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Stationary solutions in five-dimensional gravity with a magnetic field
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Using the potential formalism, six new stationary axisymmetric solutions of the five-dimensional
Kaluza-Klein field equations are constructed. It is supposed that each potential depends only on one pa-
rameter which satisfies the Laplace equation. All the solutions have a scalar potential and some of them

possess magnetic fields which represent a magnetic monopole, dipole, and quadrupole.

PACS number(s): 04.50.+h, 11.10.Kk

I. INTRODUCTION

In the 1920s, a five-dimensional relativity theory was
proposed by Kaluza and Klein [l] in an attempt to
achieve a unified theory of gravitation and electromagne-
tism, the only interactions well understood at that time.
In this theory the electromagnetic field does not have any
fundamental significance of its own, but is considered
merely as a component of gravity in a world which is as-
sumed to have an extra spatial dimension which is curled
up to form a circle so small as to be unobservable. Re-
cently, the Kaluza-Klein idea has been generalized to
higher dimensions and has been merged with supergravi-
ty and the string ideas of the 1960s into a yet grander
theory: the theory of superstrings which holds promise
of the first consistent quantum theory of gravitation.
Hence searching for exact solutions in higher-
dimensional framework is becoming of great interest
nowadays. But in spite of this fact, there are only a few
known exact solutions to the Kaluza-Klein theories so
far.

In this paper we shall construct a set of six new station-
ary axisymmetric solutions to the vacuum field equations
of the five-dimensional Kaluza-Klein theory. The full
metric of this theory can be written in the form [2]

responding four-dimensional quantities 8„.The poten-
tial formalism introduced by Neugebauer [3] in five-

dimensional gravity shall be employed in the present pa-
per; therefore, a summary of that formalism is provided
in Sec. II as a necessary reference for the remaining sec-
tions where several solutions to the equations (2) are con-
structed.

II. POTENTIAL FORMALISM

I zX Y" X „—=e
& s„XaYPXr;s

~p

e„=e p ~„X Yi Y~'

(3)

where e &z&„ is the five-dimensional Levi-Civita pseu-
dotensor. In the coordinate system with X'=5 5,
Y4 =5~4, one finds that f, p, X, E are, respectively, the
gravitational, electrostatic, magnetostatic, and rotational
potentials. These potentials are analogous to the Ernst
potentials [4] of the Einstein-Maxwell theory and define a
Riemannian space V with the metric [5]

When the five-dimensional metric contains two no-null
Killing vector fields X"and Y" with Y"Y„(0(stationary
case), five real potentials p"= (~,f,p, X,e), A = l, . . . , 5

can be defined covariantly in the form [3]

y ~ =I =X"X f= I Y"Y„+I—'(X"Y„)

XMN

I 'g„,+I A„A„ I A„
I A I2 dS =G„sdg"df

M, %=1, . . . , 5, v, p=l, . . . , 4 (1)

where A„ is the electromagnetic four-potential, g„„is the
space-time metric tensor, and I is the scalar potential.
In the source-free region the field equations are charac-
terized by the vanishing of the five-dimensional Ricci ten-
sor, i.e.,

&MN=0-

We put a caret on RMN to distinguish them from the cor-

[df +(de+gdX) ]+ a. dg +—dX

2 dK

3 K

The Jordan theory and the Brans-Dicke theory are
contained in (4) after an appropriate conformal transfor-
mation. We assume that the five potentials g" depend

only on two variables X' and X . Let these coordinates
be the Weyl canonical ones p and g, and z the complex
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variable z =p+i g. The fields equations (2) can be derived
in function of the potentials g" from the Lagrangian [3,5]

, [f,.f'+(&,.+Sx,.)(&'+Px'))

+ P (K2$, $'+K X,X')+ —K,K",2 ~
K

A
2p 0",«+ 'g C P,A', 2. ~,.~,—.

+g" 2[(pA, ,},+ (pA, ,),]=0 . (7)

When the parameter A, is taken as a solution of the gen-
eralized Laplace equation

(pA, , ) +(pA, ),=0,

The variation RC /5$" =0 leads to

a =x',x'. (5)
the field equations (7) reduce to

A
~",«+, C ~',.~'.=0

A
(pQ", ) +(pf", ),+2p '~ (6) For the axisymmetric case these last equations can be

rewritten as [6]

An overbar denotes complex conjugation, and I z c] are
the Christoffel symbols of the metric (4}. If it is supposed
that the five real potentials g" depend only on one pa-
rameter A, =A,(z,z), the potential space V is reduced to a
one-dimensional subspace, and the field equations (6} be-
come

(pg, g '), +(pg, g '), =0, (10}

which is called the chiral-field equation. The matrix g is
an element of the group SL(3,R); i.e., g is a real matrix
with a determinant equal to one, and g and its transpose

g are the same. An apposite parametrization of the ma-
trix g in terms of g" is given by

2

f 2r3

f2+e2 f 2y2
2 2

—(eX+fK2$)

1

2&2

2 2
—(ex+fK 4) —X

2 2

The ansatz g"=g"(A,(z,z)) transforms the chiral-field
equation (10) into

0 1 0
0 0 1

d e 0

q 0 0
0 0 1

0 2q2 —I

(14)

Let us define now a constant 3 X 3 matrix A by

g~g '=A . (12)

(a) Ag=gA

(b) A=A,
(c) TrA =0,

(13}

Since g belongs to the group SL(3,R ), the following prop-
erties for the matrix A,

where d is the determinant of A and e =
—,'TrA . Then it

is enough to work with these two cases to solve the
differential equation (12). Working with the first inatrix
in (14) one has difFerent cases according to the roots of its
characteristic polynomial. With the second matrix one
has two cases q =0 and aAO. All the cases have been
solved recently [7). We are concerned with three of
them.

Case l. All the roots r„r2, r3 are real (r, +r2+r3=0);
therefore, we can use a diagonal form for the matrix A.
The solution of the equation (12) is given by

hold. The field equations (10) are unchanged under the
transformation g'=CgC provided that the constant ma-
trix C also belongs to the group SL(3,R). Under this
transformation the matrix A changes to A'=CAC
There are two classes of equivalence induced by the
transformation of the matrix A. Hence each matrix with
the properties (13b) and (13c) is equivalent to one of the
following two normal forms of the matrix A which are
the representatives of the classes:

K (4b)' exp(3r3A l2), g= e=X=0,
f= 2ab exp[(r3/2+r—

&
)A, ] .

(15)

Case 2. The three roots are again real but r, =r2,
r3= —2r&. The invariant factors of dimension one and
two are equal to unity. Thus one can use a Jordan nor-
mal form for the matrix A. The solution of (12}is then
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3/2
4exp(r, A, )

K a'~ (bA, +c}
2&Zb

x

&a exp( —3r, i./2)
, f=

p 1/2

/=@=0, and P=bi, +c .
(16)

Case q =0. Now employing the second matrix in (14)
when q =0, the real potential 1'" which satisfies the equa-
tion (12) is given by

I g33+I A 3

y= I 'g34+I A3A4

I A3

I g34+I A3A4 I A3

I 'g44+I A4 I A4

I A I2

(19)

potentials 1(j" in the three cases mentioned above, one is
able to get the components of the matrix

K
8b f—

[~b~( P)1/2] —1

2v'Zb /=@=0, a=— (lnH), = [(lnp) „+—,'TrD ],1

lnp),
(20)

In order to have the full metric one would need to find
the function H, which can be obtained by integration of

(») [8]

satisfieswhere a, b, c are constants and
(pA, , ),+(pA, , ),=0.

We have started assuming that the five-dimensional
metric depends on two variables x' and x . Thus the
five-dimensional line element reads

where the matrix D =y, y '. In the following sections
we shall find the components of the matrix y and in-
tegrate the function H for the three cases we have men-
tioned for different parameters A, satisfying the Laplace
equation (8).

dS =H(x', x )[(dx') +(dx ) ]+y,t, dx'dx (18) III. GETTING THE MATRIX y

where a, b run over the three values 3,4,S. From the
definitions (3) together with the specific expressions of the

I

It is easy to verify that dety=g33g44 g34
—p, and

from the defintions (3), one finds for our three cases that

(21a)

PA3, =
~2

(21b)

In the Boyer-Lindquist coordinate system (r, 8, P, r ) [4],

x '=p=+r —2mr sinB,

x =(=(r —m)cosB .

IV. INTEGRATION OF 0
In the Boyer-Lindquist coordinate system the five-

dimensional line element reads

Using the explicit expressions for y given by (16} and
(17), (21b) takes the form

A3 „= sinOA, &,

d
dS =H(r, B)h +dB +y,&dx'dx",

r 2mr

a, b =3,4, 5,
b =(r —m) —m cos 8 .

(23)

A 3, 0
2 2(r 2mr )sin—N,

It is important to note that A, , Az, A4 always vanish.
The integrability of (22) is guaranteed by (8). So giving a
A, solution of (8) one can get the matrix y from (21).

I

Case 1:

In order to determine the function H, it is necessary to
integrate the differential equation (20); this equation and
its complex conjugate yield a differential equation system
which sha11 be written explicitly for our three cases. A
straightforward calculation leads to

2

(in[H xep[ r&(r+)A3,]] ) &=~ A[o(r —m)A, „A. &+ —,'cotB[(A, 0) —Z(A. „) ]],
2 r —m

(ln[H exp[(r&+r )A]3]) „= Ao cot&. „A. z
— [(A. z) —Z(A, „)], Ao=rf+r~+r, r3 ',

(24)

Case 2:
2

[ln[HP 'exp( —r, A, )]] &=~3r, {(r—m)A. „A, z+ —,'cotB[(A, z) —Z(A, „) ]],
2

[ln[HP 'exp( r, A)]] „=~—3r', . cotBA, „A, e
— [(A, e)' —Z(k „)']

(25)
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where Z =r —2mr.
Case q =0:

It was proven [9] that in this case, for any parameter A, , the function H always has the form

H(r, 8) =IOI

where Ip= —4b Pp Pp being an arbitrary constant and

4b
P

(26)

V. EXACT SOLUTIONS WITH SCALAR POTENTIALS

For case 1 we have only the scalar potential given by (15). We integrate Eq. (24) for different parameters A, satisfying
the Laplace equation (8) in this section. In this way, three new stationary axisymmetric exact solutions to the five-
dimensional Kaluza-Klein field equations (2) are obtained. These solutions read

2 . 2
dS2=H 1

2m + m sin 8
r r 2

dr +r d8 +I '(g33dp +g44dt )+I dy
1

2
(27)

After taking 2ab = —1 and (4b) ~ =ID, one arrives at
solution A:

~p 1 —cos8

q =0) have a scalar potential and magnetic field. In both
cases the magnetic fields are the same and can be ob-
tained by integration of (22) but the scalar potential and
the function H for each case are different.

For case 2 the metric reads

1 —cos8
1+cos8

' —
(r& + r3 )Ap/2

A, A/2
(sin8) ' '

g44 =
( r3 /2 + r

1
)A p /2

1 —cos8
1+cos8

X[(r —m) —m cos 8]2 2 2 kpAp/2

'
r3A.p/2

2 1 —cos8
1+cos8

(2&)

dS2=H 1 —2m + m sin 8
T 2 +r d8

r

+I '(g»dp +g44dt )+I (A3dp +dy ), (31)

dP =I dA dt +I (A d—Q +dy ), (32)

where g33
= —

p /g44 and y is the extra spatial dimension
which is compactified to a circle.

For the case q =0 the metric reads

A, =A,o(r —m)cos8,

H =exp[ —
ADA(p /4 —(r)+r3)&og],

I =Ioexp(r3kog),

g44 = —exp[(r, +r3/2)Ao(] .

Solution C:

A, =A.plnp

(29)

As above g33
—

p /g44. Throughout the paper, this re-
lation holds.

Solution B:

where

2m m sin 8
r r2

2dr +r d8
2m

T

2m

T
r sin 8dg

which for r »m becomes

dA=dr +r (d8 +sin 8d8 )=dQ .

(33)

2IApAp Ap( rl + r3 )]H=p (30)
A. Magnetic Selds for different A, 's

2i,p(rl + r3/2)
g44 = p

VI. EXACT SOLUTIONS WITH MAGNETIC FIELD

The exact stationary axisymmetric solutions to the
five-dimensional Kaluza-Klein theory constructed from
the one-dimensional subspaces (16) and (17) (cases 2 and

We show now the corresponding gauge fields for
different parameters A, which satisfy the generalized I a-
place equation (8) in Table I.

We want to point out that since Eq. (8) is a linear
differential one, a linear combination of different parame-
ters A, . also satisfies Eq. (8) and A3 would be a linear
combination of the corresponding A3(j) The first gauge
field in Table I is clearly of a magnetic monopole which
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TABLE I. The corresponding gauge fields for different parameters k which satisfy the generalized
Laplace equation (8). ~p is a constant, p =(r —2mr)sin 0, h=(r —m) —m cos 0, and I'„ is a Legen-
dre polynomial with x =(r —m)/m, y =cosO.

Parameter A, A3

A. ln(1 —2m /r}

Apm(r —m)A

v'2
A,pm (cosO —1)

&2m' sin OcosO

4
v'2

+ m kp(cos0 —1)

A,pm cos05

A,plnp

A,oln[tan(8/2)]

p„(x)s„(y)

m A.p(r —m)sin 06

v'2
kp( r —m )cosO

&2
Xp(r —m)

A, = g A(,"( where
n

A, ' = — " [P„,(y) —yP„(y)][P.+((~)—P. ((x)1
4(2n +1)

has appeared in the 1980s in Kaluza-Klein theories. In
particular it has been shown that five-dimensional
Kaluza-Klein theory embodies magnetic monopole solu-
tions with remarkable properties [9—11]. The magnetic
charge is &2m A,o/2. The first term of the second mag-
netic field in Table I depends on r as a magnetic quadru-
pole term and the second term is again the potential of a
magnetic monopole. The third magnetic field is of a mag-
netic dipole of strength +2m Ao/4. The fourth and fifth

magnetic fields in the table do not vanish when m =0;
they exist independently of the parameter m. Finally the
sixth magnetic field is written in terms of the Legendre
polynomials; in this case we would need to impose oppo-
site boundary conditions to have a finite magnetic poten-
tial; for instance, the solution can be inside a sphere on
which A3 vanishes.

For some parameters A, 's in case 2, the corresponding
function H, the component g44, and the scalar potential
are given. The metrics have the form of (31).

C. Solution B

For the parameter A, =ho(=A&(r —m)cos8,

—(3r2~2 2]/4H=pexp( r, Ao(— ' + ),
&a

g44 = — exp( —3r ( A,og/2 ),
P

2Io
exp(r, jog) .

D. Solution C

For the parameter A=i,olnp,

2(r1 Ap+3r 21AO)H=pI

(35)

Q. Solution A

For the parameter A, = (A o/2)ln(1 —cos8) /(1+ cos8)
V a —2(3r(20/2)

g44
~~p~

P (36)

r
1

A.p/2
1 —cosO
1+COSH

A, 3r /2

[(r —m) —m cos 8]
' —3r A, /2

1 Pv'a 1 —cos8
v'ipse 1 +cos8
2 ~pr1 /2

I =2 Io 1 —cosO

a '/'p 1+cosO

Its corresponding magnetic field is 5 in Table I. The
function P =bA, +c, with b and c arbitrary constants.

(34)

I2
2 Q 2rlkp

a 1/3p

p=bp+c I =4b ~, a = —1/b

VII. FINAL COMMENT

Further solutions to the five-dimensional Einstein

equations can be obtained providing other solutions of
the Laplace equation or using the SL(3,R) symmetry
transformations g =CgoC .
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