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Lorentzian wormholes in higher-derivative gravity and the weak energy condition
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The possibility of the existence of a traversible wormhole solution which does not break the weak en-

ergy condition is examined in a higher-derivative theory of gravity. No such solution is found, suggest-

ing that a Lorentzian wormhole without the violation of the weak energy condition is incompatible with

a wide class of gravitational theories. We show this in two simple examples of spherically symmetric

wormhole solutions.

PACS number(s): 04.20.Me

I. INTRODUCTION

Recently special classical solutions, called wormholes,
of the Euclidean Einstein equation have attracted a great
deal of attention of many authors both in quantum gravi-
ty and in quantum cosmology. Several types of such
solutions are found [I]. The most important effect of this
wormhole is quantum tunneling among disconnected
universes if there exist many universes other than our
Universe. And this interaction among universes via
wormholes brings a significant effect on our world, the
determination of the fundamental parameters of the
theory (the cosmological constant, etc.) [2].

On the other hand, Lorentzian metric wormhole solu-
tions also attract many authors since they bring the possi-
bility of constructing a time machine [3]by which we can
travel to our past. However causality would be violated
as a result. The configuration of this wormhole is a com-
pact S tube connecting two asymptotically flat spaces.
Such a wormhole is called traversible. However, we can-
not find such solutions in the Einstein equation satisfying
the weak energy condition (WEC) because the wormhole
throat is sustained by exotic matter whose energy density
is negative. In order to expand the wormhole radius
along the radial direction, the derivative of the S radius
with respect to the coordinate I must be positive near the
throat. On the other hand, since this derivative is pro-
portional to —(the energy-momentum tensor on radially
directed null geodesic) = —(T&+ T~), the wormhole col-
lapses to a zero radius as long as the energy-momentum
tensor of the matter field is positive. In order to find a
wormhole solution which does not violate the WEC, we
must introduce something new which could provide ei-
ther an effective, negative-energy density or an equivalent
effect in the Einstein equation. Such an example is the
Casimir efFect, the quantum efFect of the nongravitational
fields, which has been examined in Ref. [3]. But it re-
quires too small of a distance between the two conducting
S plates and it is not realistic as a rnatter of fact.

There is another possible candidate which could pro-
vide a traversible wormhole solution. If the radius of the

wormhole throat is very small, the curvature is very large
near the throat. Then the terms of higher powers of cur-
vature, if they exist in the field equation, would be essen-
tial near the throat. So it is worthwhile studying whether
or not a theory containing higher-curvature terms can
provide a wormhole satisfying the %'EC.

An interesting approach to the construction of a
traversible wormhole has been performed in terms of the
surgery and junction conditions [4]. In this approach, 5-
function singularities appear in the Einstein equation. If
we apply this approach to a gravitational theory contain-
ing terms such as the nth power R" of the scalar curva-
ture for some n +2, higher powers of the 5 function
would appear in the field equation. So, it seems that this
approach is not applicable to a theory containing R"
terms. However, Hochberg [5] has applied this method
to a higher curvature theory by rewriting it to Einstein
gravity with a normal scalar field in terms of the confor-
mal transformation g„,=0 (R)g„,. But this approach is
not valid in the case where the conformal factor 0 (R) is
negative or its inverse transformation is nonanalytic. As
seen later, the case of 0 (R) negative is interesting in
higher curvature gravity, because it is known that the ta-
chyonic scalar mode of the metric fluctuation appears in
the flat-space limit. This situation is similar to Einstein
gravity with exotic matter. Then we can expect an ap-
pearance of a term which corresponds to the negative-
energy density. It is therefore interesting to study this
ease if the existence of this mode is justified in the theory.
So we study higher curvature theories directly without
performing any transformation from the original one to
another.

The purpose of this paper is to find a traversible
wormhole solution, which is compatible with the WEC,
in a higher curvature theory. In Sec. II we briefly review
the incompatibility of a Lorentzian wormhole solution
with the WEC in the case of the usual Einstein gravity.
In Sec. III the possibility of the existence of a wormhole
solution which does not break the WEC is examined in a
higher curvature theory of gravity. The conclusion and
discussions are given in the final section.
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II. EINSTEIN GRAVITY AND
WEAK ENERGY CONDITION

8'Tpv =R pv 2 Rgpv (2.2)

S =pi (tp)

Fp

Here we briefly review that spherically symmetric,
Lorentzian wormhole solutions in Einstein gravity are
not compatible with the WEC.

The spherically symmetric wormhole %' is a space-
tirne represented by the coordinate ( t, 1, 8,P ) with
—~ &t & ~, —~ &1& m, 0&8&~, and 0&/&2m. ,
and whose metric is

ds =g«dt +2g«dt dl+dl +r (d8 +sin28dg2),

(2.1)

where g«, g,I, r are function on t, l with g«&0 and r &0.
We also assume that 'N is (i) geodesically complete and
(ii) asymptotically flat; that is, (i) every geodesic can be
extended to arbitrary values of its aSne parameter and
(ii) any component of the Riemannian tensors with
respect to an orthonormal basis for the tangent space
over % converges to zero as 1~+~. In particular, the
asymptotic flatness implies that, for any t, r (t, 1)~ ao as
t —++ OO.

Let p, : ')V~R and pz. "}V~Rbe the projections to the
t factor and the l factor, respectively. For a fixed to, the
to-sliced hypersurface or the to slice in )V is written as
S=p, '(to). For each 1, F&=SAp2 '(I) is a spacelike
two-sphere. Since r(tv, l)~ ~ as l~kao, the function
r (tu, 1) on 1 has the minimal value. We may assume that
bo=r(t0, 0)&r(to, l) for all l. Then Fv is called the
wormlike throat in S of radius bo. (See Fig. 1.) We say
that the energy-momentum tensor T„„on "lV satisfies the
WEC if T„,V"V"&0 for any non-spacelike vector V".
Morris, Thorne, and Yurtsever [3] showed that T„„on
any spherically symmetric, asymptotically flat wormhole
satisfying the Einstein equation,

violates the WEC. If T„satisfies the Einstein equation
(2.2), then for any null vector E",
8~T„„K"K =R„vK"K . Therefore, if the WEC is
satisfied, we have the inequality

R„K"K ~0 . (2.3)

The following proposition (the wormhole version of the
Hawking-Penrose theorem [6]) implies a statement given
in Ref. [3].

Proposition 1. With the notation as above, the inequal-
ity (2.3) does not hold somewhere in )V. In particular,
the energy-momentum tensor T„violates the WEC.

Here we shall give a sketch of the proof, which will be
helpful for the reader to understand why the WEC is not
compatible with the Einstein equation on ")V.

Sketch of Proof. Contrarily, suppose that (2.3) is
satisfied everywhere in %'. For a fixed to, let S be the to-
sliced hypersurface. We set r (t ol) = ro(l). Since
ro(l) ~ co as 1 ~ —~, for some s (0,

dro

dl
(2.4)

At any point p of F, =SAp2 '(s), let y(v) be the future-

directed null geodesic in %' with an aIIine parameter such
that (i) y(0)=p, (ii) N 8/88=N 8/B$=0, and (iii}
N i}/Bl )0, where N=N(u) are the vectors tangent to
y(v) for all v ~ 0. We may assume that g« =0 along y(v),
that is, the t coordinate of ')V is chosen so that 8/Bt is or-
thogonal to t slices at any point of y( v }. Then N is
represented as

i a aN=P ——+
a Bt Bl

(2.&)

where g„ is the null second fundamental tensor with

respect to N, see Ref. [7], Sec. 4.4. By the definition of
(2.5)

where a=[—g«(y(v))]'~ and P=P(u) is a positive func-
tion. The volume expansion 8=y„@""on y(v) is defined

by

18= ~VeN'e+
2 q

V t,N~, —
r r sin0

\

r

r

P2

2P r0= +r
r a

(2.6)

where r=dr/dt and r'=dr/dl. We may assume that
r &0 at 7, . Then, by (2.4), 8&0 at F„ that is, F, is an
outer trapped surface. (In the case where r &0 at F„we
can complete the proof by the parallel argument except
reversing the time direction. ) By the Raychaudhuri equa-
tion (Ref. [7], proposition 4.4.4) and (2.3), the function
8(u)=8(y(v)} satisfies

0= —R X"X —2& ——0 ~ ——0
dU 2 2

(2.7)

FIG. 1. The projection p, from the to slice S=p, '(to) of 'N

to the I factor.

where o is the function defined in Ref. [7], Sec. 4.2. Since
c =8(0) & 0, by (2.7), the value of 8(v) takes —~ at some
u =uo in 0(vo& —2/c. By (2.6} r(y(uo)) is zero. This
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R„„K"K'&2co(RR„„V„V—Q )K'"K" . (2.8)

If the inequality (2.8) holds and if the right-hand side
(RHS) of (2.8) is non-negative, then the inequality (2.3)
holds. This contradicts proposition 1. Therefore, if the
RHS of (2.8) is positive, the inequality (2.8) does not hold.
Then the wormhole solution 'lV violates WEC. But, in
general, the RHS of (2.8) is negative somewhere. Such an
example will be given in Sec. III; see Fig. 4. Thus, in the
higher derivative case, we need other arguments to study
the compatibility of the field equation with the WEC.

It should be noticed here that the violation of the WEC
on "lV can be proved by (2.7) even in the case when the
RHS of (2.8) is negative if its absolute value is small
enough. If we assume —[ the RHS of (2.8)] &

—,'e of some
positive e with e& ~8(0)~, then we can show that the
value of 8(v) takes —ao at some finite v. This means that
if ~co~ is sufficiently small, we cannot have any wormhole
solutions, and the higher curvature terms do not play any
important role in the field equation.

III. HIGHER DERIVATIVE GRAVITY AND WEC

In order to study the case including higher derivative
terms, we consider a concrete form of wormholes. Let "lV

be a static, spherically symmetric wormhole whose throat
radius is bp( &0) and having the metric (Ref. [8], Sec.
III.A)

dp
ds = edt + +—r (d8 +sin 8dg ),

1 blr— (3.1)

where 4=4(r) and b =b(r) are smooth functions
defined in bp & r & ao such that 0 & b Ir & 1 and the equal-
ity blr=1 holds if and only if r =bp. We require that
the wormhole is asymptotically flat, that is, both 4 and
b Ir converge to 0 as r ~~ (Ref. [8], Sec. III.B4). Note
that the metric (3.1) represents half ')V+ of )V, and )V is
the union of ')V+ and its mirror image )V along the
throat at r =bp. According to Ref. [8] in Sec. III.C3, if
we use the l coordinate defined by

I(r) =+
bo v'1 bIr—

instead of the r coordinate, then the metric on 'N is
represented by the form as in (2.1). It is easily checked
that for all positive integer n, there exist both the limits

r
lim

+o dl"

contradicts that r(t, l)&0 everywhere in ')V. Therefore
the inequality (2.3) does not hold somewhere in ')V.

In this proof, the inequality (2.3) is used essentially.
But, in a higher derivative gravity, the inequality derived
from the WEC is not as crucial as (2.3). For example, if
the gravitational Lagrangian is given by
LG =v' —g (R —coR ), then by the field equation (3.11) in
Sec. III, we have, for any null vector E",

8mT„,K"K"=[(1 2co—R)R„,+2c0V„VQ)K"K

Therefore the WEC implies only

and

d r
lim

i —p di"

where f (R) is a function of the scalar curvature R and
LM represents the matter Lagrangian. In order to avoid
the problem of unitarity, we do not consider the higher
derivative term R„„R, which induces the massive
ghost. From the above Lagrangian, the following field
equation is obtained:

8~T„„=f'(R )R„„,' f (r)g„„——f"(R)( V„—VQ ORg„„—)

f'"(R)(V„—RVQ VRV Rg—„), (3.2)

where 0=—g"'V„V„and f '(R)=df IdR, etc.
First we show that, if f'(R)&0 and f'(0)%0, the

wormhole solution is not compatible with the WEC.
Then, in fact, the theory given by the above Lagrangian
is equivalent to Einstein gravity with an additional scalar
field.

Proposition 2. With the notation as above, if f (R ) & 0
everywhere in '}V and f'(0)%0, then the energy-
momentum tensor T„„satisfying (3.2) violates the WEC.

Proof. Since f'(R)&0, we can rewrite Eq. (3.2) in
terms of the conformal transformation [5],
g„=Q (R)g„„,
Q2(R) =f'(R) & 0,

(3.3)

(3 4)

as

p. = HVi &V.& 2gi VA'V'4 g„.I'(0)]+—8~T„. ,

(3.5)

T„,=Q (R)T„„, (3.6)

P=v'3 lnf'(R), (3.7)
where Gp. =Rp. —21gp.R. Since %' is asymptotically
fiat, g„„is well approximated by f'(0)g in a region far
from the throat. So the wormhole 'N with underlying
space 'N and with metric g„„ is also asymptotically flat.
We set t„=G„—8mT„. Then, by (3.5), for any null
vector E",

t Ki'K"= '(V„PKi')'&0 . —

and they are equal to each other. Therefore r =r(l) is a
smooth function in —ao & l ( ao, and hence, in particu-
lar, "lV is a smooth wormhole. Any singularity such as a
5 function does not appear in the energy-momentum ten-
sor near the wormhole throat.

Since the wormhole ')V is static, it might be possible to
make a time machine. Since the wormhole solution
breaks the WEC as shown above, such a time machine
cannot be stabilized without exotic matter in the Einstein
equation (2.2). So we extend here the theory by adding
higher curvature terms to the Einstein action, and study
in the following whether the WEC can be satisfied.

Throughout this section, we shall use the same nota-
tion as in Ref. [8], and the Lagrangian is given as

L ='I gf (R—)+L~
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If the WEC on %' were satisfied, then, by (3.6)

T„„K"K'=fI (R ) T„„K"K")0 .

In particular, by (3.5), we would have

R E"K =G K"E
fLV PV

=(t„,+8irT„)K"K )0 . (3.8)

Proposition 1 in Sec. II implies that the wormhole solu-
tion 'N does not satisfy the inequality (3.8) corresponding
to (2.3) for %'. This gives a contradiction. Thus T„„on
'N must violate the WEC.

Here we suppose that

f (R) =R —d (3.9)

where the gravitational constant, the coeScient of R in
Eq. (3.9), is taken to be the unity; hence, f'(0) = 1, and cu

is an arbitrary constant. The dimensional quantity would
be measured by bp hereafter. Then the theory is given by
the Lagrangian

L =v' —g (R —coR )+LM . (3.10)

F00 .

In this case, f'(R) =1—2~R could be negative near the
throat, so we cannot apply the above argument. Further-
more, it is well known that the theory (3.10) with co) 0
contains the tachyonic scalar mode in the fluctuations of
the metric around the Hat space, so the asymptotically
Rat background metric on 'N is unstable against this fluc-
tuation. To avoid that this metric is destabilized by such
a fluctuation, we must modify the theory so that the field

equation is effectively equivalent to that induced from
v' —g (R —co'R ) for some co' )0. Such a modified
theory can be obtained by adding the loop corrections
(L„, ) of conformally invariant matter fields to the origi-
nal Lagrangian (3.10) as follows [9]:

L,~=v' —g (R —coR )+L~+L),

From this effective Lagrangian L,ff we obtain the field

equation which has the same form with (3.11) except that
~ is replaced by

Then the field equation (3.2) is represented as

8vrT„, =R„, ,'g„„R+—2c—o[V„VQ—RR„

+(R /4 —HR)g„„] . (3.11)

Since lH is asymptotically flat, ~R~ is very small in a re-
gion far from the throat. Therefore f'(R)=1 —2coR is
positive in this region. On the other hand, R is positive
and very large near the throat since the throat radius is
expected to be very small. Therefore, if co &0, 1 —2~R is
positive also near the throat. So, by proposition 2, in the
case of co(0, the energy-momentum tensor (3.2) violates
the WEC. This means that, if the wormhole solution
(3.11) is compatible with the WEC, then co must be posi-
tive.

Throughout the remainder of this section, we assume
that

co' =co+gN; y'/96vr

where N; (y') represents the number (the calculable con-
stant) of the ith loop-corrected matter field. Since L~,
comes from the matter which is coupled in the confor-
mally invariant way to the gravity, it does not produce
any undesirable scalar-fluctuation mode of the metric
field. So we consider hereafter the theory given by L,ff
and drop the prime of the modified co for simplicity.
The value of the modified co depends on the spin y' and
the number N; of the matter fields in I.~„. Except for
the case of conformally flat metrics, the loop corrections
bring in general new terms to the equation of motion.
We add these terms to the original energy-momentum
tensor. From now on, we regard this added one as the
energy-momentum tensor and consider the case of
modified co) 0.

Since the conformally transformed equation cannot be
used for positive co, we must use Eq. (3.11) directly to
study the compatibility of the wormhole solution (3.1)
with the WEC.

The dependence on bp, which is the typical dimension-
ful parameter in our formulation in Eq. (3.11), is seen as
follows by replacing r by rbp ~ After the replacement, r
has no dimension and represents the radius with the scale
of the unit bp. Since the Einstein term is proportional to
b p and the R term is proportional to b p, the R term
could exceed the Einstein term if co/bp & 1. This can be
realized for su%ciently small bp even if co is very small.
For simplicity, we take bp = 1 hereafter. Then the magni-
tude of bp can be estimated by the value of m. So a large
value of co means a small value of bp and vice versa.

Let e-, , e~, e&, e& be the orthonormal basis for the
tangent space over % defined as follows:

e-=e ~—,e =i/I —a
Bt

' Br
'

es=r, e&=(r sin(9)

a'
R

a' a
R —=R —= -+—,

2r

where a'=da/dr. The scalar curvature and its first and
second derivatives on r are

2Q 2Q , 2Q

r r2
4a
r

2Q

r

2a" 4a' 12a
r3 r42

where we set a =b/r.
It can be shown that the energy-momentum tensor T„

is diagonal with respect to this basis. So it is a tensor of
type I (see Ref. [7], Sec. 4.3). Therefore the energy-
momentum tensor satisfies the WEC if and only if

&+ T~ 0, and T&+ T&z
= T&+ T&& 0. We

denote by E-, , E~, E the Einstein terms in 8m T&,
8ir( T&+ T~ ), 8ir( T& + Tsz ), respectively

First we consider the case where 4 is a constant func-
tion. Then the nonzero components of the Ricci tensor
with respect to the basis e-, , e&, ee, e& are [8]
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Other quantities appearing in Eq. (3.11) can be written in
the normalized form as

VVR= ( ) — a"—
r r

where S& and S& are the 4-dependent terms given as

@I
S~(r) =2(1—a} (3.25)

(1—a) „4a
V-V=K =V-V-R = 2a"—oe-- pp 2 2

where

S-(r) =(1—a) 4"— a'+ ——+4'2a 2
0 2(1—a) r r

(3.26)
II

q(r) =a"'—
r

2a' 6a
r2 r3

From (3.11) we obtain

8~T~ = ,' f (R—) f"(R—)(CIR)

=E +2cov

8n(T~+T~)= f'(R)(Rrr+R~) f"(R)—V~VqR

—E~ +2cov~

8m( Ttt+ Tss) =8m(TrI+ T]])
=f '( r }Res f"(R)Vs—VP
=E-+2ev-

0 g 7

where

(3.12)

(3.13)

(3.14}

(3.15}

The situation of 'lV near the throat seems to be quite
different from that far from the throat. So we divide %'
into the two parts: the small-r region with r coordinate
(r, and the large-r region with r coordinate r& for
some r, &1.

First we consider the large-r region. If 4 were con-
stant, S~ would be zero. Then, since a' is negative some-

where in this region, E& would also be negative there. As

seen below, E& is the main part of 8m(T&+ T&), so that

E& &0 would imply 8~(T&+ T~) &0. Therefore we need

to suppose that 4(r) is not constant in r & r &. We choose
a (r) and 4(r) such that, for any r with r & r„(i)
a )&max tri a'i, re@'i, r i4"i] and (ii) 4'& ia'i/2(1 —a).
Then by (3.22) and (i) we have E-, &0, and by (3.23) and

(ii) E~ )0. By (3.26) and (i) we have

max[ia'i/2r, iSsi] «a/r . So Eq. (3.24) implies Es &0.
For example,1, aE =—a'+-

r r
(3.16) a (r) =qr ' " and 4(r) = Nr 'i" —(r & r, ) (3.27)

a' aE-= +—,
2r r2 '

(3.17)

(3.18)

satisfy the above conditions (i) and (ii), where q and N are
positive constants with X &)q and n is a natural number
sufftciently larger than q, N. These forms (3.27) of a(r)
and 4(r) determine the higher-order terms as follows by
neglecting the terms of order (1/n, r 'i"):

v t

r

a' a 2(1—a) a' „ 2a
rl r — a"—

r r2 r r r2

(3.19)

1
u-,

=—4a (4—5a ),
r

12
u~= a (1—a),

(3.28)

(3.29)
2(1—a} a' „+2a'

v~
= 21 r — a"+

r r r
(3.20)

us= ——[1+2a(1—a)] .2
(3.30)

v 8
2a 2a

r 2

a' a
2r r

+ (1—a) a"
r r

4a
(3.21)

1, a
E-, =—a'+-

r r
(3.22)

E]= +Sq,r
(3.23)

1 a' aE-=— — +—+S- .
r 2 r

(3.24)

Now we return to the general case where 4 is not al-
ways assumed to be constant. Then the Einstein terms
are given as [8]

Since v& )0, E~+2cov~ )0. Although v-, is negative
somewhere and v& is negative everywhere, they are pro-
portional to r . On the other hand, both E-, and E& are
proportional to r . Therefore we have E-, +2cov-, )0
and E&+2covo) 0 in r ~ r&.

Next we consider the small-r region. Recall that in the
pure Einstein theory, this region necessarily contains ex-
otic matter. But, if the throat radius is very small, then
the curvature is very large in this region. So it can be ex-
pected that the higher curvature term could contribute
largely to the 6eld equation. In contrast with the large-r
case, we may assume that @ is constant for simplicity,
and concentrate our attention on the contribution of
higher curvature terms in 1 (r ~ r, . It is easily seen that
the form (3.27) of a (r) cannot satisfy the WEC near r = l.
In fact, we get
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q 1+2 —+0(nq ')T =—ger( Tp+ T~)= „n

l~r~2,(2—r) p +(2—r)tq +s if 1

if r)2qr
(3.31)

s thebr k gormhole throa«=
f a(„) other than

at the wor
d new forms o aSo we nee

. f h ~BC at leas3 27) in 1 ~ r r i ~ w

y complexities, we
forms of a(") as ~

followinges of a ( r) in the
olutions

t o simple examp e
'it ofthe W w'EC ith wormhole so u

'
the incompatibili y

dfi th fo ofExample 1. For r =2, we en

12

m(m —2) 4

requires

m ——4andp ' & . .
3 nd then T& ain 1«+2 as shown in Fig-

since T~ & U&.

33) (3 36), give severeus the WEC at =
Fi . 2 the region satis y-

, =1, (3.
the arameters. In F g

the shaded
strictions on t &

1/12 is shown by ting (3 33) (3.36) for p =
'

th intersection pornwhere A is ethe m- plane,
h d d area in Fig.of the two cu

the allowed regionrepresents a typ
o the point A when p =

ical shape o
= 1/4.and it shrinks to

of A is
for p &1/ '

( ) (for shortTh m coordinat A

h d d area, then1+1/1+2/p. If (m ~ai)

e
isinthes a e

p
' ' '

t, ,s are positive con-re m isaposi '
re m

'
p 'tive integer, and p, t, q, s a

stants satisfying the o ow'

2
—1 —1/n/

q+$=1, q=

discontinuity produces

1' =1—s, lim q =, im=s, an(1—s, imp =0(p

n =5000, so that p, q, t
ih hi li it hti

tl large, say n =, t
can be iaen i'd t'fied respectively, wit

p+
n

a' =1 and the con-tained from a (1)=Tnese re
and a'(r a r-

of "( ) =2i hhe discontinuity of a r
h

o diffi lt W ot th
endix, where i is

at

m ~m ~1/p,A— (3.37)

2.0-

1.5-

e tr to find a pair (m, p)
'

. 2. Hereafter we try oas shown in ig.
he associated worm o esatisfying (3.37) such that t e a

p = s=1—s q=s, and t=0. (3.32)

Then a r
' '

with the mutua11y ind pe endentThen a (r) is a function wit
arameters m an p.nd

eters (m, p) so t ae, that T ischoose parame, t aIt is possible to
hole. Such an exampere in the worm o e.

= 1/72.
1 li

g pp
Although this examp

. This is seen as follows by im-does not sa
'

posing the WEC at r =
plies

1 —mp)[1 —2ai(1 —mp)]~0 .

—m )~0 ande would have 1 —2'(1 —mpp-
enc —m ) ~ 0, a contra ichence 1 + 2'(1 —mp

1.P -,

0.5

—0.5-

1001/P

C
I

20.0 2/p 30.0

1 —mp ~0,
1 —2a~(1 —mp) ~0 .

(3.33)

(3.34) -1.0—

~ T +T ~0 and T& +T—~0 atBy (3.14) and (3.15), T&
r =1 imply

2comp (m —3) ~) 1

1 —2ai(2 —mp) ~0 .

(3.35)

(3.36)

From)3, that is, m =4, 5, 6, . . . .
f 11 i bo dthe inequalities (3.3

are obtained:

-1 5-
!

io y WEC at r =1 in the m-coFIG. 2. e~ . o go y

p
'

b th shaded are p =
b

( —3)], ti 1 .1/[2(1 —mp)], andand 1/ 2mp m—



46 LORENTZIAN WORMHOLES IN HIGHER-DERIVATIVE. . . 1513

")i
8 0

4.0 ~

m=4

2.0

incompatibility of the WEC with the wormhole solution.
We show the numerical calculations of the quantity
RR~ V—&V&R proportional to the RHS of (2.8); see Fig.
4. From these it can be seen that, in general, the inequal-
ity (2.8) cannot induce the inequality (2.7), which was
crucial in the proof of proposition 1.

Example 2. For a suSciently large r& &1, we define
a(r)

d exp[u (1—r}]+(ri r—}p+(ri r)t—+s
a(r)= . if 1~r ~r&,

qr
—1/n jf r&r (3.38)

4.0- Since the leading term of a (r) is an exponential function,
a (r) decreases as r ~r, more rapidly than the function
used in example 1. The parameters d, t, p, and s ( & 1)
are positive constants related to each other as follows:

-8.0-

FIG. 3. The curves represent v-„ for the cases of
m =4, 6, 8, 12, 20, and 26, where n =5000 and p is deter-
mined by m =1+&1+2/p. The values of v; are normalized as
8.0 at r = 1.01.

and

d =1—(r, —1) p —(r, —1)t —s,
t =s/nr, ,

p =s/2nr, ,

g qr 1/n

tion admits the WEC for all r ~ 1. Since a (r) depends on
m and p by (3.20} v~ does also. We set v~(r) =

v& [m,p](r)
to express the explicit (m, p) dependence of v~.

Let JM(m, p) be the minimal value of v~[m, p](r) in
1(r (2 for any pair (m, p} satisfying (3.37). For any
fixed p, p(m, p) attains the maximum value at
m =m „(p), but this value is still negative. This is seen in
Fig. 3, where the graphs of v~

=
v~ [m,p] are illustrated for

various values of (m,p) with m =mz(p). All curves in
Fig. 3 are normalized to be 8.0 at r =1. Then we con-
clude that it is impossible to find any pair (m,p) such that
the associated wormhole solution satisfies WEC.

Finally we comment on the inequality (2.8) in this ex-
ample. If the RHS of (2.8) is positive, we can prove the

1

4(1—du} '

(d d —1/u
C0 do

d —d+

(3.39)

(3.40)

These relations are obtained from the continuity condi-
tions for a(r), a'(r), and a "(r) at r =r, and from the
condition a(1)=1. Here we neglected the higher-order
terms with respect to n ' and r&

' by taking n =5000
and ri =10. Since a "(r) is continuous, we do not need to
consider here the point discussed in remark of the Ap-
pendix. Since we have fixed the values of r, and n, the pa-
rameters s, t, p, and q are determined by d. The WEC at
r =1 constrains the values of the inutually independent
parameters d and u.

By (3.13)—(3.15), the WEC at r = 1 is given in terms of
d, u, and boas

80

4-0

and

where

) 1

2du (u —2) ' (3.41)

m=8

and

Q
dp

2u (u —1)

1.0 2.0

u (u —1)

FIG. 4. RR-„—V-, V-„R for m =6,8, and other situations are
the same with the case in Fig. 3.

Note that the inequality (3.41) implies u )2. The region
in the d-co plane restricted by (3.39)—(3.41) is shown in
Fig. 5 for u =3.0, where B is the intersection point of the
two curves a and c. The shaded area represents a typical
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2.4-
a

I(
8.0-

$0-
4.p-

1.6-

1.2-
0.0 I

2.0

V=3

I

3.0 4p l'

0.8-

0.4 ~

FIG. 7. The curves represent U-„ for the cases of
u =3, 4, 5, 6, and 8, where n =5000 and d =2/u . The values
of U-„are normalized as 8.0 at r = 1.0.

01 0.2 0.6 d

—0.4

— 0.8-

—1.2-

— 1.6-

FIG. 5. The allowed region by the WEC at r =1 in the d-co

plane is shown by the shaded area for u =3.0 in the case of ex-

ample 2. The curves a, b, and c represent 1/[4(1 —du)],
do(d —1/u)/(d~ —d+ ), and 1/[2du(u —2)], respectively.

shape of the allowed region. From Fig. 5 we can see that
the value of co is restricted to a very narrow and small re-
gion. As in example 1, we set v~(r) =v~[d, u](r) if neces-

sary, and let p(d, u) be the minimum value of v~[d, u](r)
in 1 ~ r ~ 10. The d coordinate dz of B satisfies

ds =2/u . For any fixed u, )Lt(d, u) (ds ~ d ~ d+ ) attains
the maximum value at d =d~. This is seen from Fig. 6.

V„

(a'+ 1)—2'[(a'+ I ) +a'(a" —2)] & 0,
a'[1 —2'(2a'+a")] ~ 0,
(1+a'/2)[1 —4co(a'+ I)]~0,

(3.42)

(3.43)

(3.44)

where a'=a'(1) and a"=a"(1). These inequalities give
severe constraints for a', a", and co. The inequality (3.43)
implies a" & —a', which could explain why v~ decreases

rapidly from the value at r = 1 as r increases, and v~ soon

In Fig. 7 the graphs of v&=v&[d, u] are illustrated for
various values of (d, u) with d =2/u .

In contrast with the higher-order term of T~ in exam-

ple 1, the minima of v& [2/u, u] for the case of u =3 and

4 are positive, but they are very small. Moreover, since
the co coordinate of any point in the allowed region is not
so large, we have 2cov~ & —E~ or equivalently T~ &0. In
Fig. 8 we show the numerical results of T~ for these cases,
where the values of co are the co coordinates,
1/4(l —2/u), of B. Then we can conclude that the
wormhole solutions in this example also violate the WEC.

We have seen throughout the above two examples that
it was impossible to 6nd an appropriate wormhole solu-
tion a (r) which satisfies the WEC even if co is positive.
The reason why it was impossible could be summed up as
follows. First impose the WEC at the wormhole throat,
r = 1, which is given in general as

4.0- 2.0.

1.0
3

2.0

U=4

I
3.0

0.0
0 236

0.230
2.0 3.0

l

4.0 F'

—2 0-

FIG. 6. The curves represent v-, for the cases of
d =2/9, 0.230, and 0.236, where n =5000 and u =3.0. The
values of U-„are normalized as 8.0 at r = 1.0.

FIG. 8. The curves represent T-„ for the case of u =3 and 4,
where n =5000, d =2/u, and co= 1/[4(1 —2/u)]. Here T-, is

rescaled appropriately for either u.
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reaches at its small minimum. On the other hand, the
value of ~ is constrained to be so small by the WEC at
r = 1, (3.42) —(3.44), that the value of T~ could not be pos-
itive near the point where U& attains the minimum value.
Therefore we could conclude that the higher derivative
terms cannot prevent the wormhole throat from collaps-
ing.

Although the above numerical analysis was done by
imposing the WEC at r =1, it would be possible to get
similar results by imposing the WEC at any other point
near the wormhole throat. However, we did not do such
analyses.

wormhole from collapsing. In other words, exotic
matter could support the wormhole throat, but (T,s)„„
could not.

In a more general case where the gravitational La-
grangian includes any power series of curvature, the
effective energy-momentum tensor would be more com-
plicated and we cannot say easily anything about the ex-
istence of a wormhole solution satisfying the WEC. It
would be necessary to improve the Raychaudhuri equa-
tion so that it is applicable to such higher derivative
theories.

IV. CONCLUSION AND DISCUSSIONS

Since the wormhole solution is not compatible with the
WEC in the case of Einstein gravity, exotic matter or
some quantum effect, which could provide a negative-
energy density, is necessary near the wormhole throat for
the existence of stable traversible wormholes. If the size
of the wormhole throat is small, the curvature is very
large near the throat. Then we could expect that the R
term plays an important role in the Einstein equation
near the throat. We studied the gravitational theory with
the Lagrangian La =&g (R —coR ) in order to see
whether or not the higher curvatures could overcome the
above incompatibility. If co&0, the classical field equa-
tion of our theory is equivalent to that of Einstein gravity
with a normal scalar field constructed by the metric.
Then the incompatibility of wormhole solutions with the
WEC can be shown in terms of the conformally
transformed equation. So we concentrated our attention
to the case of co&0, where the conformally transformed
equation is not well defined.

Whatever the sign of ~ is, we can prove the braking of
the WEC on the wormhole if the right-hand side of the
inequality (2.8) is bounded from below by some
sufBciently small negative number. Since such a bound
does not exist except for the case of very small ~co~, we
studied directly the equation of motion admitting a
spherically symmetric wormhole solution. Two examples
of such solutions with a few parameters are considered.
We restricted the range of the parameters by imposing
the WEC at the wormhole throat, and we tried to find a
wormhole solution which is compatible with the WEC
everywhere in the wormhole. However, we could not
find such a solution, and we concluded that the wormhole
is not compatible with the WEC in the theory with the
R term.

The part proportional to co in the RHS of (3.11) can be
regarded as an effective energy-momentum tensor ( T,s. ) „eff pv
induced by the R term. We have seen in the previous
section that (T,s)„+"E"could be negative somewhere
in the wormhole (see Fig. 4). So one might expect that
the higher derivative terms could provide the same result
with that provided by Einstein gravity including exotic
matter. However, we could not obtain any evidence sup-
porting this expectation. This means that, since (T,s)&„
is written by the metric itself, in contrast with the case of
an exotic matter field, it is difficult to make ( T,s )„+"&""
negative near the wormhole throat so as to prevent the
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APPENDIX

Here we show that T& &0 for the parametrization of
Eq. (3.31) with s =71/72 and m =4.

First, we define 4(r} so as to make T~ positive in the
large-r region. For any e&0, there exists a positive in-
teger no such that for any integer n with n ~ no, a smooth
function 4 (r ) =4„(r) can be defined as

—36a (r} if r & 2,
4(r) =

if1&r&2 —e2

(Al)

and ~4'"'(r)~ &e for k =1,2, 3,4 and for all r with
2—e~r~2.

Here we suppose that r & 2. If we neglect the terms of
order n 'r ' ", then the Einstein term E& of T~ is

R +R =71 ) )g~ 1
72

ri rr n
qr 71'

Therefore E~&0 if a &71/72, or equivalently if r &2.
The higher curvature terms are shown to be positive in
this region as in example 1. Thus we have T~ & 0 in r & 2.

Next we suppose that 1&r &2. Then a(r)&71/72.
Since —a'/r & 0, by (3.12) and (3.31) for m =4,

i)(r) & a'"— +— & —36p+
a" 6 71 71

8 72 96

Since p & 1/72,

il(r) &
23
96

By the definition of 4(r), for k =1,2, 3,4, ~@'"'(r)~ & e in
2 e&r &2, and ~4'"'(r)~ =—0 in 1&r &2—e. For all r
sufficiently near 2, 2( 1 a) rI( r )/r is close to—
1X6X—,", X8X72= „",, . When e is suf5ciently small, or
equivalently n sufficiently large, 4(r) does not contribute
to sgn{v~(r)) in 1 & r & 2. If we neglect any effects of @,
then 2co[v& —2(1 —a)g(r)/r] can be identified with the
second term g(r) of (3.20). Then we have
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a' „ 2a'
g(r) = ——a"+

r r

12(2—r) p—P(r) 2 8(2—r) 2' "q

r nr

4(2 —r) p —2
P(r) 2 1 n

I

t

I

where P(r)=4(2 r) p—+2 ' ' "qln F. or any e &0,
there exists a positive integer n0 and a positive number 5
with 5 (e such that, for any n & no, g(r) =g„(r)&0 in
r &2—5 and g(r)& —e in 2—5 ~r(2. By this fact and
(A2), we have v& &0. Thus, if co is sufficiently large, then

T~(r) & 0 for all r with 1 ~ r (2.
Remark. In the above example, a C' function a (r} is

used to make our argument simple, so a "(r) is discon-
tinuous at r =2. By (3.31) for tn =4,

5&a'") =2 ' " 1+—+5(r —2),1

n pl

2-2-1/n(1 1
)

n

n q

a"(r)

FIG. 9. The smooth function 8"{r) is obtained by taking the
broken curve instead of the underlying part in the graph of
a "(r).

where 5& h(r)) denotes the 5-function term of a function
h (r). The 4-dependent term Sit (r) of R is —2(S~+Sz);
see Ref. [8]. By (3.25) and (3.26), Sit (r) contains the a'(r)
term —4'a', so that 5 & StI (r) ) = —4'5& a"'). Therefore, X 1+—1

Pf
)0.

2
—1 —1/n + 2

—1 —1/n

e—+0 2 —e 72 1l

2
—1 —1/n 1 + 36

2
—1 —1/n

72

X 1+—+5(r —2) .
1

n n

Strictly, we need to consider the "junction condition" as
in Sec. 21.13 of Ref. [10] and Refs. [4,5]. In fact, the sur-
face energy-momentum tensor for X= [(t,r, 8,$):r =2]
in'N is

One can obtain a C" function &"(r) by smoothing a "(r)
near r =2 so as to eliminate the singularities of a "(r) and
a"'(r). Furthermore, for any e&0, there exists 5 with
0 (5 (e and so does no such that for all
n&no, ~a"(r)~, ~8'"(r)~(e in 2 —5~r~2, and
't) "(r)=a "(r) in both 1~ r ~2 —5 and r & 2 (Fig. 9). We
refer to Hirsch (Ref. [11],Chap. 2} for the standard tech-
nique of smoothing functions by using "bump functions. "
The function a'(r) is defined by integrating &"(r) back-
ward from + oo to r The fun. ction ct(r) is defined similar-
ly. So tt(r) =a (r) in r & 2, but in general, 8(1) is slightly
different from a (1)= 1. Then the energy-momentum ten-
sor for the C" wormhole 'N defined by using &(r)l&(l)
instead of a ( r) satisfies T~(r) & 0 everywhere in 'N.
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