that the mean-field theory is not a quantum
field theory in the traditional sense. In practice, this is
reflected in the necessity of verifying, at the end of the
day, the self-consistency conditions ( 8) = l '8.

We have found that Minkowski space is a self-
consistent solution of the one-loop quantum dynamics of
the theory. Furthermore, insofar as quantum field theory
in flat space preserves global Lorentz invariance, it seems
very likely that Minkowski space wi11 be a self-consistent
solution at all orders of perturbation theory. In the case
of de Sitter space, we have found that for given values of
the coupling constants self-consistency may be achieved,
at least for a certain range of values of the de Sitter ra-
dius. When one considers a more general mean field, it
becomes much more dilcult to establish conditions of
self-consistency. Our approach has been to deal with this
problem order by order in an expansion in powers of
momentum. It appears that to lowest order in such an
expansion any solution of Einstein's equations in vacuum
will give a self-consistent solution of the theory. At the
next order, terms quadratic in the curvature appear, sug-
gesting that some kind of Yang-Mills-type equation will
become relevant at short distances.

Any theory of quantum gravity has to reproduce gen-
eral relativity in the classical limit. In our approach gen-
eral relativity appears as an effective low-energy theory,
much as in certain "induced-gravity" schemes: The
effective action depends on 8~,&] and 8, and so when it is
evaluated at its minimum with respect to 8~,&~, one
remains with an effective action for 8, which contains the
Einstein-Hilbert term. In particular, Newton's constant
appears as the vacuum expectation value of the vierbein,
thus providing a concrete realization of an old idea [30].

The small fluctuations of the fields 8 and A have
masses of the order of the vacuum expectation value of
the vierbein, i.e., of Planck s mass. This is in accordance
with the empirical observation that there are no massless
spin-1 bosons related to gravity and is also related to the
absence of torsion and nonmetricity at low energy. The
graviton only appears in the low-energy effective theory,
and its masslessness is a consequence of the invariances of
the theory.

We have tried to present the essential ideas of the
mean-field approach keeping technical complications at a
minimum. There are several directions in which our
work can be improved and generalized, some of which
are rather straightforward, while others require substan-
tial work.

A simple generalization would consist in replacing the
gauge group O(1,3) by O(1,N —1). In this case the inter-
nal (Latin) indices run from 0 to N —1, while the space-
time (Greek) indices remain as before. In this generalized
theory, gravity is unified with an O(N —4) Yang-Mills

theory, the form 8'„playing the role of order parameter
[10,6]. At least in the case of Minkowski space, the cal-
culation of the effective potential proceeds as in Sec. III
and the results are the same [11].

Another possibility is to add to the action S a "cosmo-
logical" term and an "Einstein" term, written in polyno-
mial form:

ko

24 f d xc 8'8 8'8" c""~
abed p, v p o

+afd xe 8'8g 'e""~ . (6.1)

Note that the "cosmological" term should be regarded as
part of the quartic potential, while the "Einstein" term
describes cubic and quartic interactions between 8 and A.
We observe that, perhaps surprisingly, the addition of the
"cosmological" term to S does not ruin the results of Sec.
III: Minkowski space is sti11 a minimum of the effective
action, except for a A,o-dependent modification of (3.5).

The action (2.3), while giving a simple form for the
propagators, suffers from a serious drawback: The mas-
sive modes A„; and A„'o have propagators with nega-
tive residues at the poles. This is because the first term in
the action (2.3) is a Yang-Mills action for a noncompact
gauge group. It is possible to circumvent this problem by
choosing a more complicated Lagrangian, containing
terms with all possible contractions of the curvatures and
torsion. One could also argue that since the ghosts occur
at the Planck mass, where the theory probably ceases to
be meaningful anyway, their presence may not be fatal.
This possibility has to be investigated in greater detail.

We have chosen to study the vacuum expectation value
of the gauge-variant order parameter 8. This is analo-
gous to studying the vacuum expectation value of the
Higgs field 4 in the standard model. There, a more
rigorous procedure would be to compute the vacuum ex-
pectation value of the gauge-invariant operator tr(4 ).
Similarly, in our case, one could try to compute (g ),
which is invariant under local Lorentz transformations,
although not under general coordinate transformations.
Our result can be regarded as a calculation of (g ) in the
approximation in which (8 )=(8) . As we have al-
ready mentioned in Sec. II, a direct determination of (g )
is technically more complicated, since g has to be treated
as a composite operator, but we expect it to yield essen-
tially equivalent results.

Also, we are aware that from a rigorous point of view
the effective potential has to be convex, and hence what
we have said can only be true in a metaphoric sense. We
believe that a correct treatment of this point can be
given, for instance, using the concept of constrained
effective potential [31]. The use of this idea seems to be
quite natural to our problem, where self-consistency
demands (8) to take a fixed value.

It may seem that since the fluctuating metric is no
longer used as the geometrical standard of lengths and
angles, the theory has lost some of its geometrical flavor.
In fact, this is only partly so. The geometric nature of
gravity lies therein, that the geometry of spacetime is
dynamically determined. This is still true in our ap-
proach, since the vacuum expectation value of the metric,
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which we take as the standard of lengths and angles, is
determined self-consistently by the quantum dynamics of
the theory. What is gone is the idea of quantum Auctua-
tions of the geometry (and consequently also of the topol-
ogy). While this idea may be fascinating, it is also at the
origin of most difficulties of quantum gravity and a more
conservative approach such as the one we are proposing
may have better chances of success. Whether this will be
the case requires much more work to establish.
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APPENDIX

In Sec. III we introduced two decompositions in the
space of all tensors co„,b, antisymmetric in the "internal"
indices a, b. The first was the Hodge decomposition of co,

regarded as a Lie-algebra-valued one-form, into its exact
(longitudinal) and coexact (transverse) part [recall that
the first cohomology group H'(S ) =0 and there are no
harmonic one-forms on S ]. The second was the decom-
position (4.5a) into O(4)-invariant parts. We will refer to
the three terms on the RHS of (4.5a) as the tensor, vector,
and axial-vector parts of co. In this appendix we examine
the relationship between these two decompositions. We
prove the fo11owing theorem.

Theorem. (I) The tensor part of co is coexact; (2) the
vector part of co is coexact iff v is exact and is exact iff U is
coexact; (3) the axial vector part of to is coexact iff w is
exact and is exact iff w is coexact.

In the proofs we will use 9 to transfer all indices from
Latin to Greek and vice versa when convenient. These
operations can be performed freely under the covariant
derivatives because, as a result of the second condition in
(4.2), VH=O.

We begin by proving (3). Assume that co&„,=E&z„&w~.
Clearly, if w =df for some function f, V co& „=0. Con-

versely, if V co&„=0, then V&wp Vpw& 0, and there-

fore w =df for some function f. Thus the axial-vector
part of co is coexact if and only if w is exact. Next, sup-
pose that co is exact, i.e., that ~&,b =V&@,& for some an-
tisymmetric tensor e,b. Then we have

Vqw =V'" —s""~ V,e = c,""~ [V„,V, ]e =0;

i.e., w is coexact. Conversely, if w is coexact, one sees im-
mediately that as a three-form co is closed, and therefore
there exists a two-form e such that m=de. Since the
axial vector part of co is totally antisymmetric, this is
equivalent to saying that co&,b

=V&e,b.
Next, to prove (2), assume that to&„,

=
—,'(gq„v„—gz„v„). Clearly, if v„=BQ for some func-

tion f, V "to„, =0. Conversely, if V "co„=O, then

(V,v~
—V~v, ) =0; i.e., v is closed. But every closed one-

form on the sphere is exact, and so v„=BQ. Thus the
vector part of co is coexact if and only if U is exact. Next,
suppose that cu is exact, i.e., that co&,b =V&@,b for some
antisymmetric tensor e,b. We have vz=cl„&=V "e„z,
and so v is coexact. Conversely, if U is coexact, i.e., if
there exists an antisymmetric tensor e such that
v„=V 'e„„, then coq„„=—,'(gz V 'e„—g&„V 'e,„). This is

precisely the vector part of Vze„„and since by assump-
tion co was purely vectorial, it must be itself of this form.

Finally, to prove (I), assume to&„,= ', (tz„, —tz,„). W—e

show that co cannot be exact as a one-form. In fact, if
Np~y

=V~E'gy, since t is symmetric in the first pair of in-

dices,

0—~APvP~ ~APvPV
A,PV PV

Regarding e as a two-form, this implies d a=0, and since
the second cohomology group H (S )=0, e=du for
some one-form u. On the other hand, since t is traceless,
also the tensor part of co is traceless, and so V "e„=O.
This implies 5du =0. The one-form u can also be decom-
posed into exact and coexact parts. The exact part does
not contribute to e, and so we can assume without loss of
generality that 5u =0. But then (d5+5d)u =0. Since
there are no harmonic one-forms on the sphere, u =0. So
~ must be coexact as a one-form.
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