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Complex solutions for the scalar field model of the Universe

15 AUGUST 1992

Glenn W. Lyons
Department ofApplied Mathematics and Theoretical Physics, Silver Street, Cambridge CB3 9EW, United Kingdom

(Received 19 December 1991)

The Hartle-Hawking proposal is implemented for Hawking's scalar field model of the Universe. For
this model the complex saddle-point geometries required by the semiclassical approximation to the path
integral cannot simply be deformed into real Euclidean and real Lorentzian sections. Approximate sad-
dle points are constructed which are fully complex and have contours of real Lorentzian evolution. The
semiclassical wave function is found to give rise to classical spacetimes at late times and extra terms in
the Hamilton-Jacobi equation do not contribute significantly to the potential.

PACS number(s): 04.60.+n, 98.80.8p

I. INTRODUCTION

The Euclidean path-integral formulation of quantum
gravity has proved useful in attempting to describe the
origin and evolution of our Universe. The "no boundary
proposal" (NBP) of Hartle and Hawking [1] is a com-
bination of path-integral and canonical methods, where
one defines the wave function of the Universe by

Vo(h, , P, c)M)=g f D(g„„@)exp( I[g„„@—,M]),

where I is the Euclidean action for the metric and matter
field configurations which induce the three-metric h;- and
matter field P on the surface BM. The path integral is
taken over all four-metrics and regular matter fields on
compact manifolds M whose only boundary is BM.

Although the Euclidean formulation has advantages
over other formulations [2,3] it has several disadvantages.
In particular the choice of integration contour is not
uniquely defined by the NBP [4]. As it stands, the path
integral does not even converge. This arises because
derivatives of the conformal factor exist in the volume
term of the action, so the Euclidean action can be made
arbitrarily negative. A suggestion [5] to cure this in-
volves rotating the integration contour in the conformal
integral, but this process does not extend to compact
four-manifolds [6]. However, to use the integral at all
one must admit complex-valued configurations to obtain
a convergence. Moreover, classical space times are only
predicted by the wave function when it becomes oscillato-
ry, as described below.

Despite the difficulties in defining the path integral,
predictions can be extracted from it by use of the semi-
classical approximation. The wave function can be ex-
pressed approximately using saddle points of the path in-
tegral:

(2)

The n configurations which minimize the action have
actions I„and the prefactors A„are determined by an in-

tegral over fluctuations around the solution [7]. The sad-
dle points for the NBP are solutions of the equations of
motion with the no boundary condition at the initial sur-
face and the real arguments of the wave function at the
final surface.

The configuration space of quantum cosmology in its
full generality is infinite dimensional; therefore minisu-
perspace models are often used to restrict the degrees of
freedom to a finite number in order to make the problem
tractable. As long as the minisuperspace equations of
motion coincide with the Einstein equations, the lowest
order of the semiclassical wave function will coincide for
minisuperspace and the full theory [8,9].

Lorentzian minisuperspace actions for bosonic matter
generally have the form [10]

S[q (t),N(t)]= f dtN f &(q)q q~ —U(q)
1

(3)

The finite number of degrees of freedom are represent-
ed by the q . The minisupermetric f &

has the signature
( —,+, +, . . . ), the negative part coming from the con-
formal part of the gravitational field [11]. This is a con-
strained system as the momentum conjugate to the lapse
N vanishes and gives rise to the Hamiltonian constraint

1

2 f pq q ~+ U(q)=0 . (4)

Here factor ordering considerations are ignored and the
Laplacian is with respect to the rninisupermetric. This
equation contains all the dynamics of the system [13] in
the form of a time-independent Schrodinger equation
which is characteristic of time repararnetrization-
invariant theories such as general relativity. In the full
theory there would also be momentum constraints, but

Following the canonical quantization procedure of Dirac
[12], one constructs the operator form of the constraint
to obtain the Wheeler —DeWitt equation [11] for the
minisuperspace wave function:

[ ——,'V2+ U(q)]%(q )=0 .
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the restriction to minisuperspace eliminates these.
A WKB solution of (5) is

e(q)- a (q)e (6)

In the ansatz (3), this action corresponds to the minisu-
permetric with f„=—a, f&&=a, and U=a(1
—a m P )/2. Variations with respect to P, a, and N give
the Euclidean equations of motion:

—
—,'(V'I) + U(q)=0,

2%I 7'A+ AV I=O .

(7)

(8)

where the prefactor A and the rapidly varying action of
the solution I will be complex. Inserting this into (5) and
equating powers of the Planck mass one can obtain in the
first two orders the equations

dP 3dadg
a dr dr

2da 22 d&+am P +2a =0,
dr

2
dk—o —1+am /=0
d7

(13)

(14)

(15)

The gradient and dot product are again with respect to
the minisupermetric. The real and imaginary parts of (7)
are then

,'(VI—'—) + ,'(V'I™—)+ U(q)=0,

qy Re.qy Im 0

(9)

(10)

If the semiclassical wave function is such that
[(VI ')

~
((~(VI ) ~, then by (9) I™will be an approxi-

mate solution to the Lorentzian Hamilton-Jacobi equa-
tion and so defines classical trajectories along integral
curves of 8/Bt =VI' V, which by Eq. (10) are curves
with I '=const. In particular, the usual classical equa-
tions of motion are obtained [10]. exp( I ') p—rovides a
measure on the set of classical trajectories [8].

3 .I=——' dt —a +¹— P —m NgaN N
(12)

II. COMPLEX MINISUPERSPACE MODEL

A minisuperspace model of this procedure can be con-
structed, attempting to find complex solutions inducing
the real end points which are the arguments of the wave
function. Previously, some calculations with the NBP
have been performed by splitting such complex solutions
into real Euclidean and real Lorentzian sections, match-
ing such solutions at the junction. However, as was
pointed out by Halliwell and Hartle [6], not all complex
solutions can be decomposed in this way and in fact the
following model is such a case.

As the Universe appears to be isotropic and homogene-
ous on large scales, consider the minisuperspace model
consisting of a closed Robertson-Walker universe with a
scale factor a and massive minimally coupled scalar field
4 of mass m, both functions of coordinate time only. In
previous studies this model has proved physically reason-
able, as it predicts classical inflationary space times with
the most probable value of the density parameter being
unity [14,15].

In order to consider complex solutions to the field
equations, the metric is expressed in Euclidean form
which will then be analytically continued:

ds =o [N(t) dt +a(t) dQ3],
where o =2/(3~mt, ), N is the lapse, and dQ3 is the usu-
al three-sphere metric. Expressing the scalar field as
&2m.og and assuming the potential 2n o m P, the Eu-
clidean action is

where the variable ~ is defined such that d~=N dt. Con-
sider now a complex metric on the real manifold. Then
the above equations are to be solved in the complex w

plane with the analytic continuation of the usual NBP in-
itial conditions for this model [14]:

o =0, =1, ' =0, P=P for r=0 .
da dd)

di- ' d~
(16)

da 1 da
d~ N, dt's

1 da

N2 dt2
(17)

where the Euclidean section has N =N, =1 and coordi-
nate time t, and the Lorentzian section has N=N2=i
and coordinate time t2. Requiring that a be real on both
sections when N has different complex values means that
both derivatives must vanish in the above equation. The

Here a is set to zero at ~=0 in order to close off the
geometry and regularity determines the other initial con-
ditions. In the absence of poles of analytic a (r) and P(r),
Cauchy's theorem allows the deformation of a general
contour in the complex ~ plane into one with straight sec-
tions with N =const along them (e.g., along the Euclide-
an time axis with N =1 then parallel to the Lorentzian
time axis with N =i). This will not change the action
and so represents a complex diffeomorphism;
diffeomorphically related geometries should be represent-
ed only once in the contribution to the semiclassical wave
function to avoid an infinite gauge volume. Note that the
contours referred to in this context are not the same as
the contours over field configurations used in the
definition of the path integral; instead we are merely con-
sidering the complex saddle points used to approximate
the path integral.

For cases such as the de Sitter space model considered
by Halliwell and Hartle [6], using the NBP, the complex
solutions can be deformed into a real Euclidean section
along the real r axis (corresponding to N =1), followed
by a real Lorentzian section (corresponding to N=i)
along an imaginary ~ direction. Such real solutions must
be matched at the junction where N changes its value.
The junction condition E; =0 is equivalent to
dq /dt =0, where the q~ represent minisuperspace coor-
dinates and t is the coordinate time along the Lorentzian
section.

It should be noted that these conditions in turn follow
simply from the consideration that o and P should be an-
alytic functions of v.. Analyticity of a implies
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same argument applies to the other q in general, which
recovers the result of Halliwell and Hartle.

However, this separation of contour cannot be per-
formed in general. For the NBP model considered here
one can see this by attempting to find a =/=0 for a and

P real along a Euclidean contour from the origin. Equa-
tion (13} implies that P is a monotonic function on this
contour so P =0 only at the origin, but a %0 there.

In general, the q must be fully complex and one looks
for solutions inducing real end points which are nearly
Lorentzian in the vicinity of the end points. This latter
condition is necessary to get oscillatory behavior from
the semiclassical wave function, which will correspond to
classical space time via the WKB method.

III. APPROXIMATE COMPLEX SOLUTIONS

that the constant ao has an imaginary part of order
i /m /0' and a much smaller real part.

One can use this approximate solution to find solutions
which have a and P simultaneously real. These would be
the saddle points which contribute to the semiclassical
wave function. The (('i equation implies that in a
Lorentzian direction only (('i

' varies, whereas in a Eu-
clidean direction only P™varies. In particular, there is a
vertical line r = —3/0™/m+i r™for which P™=0. The
a equation suggests that a is oscillatory in a Euclidean
direction when Po is approximately large and real. Thus,
one expects to find a roughly Lorentzian line for which
a' =0. Together, these observations suggest that it may
be possible to obtain nearly coincident real a and real P
curves in the complex plane.

By choosing (t 0™so that

One has only the freedom to choose the initial complex
value of Po in this model. However, this freedom is
su5cient to obtain a one-parameter family of approxi-
mate solutions with real end points. By judicious choice
of the imaginary part of (('io, one can obtain such solutions
for most values of the real part of (t}0.

In analogy with the inflationary solution of the real
version of this model, the approximate solution is

P =$0+i, a =aoexp( —mi((}or+ —,'m 2)) (18)

and for large ~(('io'~ )& ~$0 ~
this solution is analytic and

attracting in the region 1/m((io'«r™«(3PO'—1)/m.
(The superscripts denote real and imaginary parts. ) One
can see this by considering a small departure y from the
approximate solution for P; linear perturbation analysis
gives

3i $0—+i j'=-0 .. m7-

3

+ —,
' m (r™} ] X (oscillating part ) . (20)

Perturbations to the approximate solution decay ex-
ponentially like 1/a in a Lorentzian direction
(r '=const). In a Euclidean direction, the exponent can-
not grow above a factor of order unity. Once P

' has fal-

len to a value comparable with P, the approximation will
no longer hold and so the region of validity ends when
rim pyRe/m

For ~go'~ )&1)&~gz™,examination of a Taylor-series
expansion about the origin shows that P is approximately
constant with a fractional error —1/($0') . One can
therefore use the approximate solution

sinm Po 'r
yRe

pRe
(21)

in this region. Analytically continuing to the imaginary
axis and matching to the approximate solution (18) shows

Solutions to this either represent a change in the initial
value of P or behave like

j'=exp[ —3m/0'r™—3m/0 r ' —
—,'m (r"e)

Po
= — (1+2n)

gyRe
(22)

where n is an integer, Lorentzian lines given by

m(1 +2n) + . ~+1&
2m PRe

(23)

are obtained for which both a and ((} are approximately
real. One can see this by eliminating r from (18) to ob-
tain

i 3(p —p') I20

yRe
(24)

If a and P are real then 3((}o'((iz™= ir/2 —n~, w—hich

gives condition (22), and the solution for ((i immediately
gives the line in the complex plane where a and P are
real. By continuity of the approximate solution it is evi-

dent that successively finer tuning of P~™will obtain ex-

actly real end points a and P. Furthermore, in this ap-
proximation the condition which fixes a and (ti to be al-

most real will not depend on the time parameter along
the Lorentzian line, so that a and (j} will be approximately
real along the whole line. The extent to which this fails is
determined by the time taken for the solution to reach
the attractor; from the decay of the P perturbations this
will be a small time of order 1/m 0' along the Lorentzian
line.

This method corresponds to the approach of LaQamme
and Shellard [16],where they obtain Lorentzian solutions

by analytically continuing from the maximum in a at
r '=m/2m/0' along the Euclidean axis, assuming real a
and P with P approximately constant. However, it can
now be seen that a complex initial scalar value is required
and also that there are many complex solutions which in-

terpolate between the NBP initial conditions and the
given a and P. In fact, for all values of n in (22) which

have $0 «1 the approximation above is good and the

results hold. It may be that one can continue to find solu-

tions with real end points for larger values of (jl~™,but this

approximation cannot determine them.
The behavior of a and P along the lines (23) is just like

that of the rea1 inflationary solution for the scalar field

model, so all the familiar results of inflation can be ob-
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tained from this complex model. Positive values of a are
obtained for even values of n. Note also that along these
lines 3( $ — (t) )/m

im

3f ( yRc )2 P2 ]/2a=/a, fe

so that

yRe ( 2 lna +$2)1/2
0 3

(25}

(26}

determines which initial conditions to fix at ~=0 for
given end points a and P.

Halliwell and Hartle have argued [6] that in order to
recover quantum field theory in curved space time from
quantum cosmology one should restrict N"' & 0. The &g
term in the complex action renders N double valued and
hence pairs of saddle points must be considered; but the
matter action for the sign-reversed action will be negative
definite and the quantum field theory is not normalizable.
This implies for the present model that n ~0; i.e., solu-
tions must have end points lying in the r"'& 0 plane.

IV. CLASSICAL SPACETIMES
IN THE COMPLEX MODEL

The complex action of a solution to the equations of
motion obtained from (12) is

I=fdna[a m P —1] . (27)

To evaluate this for one saddle point using the approxi-
mate solution, consider the ~ contour which goes along
the real r axis to ~=n. /2m(()0', then proceeds in an imag-

inary direction, going up a Lorentzian direction along the
contour where a and P are real until the end points are
reached (see Fig. 1). This contour is only useful for n =0
since the approximation $=(()0' along the Euclidean axis
fails beyond the maximum of a (4 blows up as a recol-
lapses).

For large $0' one can use the approximate solution (21)
to evaluate the integral along the Euclidean section:

n./2
cg g2~ 2 2 (28)

0

1

3m 2( yRe )2

impa ™~ao~I3-— +
3 9

3(go —P) /m
X I '„dr' exp[3myR'r™

0

& m 2(gm)2]

(29}

Continuing along the second section (now Lorentzian},
one can use the same approximation, but the integral
contributes only a negligible imaginary piece (integration
proceeds only to r™= 1/m /0', before entering the region
of validity of the solution). Lastly, the approximate solu-
tion is used to obtain the integral along the contour of
real a and P to the end points. As the scale factor ex-
ponentiates in this section, one can ignore the second
term in the action; an integration by parts and ignoring
factors of order unity yields

1/m(t)
'

/2m(I)"

FIG. 1. Integration contour for the action in the complex
time plane.

The upper limit of the integral gives the Lorentzian time
at which the desired end point is reached. Completing
the square in the exponent and using the result [17]

X

J"dr e-"=1—'
(30}

&7r o &~x
for x &&1

one finally obtains

mi Pa ~ mia+ a term~

for Joe»1 and P»1 . (31)

As an approximation is being used to derive the action,
the errors in the evaluation of I ' can be larger than the
value derived here. As discussed above po can be finely

tuned so that the integrand in (29) is entirely imaginary.
Only for a time of order 1/m /0' will this not be the case
and may there be a real error term of order 1/m ($0') .
This is in fact of the same order as the real action already
calculated. Note that the exponential decay of perturba-
tions from the attractor is sufficient to make these contri-
butions to the integrand decay exponentially, despite the
exponential growth of a .

Summarizing, the action for this saddle point is given
by

I'~-mpa3/'3 and IRe 1/m2(yRe)2

for $0'»1 and P»1 . (32)

This method is not available for the other saddle points
since the scalar field does not remain approximately con-
stant along the whole Euclidean time axis, as mentioned
at the beginning of this section. This result invalidates
the claim by Halliwell [8] that for the scalar field model
there are many saddle points corresponding to chains of
expanding and recollapsing Euclidean universes. Howev-
er, the analytic continuation here reveals that there is
indeed a large (if not infinite) number of saddle points for
large a and P in the inflationary region.

Using (26), it can be seen that for this saddle point I '
tends to zero as one goes to larger geometries for fixed P,
implying that the measure for such trajectories is unity.
This is encouraging; one does not want large geometries
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and

J

y2/ 4 3(yRe)8 (33)

to be suppressed. The value of (VI ') can now be com-
pared with (V'I™) I.n the inflationary region,

2 2

(
R, q I tJI '

1 tJI '
a t)tt a'

model to reproduce the real scalar field evolution for
some time. In addition, the real part of the action I will
not change if a and P remain real along the Lorentzian
line in the complex ~ plane and the value of I ' remains
just that corresponding to the inflationary solution from
which it evolves (since the integral in the dust phase
remains purely imaginary).

For times when the spatial curvature term is negligible,

( VI™)2 m 2$2tt 3 (34) 3(yRe ]2j2(eke t )
2/3 0 t2/3

so that Eq. (9) becomes a Lorentzian Hamilton-Jacobi
equation to a very good approximation, since
~(VI ')

~
&& ~(VI™)

~
holds for Po'))1. Thus the wave

function evaluated on this saddle point predicts the emer-
gence of a classical universe, with inflationary evolution.

V. LATE CLASSICAL TIMES

In conclusion, the complex model provides many sad-
dle points for the path integral and the action can be cal-
culated for at least one of these. The form of the action
predicts the emergence of a one-parameter family of clas-
sical inflationary universes. Eventually the classical real
scalar field eventually evolves to a region where it oscil-
lates and behaves as dust, as discussed by Hawking and
Page [18]. These authors give approximate solutions in
this region. Here, the complex solution will no longer be
valid, but the evolution in the inflationary region has al-
ready been adjusted so that a and P are real as they
evolve. Thus in the dust regime one expects the complex

2 cos(mt —3$o')
3 mt

(35)
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Now that a and tb are evolving in a different manner, the
functional form of I ' will change, in that Po' has a
different dependence on a and P. Now (VI ') is a term
of order a at its largest, so that interpreting (VI ') as
an extra term in the potential would correspond to
matter with an energy density like a, which is negligi-
ble. Therefore the complex model presented here has the
favorable features of an inflationary period followed by a
dust phase, without the presence of some extra matter.
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