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Coalescing binary systems of compact objects to (post) ~ -Newtonian order.
II. Higher-order wave forms and radiation recoil
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Using formulas developed by Blanchet, Damour, and Iyer, we obtain a symmetric trace-free multipo-

lar expansion of the gravitational radiation from a coalescing binary system which is suSciently accurate
to allow a post-Newtonian calculation of the linear momentum carried off by the gravitational radiation

prior to a binary coalescence. %'e briefly examine the structure of the post-quadrupole corrections to the

wave form for an orbiting binary system near coalescence. The post-Newtonian correction to the
momentum ejection allows a more accurate calculation of the system recoil velocity (radiation rocket
effect). We find that the higher-order correction actually reduces the net momentum ejection. Further-

more, the post-Newtonian correction to the momentum flux has only a weak dependence on the mass ra-

tio of the objects in the binary, suggesting that previous test mass calculations may be quite accurate.
We estimate an upper bound of the center-of-mass velocity of 1 km s ' for neutron star binaries very

near coalescence. In an appendix we give a self-contained (albeit less rigorous) derivation of the gravita-

tional wave form using the Epstein-Wagoner formalism.

PACS number(s): 04.30.+x, 97.60.Jd, 97.60.Lf, 97.80.Fk

I. INTRODUCTION AND SUMMARY

Binary systems containing compact objects, such as
neutron stars, may prove to be the most fruitful systems
for obtaining information about relativistic gravity in
strong-field, dynamical regimes. For example, the binary
pulsar PSR 1913+16 has given us our first evidence that
gravitational waves exist, and new binary pulsars, such as
PSR 1534, may give better accuracy. When laser-
interferometric gravitational wave detectors are built,
coalescing binary systems will be the leading candidates
for detectable sources. For example, Schutz [1] has
shown that by examining the gravitational wave "chirp"
of a coalescing system it will be possible to determine the
distance to the system and even estimate the Hubble con-
stant. Unfortunately, to date, gravitational wave detec-
tors have been unable to definitively observe any events.
However, Thorne [2] has suggested that the next genera-
tion of laser-interferometric detectors should not only
have suScient sensitivity to detect gravitational waves,
but also have suScient resolution to allow detailed study
of the actual shape of the wave form emitted by a given
event. This motivates our search for accurate predictions
of the gravitational wave form emitted during a binary
coalescence.

In addition the direct detection of an emitted gravita-
tional wave, and the decay or coalescence of the system
caused by the gravitational energy radiated away, there is
another potentially observable effect of gravitational radi-
ation from binary systems. The emitted radiation can
also carry off linear momentum, giving rise to a recoil of
the center of mass of the system. This effect was first
studied by Bekenstein [3] and then treated in more detail
by Fitchett [4] and Fitchett and Detweiler [5]. It has
even been suggested that this recoil velocity may become

suIciently large in the late states of a black-hole-black-
hole coalescence to reach galactic escape velocities. For
an overview of this "gravitational-radiation rocket effect"
see Redmount and Rees [6].

Our approach to the problem of finding the gravita-
tional radiation from a coalescing binary system, as well
as its subsequent recoil motion, is to use approximate
equations based on the assumption of weak fields and
slow motion. In order to obtain some degree of
confidence in the results as we evolve the orbit to the
closest possible separation, where the fields may not be so
weak nor the motions so slow, we use equations carried
to the highest practical order in a post-Newtonian expan-
sion. Roughly speaking, the post-Newtonian expansion is
an expansion of corrections to Newtonian gravitational
theory in powers of e =(mlr)=v . (We use units in
which 6 =c=1.} We emphasize that our calculation is
not a "test mass" calculation, in fact, we consider cases
where the binary masses are comparable (e.g. , neutron
stars). This approximation scheme is certainly not as ac-
curate as a fully general relativistic 3+1 numerical solu-
tion, but it has the advantage of being available now.
Such a full-blown numerical solution is probably still
many years in the future.

The details of our analysis of binary systems fall into
three separate but related parts: the motion of the sys-
tem, the radiated wave form, and the ejected momentum.

To evolve the orbital motion of the binary system, we
use the Damour-Deruelle equations of motion [7]. These
equations of motion include all terms up to, and includ-
ing, radiation reaction at the (post} ~2-Newtonian level.
It is the radiation reaction term that gives rise to a secu-
lar decay and circularization of the orbit. Lincoln and
Will [8] studied the late-time evolution of binary systems
using the Damour-Deruelle equations of motion in detail,
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and discussed the range of validity of the Damour-
Deruelle equations for different types of binary systems.
We also mention that a completely equivalent set of equa-
tions of motion have been derived by Grishchuk and Ko-
pejkin [9].

In order to obtain an expression for the wave form of
sufIicient accuracy to allow a post-Newtonian calculation
to the momentum ejection we explore two techniques. In
Sec. II we use the mathematically rigorous technique
developed by Blanchet and Damour [10—13] and
Damour and Iyer [14] to construct the wave form.
[Throughout this paper the formalism developed in Refs.
[10—14] will be referred to as the Blanchet-Darnour-Iyer
(BDI) formalism. ] Appendix A also contains a separate,
but nonrigorous, derivation of the wave form, which uses
the formalism of Epstein and Wagoner [15] (EW).

In Sec. II we assemble and use a number of key results
of the Blanchet-Damour-Iyer formalism. In particular
Blanchet and Damour [12] have developed integral ex-
pressions for the lowest order and first post-Newtonian
correction for all the "mass multipole moments" of the
gravitational radiation. Similarly, Damour and Iyer [14]
have obtained a formal expression for the "current quad-
rupole moment" of the radiation. We then evaluate these
very general formulas in the point-mass limit to obtain
explicit formulas for the necessary multipoles. The ad-
vantage of constructing the wave form with the BDI for-
malism is that it relies only on rigorous and well-defined
mathematical steps. Specifically, the final results only
contain integrals over the compact material source. This
is in contrast with the Epstein-Wagoner formalism. The
disadvantage of constructing the wave form in this
rigorous way is that the development is not particularly
transparent. Indeed the formulas discussed above rely
heavily on a number of mathematical preliminaries which
are presented elsewhere [10,11]. Therefore, in the Ap-
pendix we also present a less rigorous, but self-contained
derivation of the wave form.

In Appendix A we extend the Epstein-Wagoner (EW)
[15] formalism to the (post) -Newtonian order beyond
the usual quadrupole radiation. However, in using the
EW formalism we must resolve several technical issues.
Our equations of motion, the Damour-Deruelle equa-
tions, are expressed in de Donder or harmonic gauge,
whereas the EW formalism is canied out in a gauge that
is only approximately de Donder (they agree only to first
order in the metric perturbation). Furthermore, the
definition of the fields used by EW is different than those
generally used in the expression of the de Donder gauge
condition. Problems arising from the differences in the
gauge and differences in the field definitions could prob-
ably be sidestepped by showing that the two approaches
actually agree out to some order in the post-Newtonian
expansion. However, we deal with the problem directly
by explicitly showing that the EW derivation of the radi-
ation carries through essentially unchanged in de Donder
gauge. Working consistently in de Donder gauge also al-

lows us to compare the results of this derivation unambi-

guously with the derivation in Secs. II and III.
A feature of the EW formalism is the appearance of in-

tegrals over the infinite extent of the effective stress ener-

gy of the gravitational fields. Some of these integrals are
formally divergent, thus calling into question the validity
of the entire formalism. (This is precisely why we also
give a rigorous derivation of the wave form. ) Wagoner
and Will [16], performing this calculation to (post)—
Newtonian order, encountered this same obstacle of
divergent quantities, but found that in all cases the diver-

gent quantities appeared only in terms with vanishing
transverse-traceless part; thus they did not contribute to
the physical radiation. Even at the higher (post)'~—
Newtonian order we find the same is true.

In developing the wave form (by either BDI or EW) we

neglect the hereditary contributions to the radiation.
These hereditary contributions are primarily due to the
"tail" of the gravitational waves. The term "hereditary"
is used to reAect that these contributions depend on the
entire past history of the system. (See Eq. (4.4) of Kovacs
and Thorne [17],or Eq. (39) of Crowley and Thorne [18]
or Eq. (1.4) of Blanchet and Damour [13(b)].) It is true
that these hereditary terms do enter the wave forms at
the (post) ~ -Newtonian order; however, we show that
these terms do not enter the momentum ejection calcula-
tion at the order we are considering. The effect recently
discussed by Christodoulou [13,19—21] is also an heredity
effect; however it has been shown to enter the wave form
only at the (post) -Newtonian level [13(b),21], and
therefore is neglected in this wave-form calculation. The
contribution of these hereditary effects to the wave form
of a coalescing binary system will be explored in a future
publication [22].

Schematically our wave form has the form

+(6m /m )Pfz2 +Pa,„,d +O(e ))TT

Here, p is the reduced mass of the binary system, R is the
distance between the system and the observer, g"
represents the usual quadrupole term (two time deriva-
tives of the quadrupole moment tensor), which is of order
O(e ), P'(z2 represents the (post)'~ -Newtonian correction
of O(v=e) smaller than the quadrupole term, etc. The
notation TT denotes the transverse traceless part [cf. Eq.
(2.2) below]. The factor 5m /m (the difference in mass of
the two bodies divided by the total mass m) is explicitly
displayed in Eq. (1.1) to emphasize that if the binary con-
stituents have equal masses, then these odd-half-order
terms are shut off. More importantly, in an observed
wave form, information about the difference in the
masses of the two objects will reside in these odd-half-
order terms. The term P&«,d represents the hereditary
contribution to the wave form which we neglect in this
calculation. We emphasize that the hereditary contribu-
tion does enter the wave form at the (post) -Newtonian

order, but does not enter the momentum ejection calcula-
tion.

Figure 1 shows the total wave form (modulo PI~„,d)

during a coalescence of a system with m, =10m&, plotted
as a function of time. Figures 2(a) —2(e) show the relative
contribution of the first four terms in Eq. (1.1) to the total
wave form. (Figures 2 are plotted against orbital phase. )
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The physical intuition behind this effect is quite simple.
If the two objects are in a circular orbit the lighter mass
will be moving faster than the heavier mass, and will
therefore be more effective in "forward beaming" its
gravitational radiation. This gives a net momentum ejec-
tion in the direction of motion of the lighter mass, thus
causing a recoil of the system in the opposite direction
(see Fig. 3).

The rate of momentum ejection is obtained by integrat-
ing the momentum flux over a sphere far from the sys-
tem:

dPk dE
dt ~ dQdt

where

(1.2)

dr dn
= 32-'" +h"''dE

(1.3)

where n,
" is the component of the unit normal vector in

the kth direction, an overdot denotes d/dt, and h'J is
schematically represented in Eq. (1.1). To lowest order
the momentum ejection comes from the cross term of Q
with P, &2., for this term the intuitive argument given
above holds. The next-order correction comes from cross
terms of Q with P3/2 and P, zz and P&. (Also notice these
cross terms will be multiplied by the factor 5m /m. ) The
cross term of Q'~ with Phj„,d does not survive the angular
integration in Eq. (1.2). Surprisingly, we find that the
surviving correction terms actually reduce the net
momentum ejection. In fact, when the objects spiral in to
a separation of approximately 7 m, the correction term
begins to dominate, suggesting that the approximation
has broken down. Note that in de Donder coordinates
the horizon of an isolated black hole is at a radius r =m,
not the usual r=2m, as in Schwarzchild coordinates.
Based on test mass calculations, Fitchett [4] and Fitchett

and Detweiler [5] have argued that the lowest-order
momentum calculation should underestimate the total
momentum ejection when the object separation is quite
small. In Sec. IV we discuss the relevance of our finding
to this claim.

Using the momentum ejection formula obtained from
Eq. (1.2), we are able to estimate the center-of-mass recoil
motion of a coalescing binary system. In the case of a
coalescence of two neutron stars the center-of-mass ve-
locity is kept very small by the factor 5m/m, which is
typically ~0.05. In Sec. IV we show ~V, ~

=1 kms
at neutron star separations of approximately 9 m. In the
case of a coalescence of two black holes or a neutron star
and a black hole the momentum ejection and center-of-
mass recoil velocity are maximized for a mass ratio
m, /m2=2. 6. At separations of approximately 9 m we
estimate the recoil velocity to be of order 3 kms '. This
is certainly well below galactic escape velocities, which
are of order 1000 km s '. We also point out that our ve-
locity estimates are independent of the total mass of the
system. Unfortunately, we are unable to make reliable es-
timates of the recoil velocity just prior to the coalescence
of two black holes.

In the remainder of this paper we show the details of
the calculations. In Sec. II, we develop the general ex-
pression for wave forms for sources consisting of N
"point" masses. In Sec. III we examine the two-body
equation of motion and then specialize the general wave-
form results of Sec. II to the special case of binary sys-
tems (N=2). Section IV treats the linear momentum
carried off from a binary system by the gravitational radi-
ation. Appendix A contains a separate nonrigorous
derivation of the wave form. Appendix 8 contains some
of the mathematical details required for evaluating the
multipole integrals which arise in Appendix A.

II. MULTIPOLAR EXPRESSION FOR
THE GRAVITATIONAL WAVE FORM:

THE POINT PARTICLE LIMIT

m2

The gravitational radiation in the far zone is given by
the "transverse-traceless" projection of the spatial por-
tion of the metric perturbation:

hap gap Rap ' (2.1)

(See Thorne [23] (henceforth referred to as Th80) and
Refs. [24] and [25) for our notation and conventions. )
We define the "far zone" as R »A, &characteristic di-
mension of the source. Here R = ~x~ is the distance from
the source to the field point, x is the spatial position vec-
tor of the distant field point relative to the center of mass
of the system, and A. is the characteristic wavelength of
the radiation. The "transverse-traceless" (TT) projection
is computed in the following way:

m1 & m2
I vl I ( I v21

g &J p&kp~lA kl l pIJpklh kl
2

where

(2.2)

FIG. 3. Momentum ejection and subsequent recoil of a
binary system.

p'~ =6'~ —n 'n. ~, (2.3)

n =x/R is the outward directed unit vector, and summa-
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tion over repeated spatial indices is assumed. In this pa-
per the most frequently used properties of the
transverse-traceless operator are

(2.4)

These follow easily from Eq. (2.2).

In the far zone the metric perturbation (i.e., the radia-
tion) can be expanded in terms of radiative "mass" mul-
tipoles denoted by I'~, and the "current" multipoles
denoted by J'J . These multipoles are functions of the
retarded time only. From Eq. (4.8) of Th80 we write the
radiation

gij, (2)Iij+ (3)Iijk+ k+ (4)Iijkl+ k+ l+ (5)Iijklm& kn In m+. . .~ ~ 2 " 1 " 1 " 1

R 3 12 60

kl(i (2)Jj)k I+ (3)Jj )km l m+ (4)Jj)kmn I m n+. . .~ 4 ~ 1 2

3 2 15
(2.5}

The presuperscript number on each multipole denotes the
order of differentiation with respect to retarded time.
The ellipses in Eq. (2.5) represents higher order mul-
tipoles which do not enter the wave form at the (post)
Newtonian order.

In order to have a wave form of sufficient accuracy for
our momentum calculation we must compute the mul-
tipoles I'~, I', and J' to lowest order plus their first
post-Newtonian correction. The remaining multipoles,I', I', J', and J', we need only to their lowest
Newtonian order. As we have mentioned several times
thus far, we are neglecting "hereditary" contributions to
the wave form. We can now make this very precise: we
are neglecting (post) ~ -Newtonian corrections to the ra-
diative mass quadrupole moment (I'~). To have wave
forms which are formally accurate to the (post)
Newtonian order these would need to be included. How-
ever, in the general expression for the rate of momentum
ejection given in Sec. IV it is clear that this omission will
not affect the momentum calculation at the order we are
considering.

In order to have a complete description of the gravita-
tional radiation from the system we now need to relate
the radiative multipoles in Eq. (2.5) to the dynamics of

I

the source. To ensure our wave-form formula is on firm
mathematical footing we use the technique developed by
Blanchet and Damour [10—13] and Damour and Iyer [14]
(the BDI formalism). Although we present essentially
none of the details of their derivation, we give the follow-
ing summary of their technique. (1) Outside the material
source, expand the general solution of the source-free
Einstein field equations (i.e., the metric) in terms of arbi-
trary symmetric trace-free (STF} radiative multipoles.
(See [Th80] or the Appendix of Ref. [10] for a discussion
of STF multipoles. ) (2) Obtain a post-Newtonian expan-
sion of the near-zone metric. This expansion can be ex-
pressed solely in terms of retarded-time integrals over the
finite extent of the material source (i.e., the "source mo-
ments"). (3) Match the two solutions in the weak-field-
near-zone overlap region. Thus the radiative moments in
step (1) can be related to the well defined source moments
in step (2).

We now assemble a collection of results from several
sources which give the necessary radiative multipoles in
terms of integrals over the finite extent of the material
source. The radiative mass multipoles given by Eq. (3.34)
of Ref. [12] ar accurate to (post) '-Newtonian order
beyond their lowest-order contribution

I (u)= f (x )' "o(x,u)d'x+
2(2l+3) du

' (I+1)(2I+3) duf ~x ~'(x~)s~"o(x, u )d'x- (x")s~"o'(x,u )d'x .

(2.6)

Here the superscript L denotes a multi-index. (See Ref. [24].) The superscript STF denotes that only the symmetric
trace-free part is to be taken. A similar expression for the radiative current quadrupole moment is given by Eq. (5.36)
of Ref. [14]:

Jij Ej ab d 3 . b ai+ b
asap

s aspbs + bX api + s apbsi + b ipa + apbi i apb
( —&) 2 ( —1) 4 (0) 4 (0) 2 (0) 4 (1) 4 (0)

+- ais sb ass ib ao.x P — o.x P — o.x "P' ' + o.x "P
dt 56 ' 56 ' ' 112 ' ' 112

9 . 1
~X apbi ~X aisspb + X assZ bi X asia bs3 1

112 '" 14 ' ' 28 28

STF

(2.7)
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The multiple index on x represents a product (e.g. ,x"—=x'x'). The sources in Eq. (2.6) and Eq. (2.7) are
given by

o(x, r ) = TVV+ Tkk

o'(x, t)=T ' .

(2.8a)

(2.8b)

I 11
P~~ l(x) = f o(y)r„n„' . n, ' d y, (2.8c)

where r„= I
x —

y I
and n„' —= (x ' y') /r„—. [Notice, in

Eq. (2.8c) the a on the right side is actually an exponent. ]
In Eqs. (2.8) T"' is the stress energy of the matter in the
source. The second term in Eq. (2.8a), T"", represents
the spatial trace of T"". The remaining spin multipoles
can be computed (to sufficient accuracy) from the
Newtonian formula

The P~ l(x) in Eq. (2.7) is the generalized tensorial po-
tential

(2.10)

The sum over A represent the sum over the N body la-
bels. The mass and position of the Ath body are
represented by mz and x„(t). If we neglect the nonradi-
ative infinite self-interaction terms the sources in Eqs.
(2.8) become

o = g m„(1—U„+—,'v„)5(x—x„),
A

o'= g m„u„'(1 —Uz+ —,'u„)5(x—xq ),
A

(2.11a)

(2.11b)

T' = g m„veau„(1 —U„+—,'v„)5(x—x„) . (2.11c)
A

represented by

dxA dxA 1 dtT"'(x, t ) = g m„5(x —x„(t ) ) .
dt dt —g dr

Jijk
[

kab
J

b aijd3
]

STF

Jijk!
[

lab J' b aijkd3 ]STF

(2.9a)

(2.9b)

The quantity v" represents the bulk velocity of body A,
u„= ldx„ ldt I. The potential U„ is the Newtonian grav-
itational potential at the position of body A produced by
all the other bodies:

If we now restrict our attention to the case of N well-
separated bodies, and neglect the internal structure of the
bodies, we can collect the relevant formulas from Appen-
dix C of Ref. [14]. In this case the stress energy tensor of
the matter for N "point masses" can be formally

I

U„=
BWA XA XB

(2.12)

Substituting Eqs. (2.11) into Eqs. (2.6), (2.7) and (2.9), we
obtain to the necessary order

NI"=pm„.
A

3 2 rnB1+—u„—
2 "

B~A rAB

STF

xgxg+ 3 (lxg I xgxg )
14 dt'

20 d (x' xj x" ) "v"
21dt AAA (2.13a)

I""=pm„
A

STF

g+ 3 (lxg I xgxgxg ) [(xgxgxgxg ) u ] (2 13b)
2 B&A rAB 18 dt 9 dt

Iijkl ~ (
i j k l )STF

A +A A A+A
A

(2.13c)

Iij klm ~ ~ i j k I m &STF

A

Similarly for the current moments of the radiation Damour and Iyer [14]have obtained

(2.13d)

1
E,.b g my xg'vg 1+—vg

1 A A 1 A A AB 7 b a; 1Ub&a +i + Us &a nbsi
2 Ix„—xvl 2 Ix„—x~l 4 " " " 4 "

b i a 1 a bi I I i a b+ ~A+A ~AB + UA AB ~XA XB ~ AXA AB2 4 4

d 5 ~A "AB+-
dr 56 Ix„—x~l

ass ib
1 XA "AB

56 Ix„—*,I

as sbi
A AB

X assU b] as' bs

28 A A 28

STF

(2.14a)
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gijk ~ (
iab a b j k )STF

A ~ A AXAXA
A

Jijkl —~ (
iab a Vb j k I )STF—~ mA E. XAUAXAX„XA

(2.14b)

(2.14c)

The symbol n„'s =(x„' —xs)/~x„—xs ~, and n'~jl =n—„'jln jjl. These multiPoles can be substituted into Eq. (2.5) to ob-
tain the wave form; however, we wi11 delay this until we specialize these results to the two-body case.

III. T%0-BODY MOTION AND %AVE FORM

A. Two-body equation of motion

r

~ 5m+
m 2 m

v ——+O(e ) x.
r

(3.2b)

+ A ppN(m i m2, xi xp, vi, vp)

+ A '
gg2 (m „m2x, —x2, v„v2) . (3.1)

Here a', is the ith component of the acceleration of body
No. 1, AN represents the Newtonian contribution to the
acceleration, A pN represents the post-Newtonian contri-
bution, etc. A similar formula for the acceleration of the
second body can be obtained by interchanging the labels
1 and 2. The DD equations also contain corrections for
spinning bodies. However, to be consistent with our as-
sumption of static structure, we will neglect spin effects
in this discussion. We also point out that the DD equa-
tions exceed the accuracy of the wave forms that we have
computed. Our wave forms contain terms through
O(e ); the DD equations contain terms of O(s ). We do,
however, expect that our wave forms coupled with the
DD equations of motion will give a reasonably good
quantitative approximation of the gravitational radiation
emitted, including the secular changes as the orbit de-
cays.

From the Damour-Deruelle equations of motion one
can derive a constant of the motion [to (post) -Newtonian
order], which can be interpreted as the "center of mass"
of a binary system. Choosing this as the origin of the
coordinate system we introduce the relative position vec-
tor x—=x, —xz, where x, (x2) represents the position of
body 1 (2) relative to the center of mass. Explicitly,

I)= +m2 vy 5m 2 m 4
u ——+O(e ) x,

m 2 m r
(3.2a)

We now restrict our treatment of the radiation to the
astrophysically relevant case of a binary system (%=2).
In addition to being the relevant case, this restriction has
two computational advantages: (1) We will be able to use
the well established Damour-Deruelle two-body equa-
tions of motion [7] to evolve the orbital system, and to
simplify higher-order time derivatives created by the
derivatives in Eq. (2.5). (2) If we establish a coordinate
system with its origin at the "center of mass" of the
binary system then Eqs. (2.13) and Eqs. (2.14) can be con-
siderably simpli6ed.

The Damour-Deruelle (DD) equations [7] describe the
motion of a binary system of compact objects. These
equations of motion include terms through the dissipative
radiation-reaction term of (post) ~ -Newtonian order.
They can be schematically represented

aI = A N(m2, xi —x2)+ A pN(m i, m2, xi —x2, vi, v2)

Here m —=mi+m~, p=mim2/m, 7)=iu/m, 5m =mi
—mz, r = ~x~, and v=x. The velocities of the individual
bodies can be obtained by differentiating Eqs. (3.2) and
using the Newtonian equation of motion to eliminate the
acceleration that arises in the post-Newtonian correction

vi=
mz ~5m+
m 2 m

m
U V

r

2 m r2
(3.3a)

v2= — +
m 2 m

m
U V

r

r'x+—O(e ) .
n5mm.
2 m r2

(3.3b)

Using the transformation above, Lincoln and Will [8]
have reduced the DD equations to the form

a=a, —a&=(m/r )[(—1+ A )r+Bv], (3.4)

where r=x/r. Here A and B can be written as the sum
of (post)'-, (post) -, and (post) ~ -Newtonian correction
terms. That is, A = A &+ A2+ A, &2 and B=B&
+B2+B5&2,where

A
&
=2(2+rj)——(1+3')v + rjr'—

r 2
'2

A2 = ——(12+29rj) ——Tj(3—4')v
3 m

2 4 r

(3.5a)

15 . 4 3
8 2

Tj(1 3')r' —+ Tj(3 4')u —r—

8 m. 2 17m
A =—g—r 3U+5/2 3 r

(3.5c)

B,=2(2—g)r, (3.5d)

B2= re(15+4rj)v —(4+41rj+8g )—
2 r

—3g(3+2')r' (3.5e)

+—rj(13 4') v+ (—2+25—rj+ 2' ) r'—
2 r r

(3.5b)
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(3.5f) J"=—p E" 1+ u +2(1+rj)—x'x'v6m J,b 1 —5g m .
b

m 2 T

B. Two-body wave-form equation

We now use Eqs. (3.2) and (3.3) to simplify the mul-
tipole expressions; substituting into Eqs. (2.13) and sum-
ming over the two bodies, we obtain

+ —[(1—2')
1 d

28 dt

X(3r u' —rrx')x'v ]

jijk —
p ( 1 3r )( SiabX au bXjX k)STF

STF

(3.7a)

(3.7b)

——(1 —3')rrx 'u j+ (1—3')r u 'u j4 . ; 11
7 21

STF

(3.6a)

I'J = —p
5m

m
1+ 5 —19' 2 5 —13' m

V XXX
6 6 r

+(1 2rj)(r —u' u jx—rrv'x jx")
STF

(3.6b)

Iijkl (1 3 )(
i j k I)STF (3.6c)

Iijklm — (1 2 )(xi j k I m)STF
~ 5m

m
(3.6d)

I"=jJ, 1+ (1—3rj)u ——(5—8')—x'x j29 1 m

42 7 r

Jijkl + ( 1 2r )( EiabX au bX jX kX l)STF
m

(3.7c)

h )T = [Q' +(5m Im )P'(iz+P'(+(5m /m )P$z~ ]TT,
2

The mass quadrupole term Eq. (3.6a) agrees exactly with
Eq. (3.37) of Blanchet and Schafer [26]. The lowest-order
term in the mass octupole Eq. (3.6b) also agrees with
Blanchet and Schafer. However, the explicit two-body
post-Newtonian correction in Eq. (3.6b) has not been pre-
viously published. The mass multipoles, I' ' and I'J"'
are just Newtonian mass multipoles of the source; both
can be easily computed from Th80 Eq. (5.28a). Damour
and Iyer [14] have computed a post -Newtonian expres-
sion for the current quadrupole J'J. After their result is
carefully reduced to the two-body case, it agrees with Eq.
(3.7a). The current multipoles J""and J""' are just the
Newtonian current multipoles; both can be computed
from Th80, Eq. (5.28b). In Eqs. (3.6) and (3.7) we have
made repeated use of simple identities, such as
m &+mz =m (1—2'), m &+mz =m (1 —3T)).

These expressions for the multipoles can now be substi-
tuted into Eq. (2.5). When the time derivatives produce
an acceleration, we substitute the DD equations of
motion to the necessary order. The result is the wave
form

Similarly for the current multipoles we substitute into
Eqs. (2.14) and find where

(3.8a)

m x'xJ
Q"=2 u'v' ——

2
(3.8b)

m x'v J+u'x j=3n.r—/2 r
. x'xJ m x'xJ—r' +n v — —2v'UJ

2 T r2
(3.8c)

PI = —(1—3g) (n.r) — 3v —15r +7— +15r'1 m XX . XU +VX
3 T T T T

—14v'v J

m .Xx J+n.r n.v—12r
r r2

l J+ l J J—16 +(n v) 6u'u' —2—
T 2

m, - 2m. x'v J+U'x J+—3(1—3T))u —2(2 —3')—v'v J+——r'(5+3')
3 T 3 T r

1 m r J+——3(1—3rj)r' —(10+3')v +29-' 2 2 foal X X

3 r T 2
(3.8d)
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Pg =(1—2') (n r) ——3v 7r—' +6—r '3m 5 2 ~ 2 m ~
x'x

/2 r 4 r r2
1 . 2 m x'vJ+u'x

12 r r
17 . ;ru'v J
2

+—(n.r) (n.v)—1 2 m

4 r

l J ( J+ l J
9u +45r —28— —54r +5gv v

r r r

3 2m x'u +v'x .x'x 1 3 m x'x+—(n r)(n v) —5 3—r ' +—(n v) — —4v'vj
2 r r r2 2 r r2

x'u J+u'x J
+ n.r— r (6'3+54ri) ——(128—36')+u (33—18')12 r r r

J
+ r' —u (63—54')+ —(242 —24')+r' (15—90') —(186+24')r'u'v J

r 2 r

+n v —v'vj —2u (1—5g)+ —(3—8g}
1 m

2 r
x'xJ m 3 1 m 1 2—(1 2g)r' —+—(26—3rl)———(7—2q)ur2 r 4 3 r 4

1 x v +v x Pl (7+4
2 r r

(3.8e)

This now makes the schematic representation of the wave
form [Eq. (1.1} or (3.8a)] actually an explicit representa-
tion. The first term Q'J, now given by Eq. (3.8b), is just
the standard quadrupole term. The second term P(iz,
now given by Eq. (3.8c), is the (post}'» -Newtonain
correction term. The next term (PI) ) is the (post)'-
Newtonain correction to the wave form. Through
(post)'-Newtonian order the wave form is identical to the
Wagoner-Will wave form [16]. The final term (P'j'zz) is
the (post) -Newtonian correction to the wave form.
Figure 2 shows the relative contribution of these terms to
the total wave form for the "+"polarization (see Eq.
(4.3a) for a definition of the "+" polarization). Once
again we emphasize that Eq. (3.8) is still not a full
description of the wave form through (post)»-
Newtonian order; hereditary contributions to the gravita-
tional waves have been omitted.

IV. MOMENTUM FLUX AND RADIATION RECOIL

RP"= f [(h ) +(h„) ]n "dA, (4.2)

where

h =h = —h = Ah""+Bh "+Ch"",+ (4.3a)

h =h ' =h " = —D(h""—h )+Eh "», (4.3b)

and

A =
—,'[cos24(1+cos 8)—sin 8],

8= —
—,'[cos24(1+cos 8)+sin 8],

(4.4a)

(4.4b)

If we choose a coordinate system with the orbit in the xy
plane, and use the TT operator Eq. (2.2) and Eq. (2.3),
this formula can be written in terms of the two polariza-
tions "+"and "X"(e.g. , see Ref. [27]):

2
P "= f (h Qh Q)n dQ . (4.1)

With the wave form in hand, we now proceed to the
calculation of the momentum carried ofF by the gravita-
tional radiation. There are two equivalent approaches to
this problem: (1) using Eqs. (3.8) for the wave form,
directly compute the momentum ejected by integrating
the momentum fiux [i.e., directly compute the integral in
Eq. (1.2)]; (2) with the symmetric trace-free multipole
decomposition of the wave form use the formula in Th80
to evaluate the momentum. We choose the first; the
second technique is used at the end of the section for the
simplified case of circular orbits as a check.

The net k component of the momentum Aux carried
across a distant sphere S, which is centered on the source
is given by

C= —,'sin24(1+cos 8), (4.4c)

D =
—,'sin2@ cosa, (4.4d)

E =cos2% cosO . (4.4e)

Here O and 4 are the azimuth and colatitude of the field
point, and h ",h, and h are the wave forms computed
using Eqs. (3.8). Notice that by choosing the x-y plane to
contain the orbit, z =0 and v'=0; hence, h ",h ', and h ~'

vanish. Also notice that by using Eqs. (4.3) we do not
need to apply the transverse-traceless operator in Eq.
(4.2). The TT operator is in effect built into these equa-
tions. Substituting Eqs. (4.3) into Eq. (4.2), and using
formulas such as
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A n "n'dQ=, A n"n"n dQ=O, (A +D )n "n "n n dA==3~ 8'
S 70' s S 31'

we find, after considerable manipulation,

(4.5)

px 8 6m
g (m Ir) [v ( —45x +93x —50)+v„v ( —135x +131)xy

+u„u (135x —118x —12)+u (45x +10)xy+(m/r)[(12x —8)u„+12u~xy]

+ —,', ((m /r ) [v [8(3x +34)i)—12(295x —252)]+12u xy(2i) —295) )

+(m Ir)[u [8(292x +425)xyi) —2(12301x +854)xy]

+u, u [12(584x —101x —248)ri —6(12301x —10615x —22)]

+u2u [6(12301x —9783)xy —48(146x —117)xyg]

+u„[2(12301x —21 252x + 8163)—4(584x —1419x +729)i) ]]
+ v [12(1843x —852x —140)xy —12(1036x —195x —62)xy g]

+u„u [6(18430x —22519x +4534x +332)—12(5180x —5426x +437x +70)rl]

+u, u [12(10360x —9394x +537)xyi) —24(9215x —9044x 2+1269)xy]

+v v [12(10360x —18296x +8255x —249)i)

—12( 18 430x —32 087x + 14 789x —1035 ) ]

+u„v [12(9215x —13 828x +4771)xy —12(5180x —8419x +3349)xyg]

+u„[6(3686x —8331x +5622x —925)—24(2x —1)(259x —514x +259)ri])],

(4.6)

P ~ =P '(exchange x and y ),
P'=0 .

(4.7)

(4.8)

Here x and y represent x Ir and y/r The first .two lines of Eq. (4.6) represent the lowest-order term in the momentum
ejected. If a Keplerian orbit is inserted into this portion we obtain the results of Fitchett [4]. [Note the last term in the
first line of Fitchett's Eq. (2.23) should be —,'e (20cos8+90cos |))]. The remainder of Eq. (4.6) (i.e., —,', ( )) is the next
post-Newtonian-order correction to the momentum Aux.

Figure 4 shows the relative contribution of both terms to the momentum ejected during the late stages of a coales-
cence. It clearly shows that the correction term is = 180 out of phase until the final plunge has begun. In essence the
correction term reduces the momentum flux. This effect is also evident in Fig. 5 where we plot ~dP/dt

~
with and

without the post-Newtonian correction term included.
The effect can also be seen analytically if we consider the case of circular motion. In order to maintain a circular or-

bit the relative coordinate velocity must be (to the necessary post-Newtonian order)

V=
r

3 'g m
1 — —( —sing, cosP, 0) .

2 r
(4.9)

Here P is the orbital phase angle. Substituting (4.9) into (4.6) we find a drastic simplification

dP
dt

i) (m /r)" [58—
—,'(5583+182')(m/r)](sing, —cosP, 0) .

105 m
(4.10}

This same equation is obtained at the end of the section
by using the decomposed STF multipoles [Eqs. (3.6) and
(3.7}] and the momentum formula from Th80. Notice
that the correction term in Eq. (4.10) overtakes the
lowest-order term when the orbit decays through r =10
m. In Fig. 4 the correction overtakes the lowest-order
term at r =7 m. The discrepancy is due to the inclusion

of still higher-order corrections to the motion in the
Damour-Deruelle equations. In particular, the motion
that produced the graph was a decaying, quasicircular or-
bit.

The fact that the rate of momentum ejection is reduced
by the post-Newtonian correction is a curious effect, but
not completely unexpected. A similar effect is seen in
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FIG. 4. Relative contributions to the x component of the
ejected momentum flux plotted against orbital phase angle.
Corresponding orbital separation is marked. Total momentum
flux (solid curve) is the sum of the lowest-order term (dotted
curve) and the next-order correction (dashed curve). Notice
that the total momentum ejection basically follows the lowest-
order contribution until late in the evolution (r =7 m), at which

point it begins to follow the correction term, signifying that the
approximation has broken down.
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FIG. 5. Magnitude of ejected momentum flux plotted against
orbital separation. The upper curve is the lowest-order contri-
bution. The lower curve is the sum of the lowest-order term
and the correction term. Compare Fitchett and Detweiler [5]
(Fig. 2).

post-Newtonian calculations of luminosity (i.e., the rate
of energy ejection). The post-Newtonian corrections to
the luminosity formula are negative and therefore they
reduce the rate of energy ejection. In fact for binary sys-
tems at separations less than approximately 9 m the
post-Newtonian terms begin to dominate and eventually

the computed luminosity turns negative, signifying that
the approximate calculation is no longer valid [see the
discussion in Lincoln and Will [8] following their Eq.
(4.2)]. Also the "exact" test-mass calculations given by
Fitchett and Detweiler [5] show that the rate of momen-
tum ejection for binaries in circular orbits is actually
somewhat less than the rate predicted by the Newtonian
contribution for r )9 m. In essence their "higher-order"
contributions to the momentum ejection also reduce the
momentum ejection while the binary separation is still
large.

On the other hand, Fitchett and Detweiler [5] also
showed that for r & 9 m the opposite occurs: the
Newtonian contribution to the momentum ejection un-
derestimates the "exact" test-mass momentum ejection.
They use this fact to estimate very large recoil velocities
for black holes near coalescence. Unfortunately, at these
very late states of a black-hole coalescence (i.e., separa-
tions ~ 5 m} our approximation has broken down, and it
is not possible to make reliable predictions of the recoil
velocities. However, in support of conclusions drawn
from test mass calculations, we note the very weak
dependence on the mass ratio in the post-Newtonian
correction term in Eq. (4.10}. The mass ratio enters
through the variable g which has a maximum value of
0.25 when m, =m2. This results in less than a 1%
change in the post-Newtonian correction in Eq. (4.10).

To obtain the resulting trajectory of the center of mass
(c.m. ) of the system we integrate Newton's second law:

dp
c.m. ~ c.m. (4.11)

In order to perform the integration we numerically
evolve the orbit of the binary system with the Damour-
Deruelle equations Eqs. (3.4) and (3.5). We supply Eqs.
(4.6) and (4.7) with the relative position x and v from the
solutions of the Damour-Deruelle equations. We then
numerically integrate Eq. (4.11) to find the position and
velocity of the center of mass. As the binary orbit decays
to separations much below 9 m we have very little
confidence in our post-Newtonian expression for the
momentum ejection; however, at separations greater than
9 m the lowest-order contribution should give a realistic
upper bound on the rate of momentum ejection.

Figure 6 shows the speed of the recoiling center of
mass as a function of orbital separation for two coalesc-
ing neutron stars. Recall that for neutron stars the
momentum ejection, and hence the recoil velocity, is
suppressed by the factor 5m /m ~0.05. Notice that at a
separation just prior to the point where the neutron stars
"touch" and hydrodynamic processes control the dynam-
ics, (i.e., r =9 m), the recoil velocity is only =1 km s
Numerical hydrodynamic evolutions of neutron-star
coalescences show wave forms and luminosity that de-
crease very rapidly as hydrodynamic processes proceed
[28]. The momentum ejection must also rapidly attenu-
ate as the stars coalesce. Thus, the estimation of a 1-
km s ' recoil velocity is probably a realistic upper bound
for a neutron-star —neutron-star coalescence. Using test
mass calculations, Fitchett and Detweiler [5] have es-
timated recoil velocities on the order of 100 kms ' for
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FIG. 6. Center of mass recoil velocity plotted against orbital
separation.

dP'
dt

I~J Ig + 112 ~J" Ig J
315

' ' +
315

'
(5)I~jkl (4)Ijkl+ 1 5 ijk (4)Ijlm (4)Jklm

18 315 2 315

20 (4)Jijk(3)Jjk+. . .
315

(4.12)

The presuperscript on each multipoi ole denotes the order
of time differentiation. The ellipsis denotes that we have
truncated the series of multipole products. e ave re-
tained enoug termsh to give the lowest-order term for the

coalescing black holes at separations of r =5 m. Unfor-
tunately, we have little confidence in our approximation
at such small separations, and therefore we are unab e to
make a reliable estimate for the recoil velocity for blac
holes near coalescence.

F' 7 shows the trajectory of the binary system'sfigure s
t f mass as the orbital separation shrinks. ua i a-

ituentstively, it has the form expected; as the binary constituen s
spiral inward due to the radiation reaction force, the
center of mass spirals outward, reflecting the increasing
rate of momentum ejection and the shrinking orbital

As a final check of our momentum calculation, we now
demonstrate the use of the general momentum ejection
formula of Th80. With the STF multipoles of the radia-
tion we can now use the formula in Th80 to write down
expressions for the linear momentum carried off by the
radiation [Th80, Eq. (4.20')]:

I I

0 5

10 (Xc.m /m)

FIG. 7. Center of mass trajectory during a coalescence show-

ing t e cen er oh t f mass spiraling outward as the or it spirals in-

ward. The three marks denote the orbital separation w en e
center o mass is a e mf '

t th marked position. Notice the center of
mass onl moves a small fraction of the orbital separation evenmass on y moves a
during the late stages of the coalescence. The sma o
center of the spiral is due to the initial conditions.

momentum ejection [the first two term
'

q.s in E . (4.12)],
and the first correction term [the last three terms in Eq.
(4.12) and the post-Newtonian corrections to the first two
terms]. The first correction term is of O(e ) relative to
the lowest-order term. Notice that a correction of O(e )

in I'~ or I'1" (i.e., the tail corrections discussed above)
would produce a correction of O(e ) beyond the lowest-
order term in the momentum formula. In this momen-
tum calculation we have only been keeping terms o
O(e ) beyond the lowest order, and therefore we may
neglect the contribution to the momentum ejection from
the heredity terms.

Substituting the STF multipoles into Eq. (4.12, and us-

he ost-Newtonian equation of motion to e
'

to eliminate
the motionthe higher-order derivatives, and restncting e

to a circular orbit in the x-y plane, we find, for the x com-
ponent of the first two terms in Eq.. 4.12),

10 I~g P + xj P J
315 315

2 11/2 8
46031 —19 576' m

g (mlr) 5 sing .
105 m

(4.13)

Similarly for the last three terms in Eq. (4.12),

kl (4) kl xjk (4)Ijim (4)Jklm+ J J20 (4) ijk(3) jkI& +—
31518 315 2 315

8 5m 2 j )II/2 6950
(1—3g)

m
sing .

105 m

6950 m

(4.14)

m onent, ive a total momentum ejection ofThe two pieces corn zne, oge eb' d t ther with similar results for the y componen, g'

11/2
dp
dt

8 6m 2 m

105 m r7l
5583+182' m

(
.

~ ~ )
9 r

(4.15)
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This agrees exactly with Eq. (4.10) above. Notice that the
correction due to the higher-order multipoles Eq. (4.14)
[i.e., the last three terms in Eq. (4.12)] actually adds to
the momentum ejection, but the post-Newtonian correc-
tions to lower multipoles [i.e., the post-Newtonian
corrections in Eq. (4.13)) actually subtract from the
momentum ejection. Thus it is not the inclusion of
higher-Newtonian multipoles in the momentum formula
that reduces the momentum ejection. It is the higher-
order corrections to the lower-order multipoles which
causes the reduction.

V. CONCLUDING REMARKS

Using the formalism of Blanchet, Damour and Iyer
[10—14), we have derived gravitational wave forms accu-
rate to (post) -Newtonian order beyond the usual quad-
rupole wave forms (modulo the hereditary corrections).
With these higher-order wave forms we have obtained a
post-Newtonian correction to the rate of momentum ejec-
tion from a coalescing binary system. The higher-order
momentum calculation has allowed us to estimate an
upper bound of

~ V, ~

= 1 km s ' for the recoil velocity
of a coalescing neutron-star system. We have noted that
the higher-order correction term in the momentum ejec-
tion formula has only a weak dependence on the mass ra-
tio of the objects in the binary [see Eq. (4.10)]. This sug-
gests that previous test mass calculations may in fact be
quite accurate. We have also noted that the higher order
correction to the momentum ejection actually reduces the
net rate of momentum ejection, in effect stabilizing the
center-of-mass motion of the system.

To improve these results would require extending the
wave-form calculation to the (post) ~2-Newtonian order
and including the tail terms that we have omitted. This
calculation would be quite tedious, and the still higher-
order corrections to the wave form would probably not
be discernible for even the most sensitive gravitationa1-
wave detectors, nevertheless, it would allow the calcula-
tion of (post) -Newtonian corrections to the luminosity
formula and the rate of momentum ejection.

At the higher order we expect not only an improve-
ment in the formal accuracy of the expressions for lumi-
nosity and momentum ejection, but also a qualitative im-
provement in their behavior as the binary separation
shrinks, i.e., we would expect them to behave in the test
mass limit more like the exact test-mass calculations
given by Fitchett and Detweiler [5]. At the end of Sec.
IV we showed that in the case of circular motion it is nat
the inclusion of higher multipa1es that causes the higher-
order correction ta subtract fram the momentum ejec-
tion, but rather the post-Newtonian corrections ta the
lower multipoles. The fact that these terms are sa nega-
tive is in large part due to the use of the (post) '-
Newtonian circular velocity formula Eq. (4.9). In the re-
gime of interest r =5—10 m this formula drastically un-
derestimates the speed required to hold a circular orbit
compared ta speed predicted either by the more accurate
(post) -Newtonian equation of motion or, in the test mass
limit, the exact Schwarzschild equation of motion. The
post-Newtonian formula for the luminosity shows similar

behavior to our post-Newtonian momentum formula;
that is, it turns over and goes negative as the binary sepa-
ration decays through r=9 m. This again is caused by
the omission of higher terms in the calculation. This
problem might clear up at the next order where we can
consistently use a more accurate (higher-order) equation
of motion.

We also point out that we have neglected effects due to
the spin of the bodies. Inclusion of spin will affect the
momentum ejection calculation through both the motion
of the system and the wave form. For a counter-rotating
test mass the innermost stable circular orbit can be as
large as r =9 m (in Boyer-Lindquist coordinates), inside
which the orbit decays rapidly (see Ref. [25], p. 911).
This rapid, nondissipative decay of the orbit will enter
the momentum ejection calculation through the equation
of motion. Also, the wave form for spinning bodies will
contain h", h"', h~' components resulting from com-
ponents of spin not orthogonal to the orbital x-y plane
[see the discussion following Eq. (4.4)]. This could result
in secular ejection of momentum out of the orbital plane.
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APPENDIX A: POST-NEWTONIAN
GRAVITATIONAL RADIATION:

THE EPSTEIN-WAGONER FORMALISM

1. Foundations

where h ~ is the potential defined by

h ~=——( —g)' g ~+7) ~. (A2)

In this gauge the exact Einstein field equations take the
form [Th80]

In this appendix we give an alternative derivation of
the wave form Eq. (3.8). Although this approach lacks
the "rigor" of the derivation outlined in Secs. II and III,
it is self-contained and substantially simpler.

In this first subsection we present general formulas for
the far-zone gravitational radiation of a fluid source.
Most of the results presented here can be found in Th80,
but the development is closely patterned after Sec. II of
Epstein and Wagoner [15] (EW). However, unlike EW,
we work strictly in the de Donder gauge. The only as-
sumption we make here is that the field is weak enough
that space-time can be covered by a coordinate system
that satisfied the de Donder gauge condition,

(A1)
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h p= —16m~ p, (A3) show it does not contribute to the momentum ejection at
the order we are considering.

p 4
r ~(x', t')5(t' t+ ix——x'i) 4

h x, t =4 d x
/x —x'i

r ~( xt„, )

ix —x'i
(A5)

where t„,=t —ix —x'i. Unfortunately, this is an integral
equation for h ~ since h ~ is itself embedded in r ~ [see
Eq. (A4)]. In the next section we use an iterative process
to solve for h

In the Introduction we mentioned that we neglect con-
tributions to the radiation from the tail of the gravita-
tional waves. Generally these tail contributions are
thought of as arising from the radiation scattering o6' the
background curvature of space-time. Therefore, one
might conclude that the use of the flat-space Green's
function (the Dirac delta function) in Eq. (A5) to write
the formal solution to the field equations signifies the om-
ission of the tail contributions. However, this is not the
case. The fiat-space Green's function in Eq. (A5) arises
solely because we have chosen to write the field equations
with a flat-space wave operator [see Eq. (A3)]. Crowley
and Thorne [18] have shown that when the field equa-
tions are formulated in terms of a flat-space wave opera-
tor (as we have done here), the tail terms arise from the
last term in the effective stress-energy pseudotensor [i.e.,
the term h ~ „,h "' in Eq. (A4)]. Therefore, our omission
of the tail contributions can be summarized as the omis-
sion of contributions to the effective stress-energy pseu-
dotensor from the term h p„h" . For a full discussion
of tail contributions in the flat-space formulation of the
field equations see Crowley and Thorne [18] [particularly
the discussion surrounding their Eq. (39)]. In Appendix
B we show that the tail of the radiation does not enter the
wave form until the (post) i -Newtonian order, and we

where l7=( d—/Bt +V ) is the flat-space wave opera-
tor. The "efFective" stress-energy pseudotensor ~ p is
given by

~ ~=( —g)(T ~+tg)
+(1/16m)[h "P~"„—h ~„P"'], (A4)

and ti( is the Landau-Lifshitz pseudotensor (Ref. [25],
Eq. (20.22)), and T ~ is the stress-energy of the matter.
Although Eq. (A3) above has exactly the same structure
as EW Eq. (9), we do not assert that the effective stress-
energy pseudotensor r ~ that appears in Eq. (A3) is the
same as the one that appears in the EW calculation. The
reason is that EW define their potential by
8&„=h&, —,'rj„P—, w—here h„„=g„„—rj„, a—nd then impose
the gauge condition 0",=0. To first order in 0" this
agrees with Eqs. (Al) and (A2), but not to higher order.
In Appendix A 3 we construct a (post) i -Newtonian ex-
pression for ~ p in de Donder gauge, and show how it is
related to the (post) -Newtonian expression for r ~ that
appears in EW.

Equation (A3) is just the standard wave equation, and
we can immediately write down a formal solution for an
outgoing wave, which is valid at any field x:

2. Slow-motion sources and a multipole expansion

Just as in our previous development, the gravitational
radiation far from the material source is given by the
"transverse-traceless" projection of the spatial portion of
the metric perturbation

~ ap ~ap Iap ' (A6)

In the far zone, where ih ""~ ((I, h "' reduces to the
"trace-reversed" metric perturbation, i.e.,

h ~=h ~—
—,'hrj ~ (far zone) . (A7)

We also follow the convention of EW and let the sub-
script TT denote that the quantity is not only contracted
with the projection operator Eq. (2.4), but also is to be
evaluated in the far zone (large R).

Using Eq. (A7) and expanding Eq. (A5), we obtain, to
lowest order in ~x'~/R,

4
h i{T=h )T=— r"( x', t —R +n x' )d 'x

TT (A8)

As a consequence of the conservation law [Th80]

~p =o,
,p

~'~ satisfies the identifies

(A 10)

r'= —,'(r x'x j) 00+(r"'x'+r"'x') „——,'(r"'x'x J) ki,

(A 1 la)

1 Vx k =—( %0'xjx k+ TOjx ix k rOkx ix j ) , 0

+. i (&lix jx k+&jxix k &Ikx ix j)
, I (Al lb)

Using these identifies in the series equation Eq. (A9) gen-
erates the multipole expansion

2 d ijkl . . *k
hg=h Q= —

z g nk . . nk IEw (r~ dt' 0

(A12)

where

I)w=f1 x'x d x

I)w= f (r 'xjx +r ~x'x —'r x x )d x

r J ~ Id3
EW J

(A13a)

(A13b)

(A13c)

In order to find a multipole expansion of the radiation we
now restrict the discussion to slow motion sources. This
allows us to expand Eq. (A8) in the series

hy, =hy
m=—X r'j(x', t —R )(n x') d xTTR Om! atm

(A9)
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Ijiklm — yj& k& I md 3&1d
3 dr

(A13d)

(A13e)

In Eqs. (A13a) and (A13b) we have assumed that surface
terms produced by the integration by parts of the diver-
gences in Eq. (Al la) and (Al lb) vanish. This assumption
was verified (albeit not rigorously) by EW; since the
verification they gave is not gauge dependent, it suffices
for our discussion. Throughout the remainder of this pa-
per we neglect surface terms after integrating by parts.
The subscript "EW" denotes that the "multipoles" in
Eqs. (A13) are defined in a way unique to EW and this

paper; they are different from the symmetric-trace-free
(STF) multipole expansion we used in Secs. II and III. In
Appendix A 5 we carefully show how these quantities are
related to the standard mass and current multipoles
presented in Sec. III.

3. The effective stress-energy tensor

The previous subsection shows that the radiation prob-
lem is essentially reduced to finding expressions for the
efFective stress-energy tensor r ~ and its time evolution.
In this section we employ a weak-field approximation and
a perfect fluid model for the matter to obtain approxi-
mate expressions for the ~ P. The approximate expres-

I

The last two formulas in Eqs. (A13}are obtained from the
general formula

r'~x ' . x d x (m 2).k ' k 2 d
m —2

sions are sufficiently accurate to give radiation formulas
which are accurate to the (post) -Newtonian order
beyond the usual quadrupole term.

Turning first to T ~ the stress-energy of the matter, we
assume that the matter is an isentropic perfect fluid de-
scribed by

T ~=[po(1+II)+p]u u~+pg ~, (A14)

where po is the baryon rest-mass density, p is the pres-
sure, II is the specific internal energy, and u" is the fluid
four-velocity. Through the necessary order, T ~ can be
written [29]

T~=po( 1+II+ u +2 U ) +0 (poe ), (A15a)

T '=p (1+II+v +2U)u'+pv'+O(p e ), (A15b)

T'1=po(1+ II+ v +2U)u'u J

where

and

+p[u'uj+(1 —2U)5v]+O(poe ),

po(x', t)d x'
=—f ~, U, kk= —

po
X X

~

(A15c)

(A16}

dx Q
U

dt go
' (A17)

We now turn our attention to t„~z and ( —g ), which are
both constituents of r ~. Thorne and Kovacs [30] have
carried out expansions of tLf and ( —g) in terms of the
potential h ~: i.e.,

( —g)=1 —h+ —,'[h —h ~h p]+O(h ),
tff =(16m) '[ ,'g ~qk„h "—hI'"„+rlk„g"~h p~" (rl rl„jYP—' h "~k+rl~ rl„p'"ph" k)

+ 8(2rt rl~" vp~rl "—)(2rl„prl, r) g„—}h "'kh ~ „]+O(h ) .

(A18)

(A19)

po+ 0(poe ),
r '=pov'+O(poe ),
r'J=O(pos ) .

(A20a)

(A20b)

(A20c)

Substituting these into Eq. (A5) we obtain the potentials

h =4U+O(E ),
h '=4V'+O(s )

h 'J=O(s~)

(A21a)

(A2lb)

(A21c)

Here V' is the standard post-Newtonian potential [31]
given by

Using these results we can see from Eq. (A4), that, to
lowest order,

I

By virtue of the gauge condition h ~ &=0 we see that

Uo+ V" „=0 . (A23)

Using these expressions for the potentials in Eq. (A19)
we obtain

re =( 7/8')U k Uk+0(pos—),
tLL —(

—1/n)U k V k+(1/m)U k V",

+(3/4~)U o U, +O(pop'),

&g„=(1/4n)(U, U ,'5'~U
k Uk)+O(—po—s~) .

(A24a)

(A24b)

(A24c)

Substituting Eqs. (A24), (A21), (A15), and (A18) into Eq.
(A4) we finally obtain the effective stress-energy pseu-
dotensor

po(x', t)u'd x'
(A22)

=po(1+II+v +6U)+( —7/8m)U k U k+O(pos ),
(A25a)
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+O(q,s') . (A25c)

We have freely raised and lowered the spatial indices
with the 6'~. We have also neglected contributions from
the term h ~„„in Eq. (A4). We argued earlier that these
contributions are the source of the hereditary part of the
radiation, which we are neglecting in this discussion.

Before proceeding to the multipole calculation, we
make one final comment about Eq. (A25a) —(A25c).
These expressions for ~ ~ are not the same as the expres-
sions obtained by EW [see the remarks following Eq.
(5.33) in Th80]. However, after some manipulation it can
be seen that

=rEw+( —I/4')(U ) I,i, ,

r '=rE'w+(1/2n)[(U I, V"),—(UV') 11, ],
r'J=rgw+(1/4m)[U; —5'"(U ) I,~] .

(A26a)

(A26b)

(A26c)

The quantities rE~~ in Eqs. (A26) denote the expressions
given by EW [EW, Eqs. (37)) for the effective stress-
energy pseudotensor. When the radiation multipoles are
computed using Eq. (A13), the additional terms in Eqs.
(A26) all produce terms with vanishing transverse-
traceless part; therefore, they will not contribute to the
radiation to the post-Newtonian order considered. It is
possible that this is representative of a more general
property of the effective stress-energy pseudotensor when
written with different definitions of the potentials (e.g. ,

our h" as opposed to EW's 8"'). See the discussion in

Popova and Petrov [32]. For the remainder of this paper
we use Eqs. (A25) for our effective stress-energy pseu-
dotensor, although these remarks show that had we used
EW's effective stress-energy pseudotensor there would be
no observable change in the resultant radiation mul-

tipoles.
Lincoln and Will [8] have used the Wagoner-Will [16]

wave forms, which were derived using the gauge of
Epstein-Wagoner, along with the Damour-Deruelle equa-
tions of motion, which are derived using de Donder
gauge, to study the nature of the radiation from a
coalescing binary system. The discussion above shows
that there is no formal inconsistency due to the different
gauges.

4. Compact object approximation

~"=z,(1+n+U'+6U)U'+I U' (1—/~) U „v' „
+ ( 1/n ) U ~ V";+ (3/4m ) U o U; +O(pos ), (A25b)

r' =pou'U +(1/4m)U;U +8' [p —(1/8m) UI, U „]

radiation of a binary system.
Wagoner and Will [16] have carried out a similar

point-mass calculation, but they terminated the approxi-
mation of r ~ at O(pos ). As we move to a higher-order
approximation, more care must be taken to avoid diver-
gent integrals and other meaningless quantities in the cal-
culation. In particular, this calculation includes terms of
O(poE ), and consequently the internal pressure will ex-
plicitly appear in the integrand of I'J" [see Eqs. (A25b)
and (A13b)]. From this it appears that the radiation
could depend on the internal equation of state of each
body, and not just on the "mass" of each body. Further-
more, examining Eq. (A13) and Eq. (A25) shows that
post-Newtonian corrections in ~ ~ will produce terms of
the form J poUd x in the multipole integrals (A

A
represents integration over the Ath body). These in-

tegrals can lead to an infinite self-interaction in the
point-mass limit, and thus require careful mass renormal-
ization. In fact, it is not immediately clear that these in-
tegrals are well defined at all ~ Although our treatment is
not as mathematically rigorous as Damour's derivation of
the equation of motion for point masses [7], we do care-
fully specify our point-mass approximation, and use virial
relations to eliminate the pressure from the integrand. In
the end, the wave form depends only on the "mass" of
objects.

In broad strokes, our "point-mass" approximation is as
follows: We first assume that the separation between bo-
dies is large compared to the dimensions of the individual
bodies, but we do not assume that the bodies are
mathematical "points"; i.e., we never define the particles
as Dirac delta functions. This means that we ignore tidal
interactions between the bodies; as a consequence we can
treat the body as static and spherical, as seen in a suitable
comoving reference frame. This allows us to integrate
over the material source in the usual way. This, in turn,
allows us to use well-defined integral virial relations to re-
move the pressure, and the post-Newtonian definition of
the mass absorbs the self-interaction terms. Only after
we have integrated over the material source do we for-
mally shrink the body dimensions to negligible size to
perform the integrations over the external fields. In the
end, the final expressions for the radiation multipoles de-
pend only on the "mass" of the objects; all the depen-
dence on the internal structure having been either elim-
inated or absorbed in the definition of the mass.

We begin our forrnal treatment of the point-mass limit

by defining the conserved effective mass, center-of-mass
world line, and the velocity of the Ath body. Following
Will (Ref. [31],p. 146), and assuming static structure, we

can write

In Secs. A1 —A3 we found expressions for the radia-
tion multipoles in terms of integrals of the effective
stress-energy tensor of a perfect fluid source. Our only
assumption about the configuration of the material
source was that it had finite extent. Now, in order to
evaluate the multipole integrals explicitly [Eq. (A25)
with Eq. (A13)], we further assume that the matter con-
sists of X static, spherically symmetric, perfect fluid
"point" masses. We will later set N=2 to work out the

m~ = p* 1+0—
—,'U~ d x,

x„—= Z*(1+n—,' U„)xd'x,1

mg A

dxg
Vg= =V

dt

where

(A27)

(A28)

(A29)
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U~=f, d x',po(x', t }

and p* is the "conserved" energy density, given by

(A30)
(Ig ) = fp [1+II+,'v——'U—+O(p E )]x'xjd x~ .

(A39)

p' =po( 1+—,
' v +3 U ) +0 (pos ) . (A31)

Equation (A29) shows that by assuming static structure
the Quid velocity is constant over the body. This allows
us to pull the velocity out of the integrand.

Assuming the bodies are small compared to the separa-
tion distance also simplifies our expression for the poten-
tial

The region of integration extends over all space, but the
integrand vanishes except on the interior of the bodies.
This allows us to rewrite Eq. (A38) as

(Ig~)TT= g f [p*(1+II——,
' U„)+—,'p*u

A

—
—,'p'(U —Uz)+O(pos )]x'x~d XTT .

(A40)

(A32)

Since po vanishes outside the bodies we can write the po-
tential

N pu(x', t) N

U=Uq+ g f, d x'=U„+ g U~, (A33)
BXA BRA

where we have singled out a generic body A. Assuming
the separation is large compared to the dimensions of
body A, the second term in Eq. (A33) can be approxi-
mated for field points within A by its value at the center
of A, i.e.,

The term (U —U„) is just the potential at body A pro-
duced by the other bodies. Assuming that body A is
small compared to the separation we approximate this by
Eq. (A34). Using spherical symmetry and Eq. (Bl), the
product x'x slips out of the integrand as x Ax JA. Finally,
using Eq. (A27) and Eq. (A29} we have

N„1+—u„' ——y (m, yr»)+O(s')
A BPA

(A41)

mB
U(x)=U„(x)+ g (xEA),

BPA AB

where

(A34)

(A35)

This result has been obtained by Wagoner and Will [16].
Later in this section we specialize this result to the two-
body case.

We now turn to the more formidable three-index mul-

tipole Ittw Eq. (A13b):

X
V'= u „' U„+ g u~ Uz .

BAA
(A36)

If the field point is inside the body A, Eq. (A36) can be
written

N . mBV'(x)=u„'U„(x)+ g u~ (x&A) .
~AB

(A37)

Using the formulas above, we now explicitly carry out
the multipole integrations. Substituting Eq. (A25a) into
Eq. (A13a), we now write

(Igw )TT= f [po(1+II+v +6U)

—(7/8m)U „U „+O(pos )]x'xjd XTT .

(A38)

Integrating by parts and then using Eq. (A31) and Eq.
(A16) and neglecting terms with vanishing transverse-
traceless part we obtain

By looking at the definition of the mass Eq. (A27), it is
clear that irrelevant terms of O(s ) have been omitted
from Eq. (A34).

Using Eq. (A29) and the same arguments as above we
can also find similar expressions for the post-Newtonian
potential V':

(Ig~~) = f (r 'x x "+r x'x"—r "x'x )d x . (A42)

Wagoner and Will [16] evaluated this term only to lowest
post-Newtonian order, obtaining the P, &2 contribution
the wave form in Eq. (1.1); here we carry the computa-
tion to the next order, to obtain part of the P3/2 contribu-
tion to the wave form. In Eq. (A42) the transverse-
traceless operator (TT) contracts only with the indices i
and j; i.e., it will always be understood that there is a
contraction of the index k with the unit-vector com-
ponents n . To eliminate unnecessary manipulation of
unwieldy expressions, we only work with one of the three
permutations of ij k in Eq. (A42), i.e.,

(Igw)TT=f 1 X X d XTr (A43)

After we find (I t(w)Tr we will permute the indices and
reassemble Eq. (A42). The three relationships in Eq. (2.4)
are sufBcient to show that if a term has vanishing
transverse-traceless part and is dropped in this permuta-
tion, then it will also have vanishing transverse-traceless
part in the other two permutations of ijk that make up
Eq. (A42}.

Substituting Eq. (A25b) for r ', integrating by parts, us-
ing Eq. (A31) for p*, and dropping terms with vanishing
transverse-traceless part and terms of O(pos ) we have



1534 ALAN G. WISEMAN

(I gw)TT= f [[p*(1+A+—,'u + U)u'+pu'

—2p* V' —(1/4') U „,V"]x'x '

+(3/4')U, (V'x + V'x')]d xTT .

(A44)

N

(I M&ks)»
——y f I [p*(1+@+,'u-'+U)+p]u x&x'

—[2p' V'x 'x "]—[ ( 1/4m. ) U „,V"x'x ]

+ [(3/4~) U;( V'x "+V"x')] ]d'x TT,

(A46)

In accordance with our point-mass approximation we
separate the region of integration into two regions: the
material source (MS), and the free space (FS) outside the
material source. The terms proportional to p* will not
contribute to the free space integral. We write Eq. (A44)
as

and

(I Pg)TT= f [[(—1/4')U „; V"x'x ]
FS

+[(3/4')U;( V'x '+ V"x')]]d xTT .

(A47)

where

EW)TT (I MS)TT+( FS)TT &
(A45)

The first two set of square brackets in Eq. (A46) can be
treated using the same techniques that were used in theI' calculation. The third [ ] is more subtle. Using Eqs.
(A34) and (A37) we expand

N N N

g f U„;V"x&x d'xTT= g u„" f U„„;U„x'x"d x+ g u&&(m»/r„») f U„„,x&x d'x
A B~A A

N

+ g v„"(mc/r„c) „,f U„x&x d'x
C~~ A

A

N N

+ g g u&&(m»/r„»)(mc/r„c) „,f x'x d'x
8-t'- A C &- A . TT

(A48)

The third and the fourth integral in Eq. (A48) vanish as the volume of body 3 shrinks (point mass limit). By spherical
symmetry of body 3 we can write

U„„,= 4npon „"—n „' + r z
' U„„(5"'—3n „" n „' ), (A49)

where n A and r A are a unit vector and the distance from the center of body A to a point in body A. Only the first term
in Eq. (A49) survives in the first and second integrals in Eq. (A48) and the result is similar to ones treated in the I)w
case. The fourth [ ] in Eq. (A46) is easily shown to vanish in the point-mass limit, by splitting up the potential, as in

Eq. (A48). We now collect the result

(I Ms)TT= g mzvzx" xz 1+—vz+ g (m /rz&&)
A BXA

N——g mgu&ixgxg(m&ilr„&, )+u„'x'„x„' ——f p*U„d'x+ f pd'x
BWA 6 A A

(A50)

Note that the integrals in the last term exactly cancel by the virial theorem (see Ref. [31],pp. 148 and 245).

Using Eqs. (A34) and (A37) we split up the free-space portion of the integral

(I ps)TT= g u„" f U„„,Ux&xd'x+ g v&i f U„„,U&x&xd x

N

+ u'„ f U„, U~x
"d x+ g vs f U„

47T Fs B~ Fs

+ u„ f U„, U~x'd x+ g vz f U„, Usx&d s
4~ ' Fs " '

B~A Fs
(A51)

AII of the 3-combined-with-A terms vanish by spherical symmetry and transverse-traceless arguments. The remaining

integrals are treated in Appendix B. Assembling I '~ from the results above we have
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(I Pw)TT=(I Ms)TT+(I Ps)TT

N 1
N 5 N

mAvAxAxA 1+—uA+ g (m /rAB) ——g mAVB'XAXA(mB/rAB)
A BWA BWA

X VB&A'k'+ X [vk&AB+VB&AB]
B&A BW A TT

(A52)

where the Q s are defined in Appendix B. Shortly we will give a more explicit formula, where we have specialized to the
binary case.

The evaluation of the other multipoles Igw' and Ig~k™[Eqs. (A13c) and (A13d)] is tedious, but routine. Both are at
least of order s, and therefore the post-Newtonian self-interaction that plagued Igw and Igw will not affect these
terms. The messy details are carried out in Appendix B. After contraction with the normal vectors the results are

N 1 1
N

(Igw)TT= gmAx„'x„ 1+ 2uA
—

2 g mB/r„B
A BWA .TT

( kIgk ) ( kIgk+ kIgk kIky)
N

1
N N rABrAB ( AB ) (xA

(n "n'Igw')TT= pm„vAvA(n x„) — g g mAmB 1 —
2

+
A A BRA "AB rAB TT

N

(n n n Ip~™)TT= ~ g mA VAVA(ll'XA )
3 dt

(A53a)

(A53b)

(A53c)

N N rABrA——ggm„mB
A BAA

3(xA 'n} (rAB 'n)+2(xA 'n}(r AB 'n)
+(x„n}

fAB

(A53d)

5. Two-body KW multiyoles

These multipole expressions can be reduced to the two-body case in exactly the same way the STF multipoles in Sec.
II were handled:

(Ikw }TT=p ' 1+ u '(x'x')TT1 —3g 2 1 —2g m

2 2 f (A54a)

(n Igw )TT=p —[(n r)(v'x'+ v'x') —(n.v)x'x']+ — v-6m;;; . 1 —5q 2 12g+7 m
(n r)(v'x'+V~X')

m 2 6 r

1 —52) 122)+17 m + 1 —6ri m (n r) .
(A54b)

(n n Ig ) =p (1—3')(n r) u'vj ———1+2(1—3ll) x'xj .k 1 i'kl 1 m (n r)
W TT 6 r 7

TT
(A54c)

(n n n Igw )TT=p ———[(1—22))(n-r) u'vj]+k 1 m i klm 1

m dt 3 12
1+(1—22)) —n.rx'x 1(nr) m

r2

=p —(1—22))(n r) (n v)v'vj+ 1+5(1—2ll) (n r)(u'XJ+vjx—')6m 1 (n r) m

m 12 r 2 f

2

+ 1+3(1—2ll)
r

n-r . m(n.v}— r —x'x~ .
r r

(A54d)

In Eq. (A54d) we have explicitly carried out the time differentiation, and used the Newtonian equation of motion to
eliminate the accelerations.

These expressions for the multipoles can now be substituted into Eq. (A12). When the time derivatives produce an
acceleration, we substitute the DD equations of motion to the necessary order. The result checks with the wave form
given by Eq. (3.8).
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As another check of the considerable manipulation that went into constructing the wave form (in either formalism},
we can use the projection integrals given in Th80 [Th80, Eqs. (4.11a) and (4.11b)]. If the wave form is known [i.e., we
substitute the EW multipoles Eqs. (A54) into Eq. (A12)], time derivatives of the radiation mass multipoles can be pro-
jected out by integrating over the sphere:

STF
a~

. a m(m —1}(2m+1)!!R ( a&a2 a3 a

2(m+ l)(m+2) 4m " (A55a)

Similarly for the radiation current multipoles,

ai a (m —1)(2m+1)!! R f a~jk ka2 a3 a

4(m +2) 4n".
STF

(A55b)

Performing these projections gives Eqs. (3.6) and Eqs. (3.7). Notice that the time derivatives on the left-hand side of the
projection equations, Eqs. (A55), are not present in the results Eqs. (3.6) and Eqs. (3.7). Some of the time derivatives
"canceled" with time derivatives inherent in the expression of the wave form [see Eqs. (A12) and (A13)]. The remaining
time derivatives can be eliminated by simple time integrations. Although Blanchet and Damour [12] showed that the
Epstein-Wagoner formalism is equivalent (in a nonrigorous sense), the fact that the wave form can be derived by the
two different techniques gives us theoretical and clerical confidence in Eqs. (3.8).

APPENDIX B: EVALUATION OF FIELD INTEGRALS

In this appendix we present some of the mathematical
details involved in doing the field integrals in Appendix
A.

Variations of the following simple trick are useful
when we encounter integrals of the form

(&") =f f( „) ' 'd'

and

UB=
rB

Ug, ah=, (3&gng —&"),
rA

(B3)

(B4)

Here, the region of the integration is the spherically sym-
metric body A, and rA is the radial distance from the
center of body A at x A to the field point within body A.
Using x'=x

A + r A, we have

(A' )T&= xzxz f f(r„)d rz+xz f f(rz )rzd rz
A A

+xjg f f(rg)rgd rg

+f f(r&)r&r&d'r& '

A . TT

The second and third integrals vanish by spherical sym-
metry. Also by spherical symmetry, the fourth integral is
proportional to 5;, and thus has vanishing transverse-
traceless part [see Eq. (2.4)]. We are left with

)TT (xAxg }Trf f(rg )d
A

(B1)

gab«= f U

where

(B2)

In essence the spherical symmetry of A and the
transverse-traceless operator allow us to slip x'x~ out of
the integral. This trick is easily generalized to more in-
dices. It also works when the region of integration is out-
side the spherically symmetric body A.

Also in Appendix A we encountered integrals of the
form

The region of integration is the entire exterior of the ma-
terial source. Recall that x is the position of the field
point relative to the origin, x A is the position of body A

relative to the origin, r A is the position of the field point
relative body A, and rB„ is the vector from body A to
body B; n „ is formed in the usual way, n „—= r „/~ r „~,
likewise for ns„and n. Equation (B2) can be expanded
using x=xA+r„. That is

g„'" =f U„,bU&r~r~d r~+xz f U~,bU&r„'d r~

+xA UA, b UBrAd rA+xAxA UA, b UBd rc d 3 c 3

(B5}

Because the individual pieces of Eq. (B5) are useful by
themselves, we give each its own identification by

~abed Fabcd+xd Fabc+xc Fabd+xc xd Fab
&AB AB XA AB XA AB A A AB (B6)

The identification of each F in Eq. (B6) with the corre-
sponding integral in Eq. (B5) is clear.

There are several techniques for performing the in-
tegrations in Eq. (B5). Using a spherical-harmonic ex-
pansion of the potentials is one way. A simpler technique
is to write down the general form of the result and solve
for the coefficients. For example, the integral FAB has

only two indices and is symmetric; therefore, it must take
the form
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CXI1 AB11AB +P5 (87)

Choosing a particular coordinate system (allowing nBA to
determine the z axis is the simplest choice), and explicitly

I

carrying out the integral for two distinct choices of the
indices (a, b ) gives the coefficients a and P. For the other
F 's, which have more indices, the ansatz corresponding
to Eq. (87) is a bit more complicated, but the technique is
the same. After considerable manipulation we find

a b c d c d a b™AB AB AB AB AB b AB AB d AB ABFabed r'2 —25' +5'AB r4 2 2

rb d r r r' r r rAB AB +~ad AB AB +abc AB AB +bbd AB AB

2 2 r2 2

77m A 7tlB 7Tm A mB
(

( 1 8R (I) )gabgcd~ a
( 1 3R (i) )(bacsbd+gadbbc)0 0 (88a)

amAmBFabc
3

3
ra rb rc rc rb ra

AB AB AB +35ab AB 3~ac . AB

r r r r
(88b)

a b
ab
™A mB 1 rABrABFab

AB
—' 6 —25' (88c)

The terms in the ansatz solution will have only odd num-
bers of unit vector components in them, i.e.,

FAB &)1ABnAB)1ABnABr)AB+P&AB)1ABnABb + ' ' 'a bede a b c d e a b c de

(811)
The fact that nAB = —

nBA immediately gives the only
property of FAB

' that is needed in the calculation. That
1S

g g F„'B '=0 for all abcde . (812)
A BWA

The final integral we examine appears in the debris of
the integration by parts in Appendix A in Eq. (A51). The
integration can be done by the technique outlined above.
The result is

Q„B—= UA, UBr d rab b 3

77m AmB b(2rABxA rABxA )
rA

+ (1—4R 'i' }5'" .0 (813)

In Eqs. (88) r denotes r AB
= ir AB i. Fortunately, when us-

ing these results most of the terms involving Kronecker
deltas have vanishing transverse-traceless part [see Eq.
(2.4)]. The quantity Ro' that appears in Eq. (88a)
represents a divergent integral

1
drA, r =max[rA, rAB] . (89)

r 0 r

This quantity has no physical relevance because it always
appears in terms that have vanishing transverse-traceless
part. The results Eqs. (88a)—(88c) can easily be reassem-
bled using Eq. (85) to find Q„'B .

In computing the moment I' "' a five-index integral of
the form treated above appears:

FAB '= UA, b UBr,'rArA rA . (810}

I

Here again the region of integration is the exterior of the
material source. The quantity R0" represents the same
infinite quantity as above, and once again it only appears
in quantities that have vanishing transverse-traceless
part.

There is one other property of Q„'B which is useful.
Using the fact that r AB =X

A
—xB it is easy to show that

the first term in Eq. (813) sums to zero when summed
over the body labels. That is

77m A mB (2r'„Bx„r'„Bx„)=0for—all ab .XX
rAB

(814)

Using the field integral above we now briefly outline
the evaluation of Igw' [Eqs. (A13c) and (A25c)], and Ig~k™
[Eqs. (A13d) and (A25d)]:

Ig"=—f 'x'x'd'x= fp, v'vjx "x'd'x

+ fU U x"x'dx1

4~

+[TT=O] . (815)

The notation [TT=O] represents terms with vanishing
transverse-traceless part that have been omitted. This
term is already 0(e ); and therefore, post-Newtonian
subtleties in the definition of the mass, which plagued the
calculation of Igw and Igw, are irrelevant. This makes
the first integral in Eq. (815) trivial. After integrating the
second term by parts, the self-interaction terms are elim-
inated by arguments similar to those used in Appendix A.
The debris from the integration by parts is easily shown
to have vanishing transverse-traceless part. We are left
with
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i j k IIgw= gmgugvgxgxq — g g f U;7Ux "x d x+[TT=O]
4~

A A~B

i j k I= g mzuzvzxzx„— g g [Fzs+x„'Fzs+x&F&z+xzx&F&z]+[TT=O] .
4~

A A~B

In the second step we have used Eqs. (82), (85), and (86). Explicit expressions for the F s are given in Eqs. (88c).
Finally we examine Igw™[Eqs. (A13d) and (A25d)],

Igw = r~x x x d xi 'klm —1 d ''
k I m 3

3 dt

pou'vjx "x'x d x — U;U xkx'x d'x+[TT=O]
3 dt 477

(816)

(817)

Using the same arguments as in the Ig~w' case we have

Ew
=——Xm~u~"~x~x~x7 — X g f U;, Ux,

"x'x d'x+ITT=O] ~

1 d k I i'k

3 dt A A A A a A 4
m O' U~ X X X Fij lm+x mFijkl+& I Fijkm+ k Fijlm+ m I Fijk

AB A AB A AB XA AB +A+A AB
A BWA

xgxgFgtt xgxgFgs+xgxgxgFgs ] + [TT=O] (818)

The term F'~"' sums to zero by Eq. (812). In the second step of Eq. (818) we have used Eqs. (82), (85), and (86). Ex-
plicit expressions for the F 's are given in Eqs. (88).
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