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We study static spherically symmetric solutions of Einstein gravity plus an action polynomial in
the Ricci scalar R of arbitrary degree n in an arbitrary dimension D. The global properties of all such
solutions are derived by studying the phase space of field equations in the equivalent theory of gravity
coupled to a scalar Geld, which is obtained by a field redefinition and conformal transformation. The
following uniqueness theorem is obtained: Provided that the coefBcient a~ of the R term in the
Lagrangian polynomial is positive then the only static spherically symmetric asymptotically flat
solution with a regular horizon in these models is the Schwarzschild solution. Other branches of
solutions with regular horizons, which are asymptotically anti —de Sitter, or de Sitter, are also found.
An exact Schwarzschild —de Sitter —type solution is found to exist in the R+ aR theory if D & 4. If
terms of cubic or higher order in R are included in the action, then such solutions also exist in four
dimensions. The general Schwarzschild —de Sitter —type solution for arbitrary D and n is given. The
fact that the Schwarzschild solution in these models does not coincide with the exterior solution of
physical bodies such as stars has important physical implications which we discuss. As a byproduct,
we classify all static spherically symmetric solutions of D-dimensional gravity coupled to a scalar
Geld with a potential consisting of a finite sum of exponential terms.

PACS number(s): 04.20.Jb, 04.60.+n, 97.60.Lf

I. INTRODUCTION

Theories of gravity involving higher powers of the Rie-
mann tensor in the Lagrangian have been proposed in
several difFerent contexts since the first days of general
relativity. They were first introduced by Weyl in his
affine theory, which aimed to unify gravity and elec-
tromagnetism [1]. Such models have become attractive
again in recent years following the demonstration that
the addition to the Einstein-Hilbert Lagrangian of terms
quadratic in the Ricci tensor leads to a renormalizable
theory [2]. Unfortunately a massive spin-2 "ghost" is
present in the linearized spectrum, leading to an insta-
bility of the theory and a loss of unitarity. It has. been
suggested that this problem would disappear in a full
nonperturbative treatment of the model, or even that
the ghost states in the perturbative expansion could be
a gauge artifact [3]. However, a nonperturbative formu-
lation is still a distant goal, while the latter possibility
seems to have been ruled out [4].

The effects of higher-derivative gravity have also
proven to be useful in cosmology, beginning with the
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early work of Starobinsky [5] and Kerner [6] who intro-
duced higher-derivative terms with a view to obtaining
solutions which avoid the initial singularity. Later on it
was realized that such models can lead to infiationary ex-
pansion driven only by gravity [7—9]. Higher-derivative
models have also been studied in the context of quantum
cosmology [10]. In particular, it has been argued that
the introduction of quadratic terms may solve some of
the problems due to the nonpositiveness of the ordinary
Einstein-Hilbert action for Euclidean quantum cosmol-
ogy [11].It is also interesting to note that quadratic cor-
rections to the action are obtained from quantum worm-
hole effects [12].

Finally, we should mention that higher-order La-
grangians arise naturally in higher-dimensional theories,
such as Kaluza-Klein and string models. In the first
case they are introduced in order to obtain sponta-
neous cornpacti6cation from purely gravitational higher-
dimensional theories, and in this context the ghost-free
Gauss-Bonnet actions have attracted much interest [13,
14]. In the second case, they are obtained as an effective
low-energy action [15].

While the cosmology of these models has been largely
studied, both in four [5—9,16] and higher dimensions [17,
18], comparatively little is known about black hole so-
lutions. The weak-Beld limit has been studied to some
extent for the R+ aAz theory in four dimensions [19,
20], but the properties of the full solutions in higher-
derivative theories remain largely unexplored. On di-
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mensional grounds, one would expect that the higher-
derivative terms become dominant in the proximity of
the singularity. However, it is still possible that horizons
exist and that, contrary to the assumptions of Refs. [19]
and [20], analogues of the usual uniqueness theorems for
stationary axisymmetric black holes can be derived. In-
deed, such conclusions can be immediately drawn in the
case of the R+ aR2 theory in four dimensions as a re-
sult of the "no-hair" theorem proved by Whitt [21], as
we show in Appendix A. Thus the question of the nature
of the static spherically symmetric solutions of more gen-
eral higher-derivative models is very interesting from the
point of view of general relativity.

One of the reasons for the lack of attention to the
black hole problem is undoubtedly the difficulty of solving
the higher-order difFerential equations arising in higher-
derivative models. Some progress can be made, how-
ever, by using the fact that higher-derivative theories are
equivalent, by redefinition of the metric, to ordinary Ein-
stein gravity coupled to a scalar plus a massive spin-2
field. This result was first proven by Higgs [22], and later
rediscovered by Whitt [21], in the case of the R+aR~ the-
ory in four dimensions, for which only the scalar field is
present in the efFective theory. More recently the equiva-
lence has been extended to the case of actions containing
powers of the Ricci and Riemann tensor [23].i The im-
portance of this equivalence is that one can now use the
formalism of ordinary general relativity to study the more
general higher-derivative theories.

Our analysis in this paper will make use of the equiv-
alence of the general D-dimensional action

vr gf(R)—S= d x
4K

to Einstein gravity coupled to a scalar field [23]. Here

f is an arbitrary function of the Ricci scalar R, and lt~

= ln [~f'(R)],
D —1

(1.2a)

where

1 if f')0,
—1 if f'(0, (1.2b)

and make a conformal transformation

g,b = [sf'{R)] l g,b, {1.3)

then the field equations derived from (1.1) are equivalent
to those derived from the action

where

2'y —g ! 2
— g 8~0Bbo'—V' (O')

b

i 41t2 D —2

(1.4a)

V = 4„, [&f'(R)] " '(Rf' —f) (1.4b)

with R, f, and f' defined implicitly in terms of o via
(1.2). For the quadratic theory, for example, with f =
R+ aR2 we find [18]

( 2(D —4)ro.
16it2a ( (D —2) vrD —].)

f 2rcr-
!x 1 —s exp!

& V'D —I). (1.5)

Similarly, for the cubic theory with f = R+ aR + bR
we find [16]

denotes the gravitational constant in D dimensions. If
we de6ne o by

k(D —2)v D —1) ( (y'D —1)
9 ( 2rcr

!
—a + ab 1 —sex-p!

& v'D —1) )
(1.6)

For other actions polynomial in R,

f(R) = R+) a„R",
m=2

(1.7)

1

and f' can be inverted to give a precise analytic expres-
sion for R in terms of o, and hence for V(cr), for a general
polynomial only if n & 5.

The general higher-order field equations obtained from
the action (1.1), with f of the form (1.7), are given by

R b
—2g bR+ ) a„! pR" R b

—p(p —l)R" RR , b+ (p —2)R. R.b.

m=2

+g b(p(p —1)R" [R&R+ (p —2)R"R,] —~R") !
= 0. (1.8)

For a difFerent approach to the problem see [24j.
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Since the arbitrary-dimensional Schwarzschild solution

2GMII dt')
2GM
r (1.9)

In fact, a black hole uniqueness theorem for the more re-
stricted case of pure R theory, without an Einstein-Hilbert
term, was obtained much earlier on by Buchdahl [25].

has R = 0 throughout the domain of outer communica-
tions, it is clear that the Schwarzschild solution solves
the equations (1.8) for any choice of the constants a .
Thus the problem before us is to determine whether the
Schwarzschild solution is the only static spherically sym-
metric asymptotically flat solution with a regular hori-
zon. On account of the equivalence of the higher-order
theory to the theory decribed by the action (1.4) this
uniqueness problem can be regarded as the problem of
establishing a "no-hair theorem" for the latter model.

Whitt established such a theorem in the case of the
R+ aRz theory in four dimensional' [21], by demonstrat-
ing that all asymptotically flat stationary axisymmet-
ric solutions to the higher-order vacuum equations must
have R = 0 in the domain of outer communications. If
one adds extra matter fields to the action one still finds
that R = 0 for stationary, axisymmetric, asymptotically
flat solutions provided that the energy-momentum tensor
is traceless and satisfies the matter circularity condition.
For such solutions, therefore, (1.8) becomes equivalent
to the usual Einstein equations, and the usual unique-
ness theorems and no-hair theorems will carry over to
the fourth-order theory. If one considers an arbitrary
polynomial in R of the form (1.7), however, then Whitt's
argument breaks down, as we demonstrate in Appendix
A. Consequently a difFerent approach is called for.

Our approach here will differ not only from that of
Whitt, but also from other standard approaches to no-
hair theorems [26, 27], in that we will solve the problem
by studying the phase space of the field equations ob-
tained from (1.4). We will take advantage of the fact that
by making a judicious choice of coordinates these equa-
tions may be written in the form of a five-dimensional au-
tonomous system of ordinary first-order differential equa-
tions, so that all the global properties of the solutions can
be derived. Our approach not only has the advantage
that it can be used to establish a black hole uniqueness
theorem for general actions polynomial in R, but it will
also enable us to determine the nature of other solutions
in these models which have regular horizons but which
are not asymptotically Hat.

The analysis we will use here is very similar to that
developed in Refs. [28] and [29], where we derived the
global properties of static spherically symmetric solutions
in models of gravity which arise from the dimensional
reduction of certain higher-dimensional gravity theories.
The scalar field in (1.4) then corresponds to the radius

of the extra dimensions (the "compacton"), and the po-
tential V(cr) contains one or two exponential terms.

The analysis of [28] and [29] is based on the fact that
the appropriate field equations can be reduced to a five-
dimensional autonomous system of first-order ordinary
differential equations. This is possible essentially due to
the fact that the field equations form a system very sim-
ilar to those of a Toda lattice when written in terms of
appropriate coordinates [30) (the Toda lattice being an
integrable system). Since the metric and scalar fields are
related to the functions X, Y', V, Z, and W of the five-
dimensional phase space M, they are necessarily regular
at all points of the integrals curves apart from critical
points. Consequently, in order to determine the global
properties of all solutions, namely, the structure of their
singularities, horizons, and asymptotic regions, it suffices
to study the properties of the solutions at critical points
of Pt. The determination of which critical points are con-
nected to which other ones by integral curves requires a
careful analysis of the structure of the space JH: in par-
ticular of surfaces corresponding to particular subspaces,
which separate integral curves corresponding to space-
times of difFerent causal structures. This method repre-
sents a powerful analytical tool for these (and possibly
other) models for which it is not possible to write down
the general static spherically symmetric solutions in a
closed analytic form.

One should mention that on account of the way in
which the phase-space functions are constructed, the
metric functions (with signature —+ + +) are nec-
essarily positive. Thus for the Schwarzschild solution
the integral curves obtained correspond to the domain
of outer communications only. A similar analysis of the
Reissner-Nordstrom solution yields a phase space with
distinct regions which correspond to (i) integral curves
in the domain of outer communications, and (ii) integral
curves in the region between the singularity and the inner
horizon. (These two regions of the phase space are sep-
arated by a surface which corresponds to the Robinson-
Bertotti solutions. ) Thus the method described does not
pick out regions of the spacetimes in which the Killing
vector 8/Bt is spacelike. Such regions can only be ob-
tained by continuation of such solutions as are described
here.

The first step of our analysis here will be to general-
ize the work of [28] and [29] to establish the properties
of solutions to the equations derived from (1.4) with a
potential consisting of a sum of s exponential terms

(1.10)

the A,. and g, , i = 1, . . . , 8 being constants. Of the higher-
derivative theories, only the R+aR2 theory has an action
which is precisely of this form. However, for each n there
will be a special choice of the constants a„ for which the
potential (1.4b) reduces to this form. This will be so if
the (n —l)th root of f' is linear in R. In particular, if
we choose
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then

(2a2) i' (n —2)!
(n —1)~-'p!(n —p)! ' 3&p&n, ( 2asR)"1 + 2

n —1)
and we find that the potential takes the form

(1.12)

(n —1)2 ( 2D—ro l ( 2nro 5 n ( 2roV=
z exp~ Zexp!

/

— exp
/

/
+

& (D —2)QD —1) ( (n —1)QD —1) n —1 I,QD —1) n —1
(1.13a)

where3

1 if 1+2azR/(n —1) ) 0,
—1 if 1+2a~R/(n —1) & 0. (1.13b)

We shall call this class of models "special polynomial R
theories. "

Before proceeding further, we note that the definition
of asymptotic fatness in our analysis requires some clar-
ification. On account of the conformal transformation
(1.3) the radial coordinate of the higher-derivative the-
ory, r, is related to the radial coordinate of the effective
theory, r", by

fg(R)]
—1/(D-2) ( 2K&

q(D —2) gD —I )
(1.14)

Thus solutions which are asymptotically Hat in the
higher-derivative theory need not be asymptotically flat
in the efFective theory, since it is the dependence on r as
measured by the metric g, i, which is of physical impor-
tance rather than the dependence on r" as measured by
the metric g, i, . Moreover, the definition of the asymp-
totic region can vary between the physical and the effec-
tive theories. The definitions of spatial infinity and of
asymptotic fatness will only coincide when o ~ const
as r" ~ oo. However, since 0 is not a physical field here
(unlike the Kaluza Klein case [28, 29]), we need place no
requirements on its asymptotic form at spatial infinity in
the efFective theory. Thus a discussion of the existence
of static spherically symmetric black holes in the higher-
derivative models requires an examination of all static
spherically symmetric solutions in the effective theory,
and not merely the ones which are asymptotically Hat

according to the effective theory.
We will begin by deriving the global properties for the

theory with the potential (1.10)—almost all cases are
dealt with in Sec. II. For special values of the param-
eters, which include the cases of the R+ aR~ theory and
all potentials (1.13), the structure of the phase space is
modi6ed. Such solutions will be discussed in Sec. III. We
will then generalize the analysis to include the potential
(1.6) of the R+ aR~ + bRs theory in Sec. IV. This gen-

eralization will be found to produce only minor changes
to the results of Secs. II and III. We will further demon-
strate that our results can be extended to the case of the
polynomial of arbitrary degree. Some physical implica-
tions of our work are discussed in Sec. V.

II. THE GENERAL
EXPONENTIAL SUM POTENTIAL

A. The dynamical system

where m = D —2, 6 = u((), r" = r" ((), and g, i, is the
metric on an arbitrary m-dimensional Einstein space:

R p = (m —l)Ag p. (2.1b)

Of course we are most interested in the case in which

g p is the metric on a two-sphere (and A = 1). However,
the structure of the phase space is better revealed by
taking the more general ansatz (2.1b). In order to write
the equations as a first-order system which is everywhere
well defined, we will choose an ordering of the g,. such
that

g~ &g3&g4& &g, &g~. (2.2)

If we now define the functions (, r!, and y by

( = u + (m —1) lnr", (2.3)

2g~ KcT

g = u + m lnr"—
m

(2 4)

2g2]ccrc
y = u+ mlnr" —

)m
(2.5)

then the field equations become

As in [28] and [29] we will begin by choosing coordi-
nates

g dx~dz' = e'"(—dt'+r'2™d(')+i."g pdX dx,
(2.1a)

Note that s = s with these de6nitions: for n even c and
8 have the same sign. However, if n is odd then e = +1, and
the sign of 8 corresponds instead, for example, to the plus or
minus sign multiplying the first term in (1.6).

These functions correspond, in fact, to the differences of
the Toda lattice coordinates [30j.
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(m 1)2A 2(' + A e2g) + A
2x +) A

2(a,x+p, g))

a=3
(2.6a)

S

e1" = m(m —1)Xe g + —(m + 1 —g ) A~eee + —(m + 1 —
gage) Aeee» + —) (m + 1 —g~g. ) A.ee1 '«+e'e1,

i=3

(2.6b)

S

y" = m(m —1)Ae g + —(m + 1 —gage) A, e "+ —(m + 1 —g e) A ee" + —) (m y 1 —g g ) A ee1 'e+e'e1

1=3

(2.6c)

with the constraint

2m('(g2r/ —g y') 1+ (rn —1)g,2 1+ (rn —1)g g, , 1+ (rn —1)g

2(,
'
+ 1 e2g + 2 e2x + ) A e2(a, x+p, g)) 0 (2 6d)

A A 1

m m m.1=3

where, for s & 3,

and

2 = 3, . . . )S) (2.6e)
X' = — A, Z'+ A, W'+ ) A,.W' 'Z'P'1

m('
(m- i)s

(2.8a)

i 2g. —g
P, =1—a, = 1 3y ~ ~ ~ ySe (2.6f) Y = g —1

~ + gsgz
—1

If s & 3 then the last summation term in (2.6a)—(2.6d)
vanishes. Note that on account of (2.2), 0 & o., & 1,
0 & )9, & 1, and o,; = P; only in the special case in which
s = 3 and g, = (g, + gs) /2.

These equations can be recast in the form of a five-
dimensional autonomous system of first-order difFerential
equations. If we define variables V, W, X, Y, and Z by

V=g', W=e", X=(', Y=rI', Z=e,
(2.7)

then the constraint (2.6d) can be regarded as a definition
of e2&. Eliminating the es( terms from (2.6a)—(2.6c) we
therefore obtain the systems

+) (g,g,. —1) A,.Ws 'ZsP' —P,
4=3

V' =
~ (gage —1) A~Z + (g —1) AeW

S

+) (g g. —1)A.W"'Z'P' ~-P,
a=3

Z'= YZ,

W'= VW,

where

(2.8b)

(2.8c)

(2.8d)

(2.8e)

2mX(g Y —g V) 1+ (m
P = m~ (m+1)X

(g, —g,)'
2 1+ (m —1)giga YV

+
(g, —g,)'

1+ (rn —1)g 2 Vs)

(g, —g, )'

(2.8f)

We are using a difFerent normalization here for Z and W compared with that used in [28] and [29].
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The dynamical system of the Kaluza-Klein models
dealt with in [29], with n, extra dimensions and a higher-
dimensional cosmological constant A, is retrieved by set-
ting s = 2 and

gi =
g2

—— ', Ai = n, (n, —1)A, A2 = —2A.
ne

(2.9)

In the case of the B + aB2 theory, and indeed any
higher-order theory given by the potential (1.13), the
appropriate dynamical system is obtained by taking
Eqs. (2.8) and setting s = 3,

m+ 2 2(n —1) —m 1

2/m + 1 2(n —1)v'm + 1 gm + 1

(2.10a)

—
g&(gi

—g2)(mX+ c2) + 1+ (m —l)gig& V

1+ (m —l)g ~

(2.13)

where ci and c2 are arbitrary constants. (If gi = 0 or

g~ = 0 we have instead V = Y+const. ) Physically (2.12)
is equivalent to s = 1 (i.e. , A, = 0, i & 2), while (2.13)
gives the same system with Ai ~ Az and gi —+ gz. Thus
in each case a further degree of freedom can be integrated
out, giving rise to a three-dimensional autonomous sys-
tem. The properties of such systems were studied in [28]
and [29]. Further simplifications arise if in addition one
of the constants A or Ai (or Az as appropriate) is zero. In
these cases it is in fact possible to integrate the field equa-
tions exactly. For completeness we list these solutions in

Appendix B.

B. The (anti —)de Sitter subspaces

(2.10b)
In addition to the W = 0, Z = 0, and A = 0 subspaces,

there is at least one other three-dimensional subspace
which exists for all s & 2, which was not studied in detail
in [29]. These subspaces may be identified by noting that
solutions for which (T is constant globally form a special
class. The actual value which this constant takes may
be determined from the field equations. In particular, we
find that if V = Y and W = pZ (p & 0), where

and

'(n —1) -s(n —1)~

2AG~
As = , As =

2AG2

(n —1)
2G~

(2.10c)

Aigi+A2g2p +) Agp ' =0, (2.14)
1=3

then the field equations (2.8) reduce to the three-
dimensional system

(m —1)P
) (2.15a)

Y' = —AZ —P, (2.15b)

(2.15c)Z'= YZ,

where

S

A= A, +A2p +) Ap
m ( i 2 ~ i (2.15d)

P + A, Z'+ A W' + ) A W' 'Z'(' = 0
i=3

(2.11)
and P now simplifies down to

As in the case of the Kaluza-Klein models the phase
space has a great many symmetries which greatly sim-

plify the analysis. Equations (2.8b) and (2.8e) ensure
that trajectories cannot cross either the W = 0 or the
Z = 0 subspaces. These two subspaces correspond phys-
ically to the cases in which A2

——0 and Ai
——0, respec-

tively, with A, = 0, i & 3, also in both cases. As we

have written them, Eqs. (2.8) are valid for W & 0 and
Z & 0. It is possible to make the equations valid for all 8'
and for all Z by introducing modulus signs in the terms
W2 * and Z2~' which involve fractional powers of Z and
W. However, this merely introduces a trivial symmetry
between trajectories in the W & 0 and W ( 0 portions of
the phase space, and between trajectories in the Z ( 0
and Z ) 0 portions of the phase space. Thus we may
restrict our attention to Z & 0 and W & 0 without loss
of generality.

The hyperboloid defined by A = 0, or

similarly forms a surface which trajectories cannot cross.
It partitions the phase space into the two physically dis-
tinct regions with A & 0 and A ( 0.

If W = 0 and gi g 0 then

gi(gi —gz)(mX+ ci)+ 1+ (m —1)gig2 Y
1+ (m —1)g,2

(2.12)

while if Z = 0 and g2 P 0 then

P = m(X —Y) [(m + 1)X —(m —1)Y] . (2.15e)

In the case s = 2, for example, (2.14) is satisfied by any

g& and g& provided that

( A
i/2

i i (2.16)

is real. For s ) 2, (2.14) may have more than one solu-
tion.

If s = 1 we of course obtain Eqs. (2.15) if gi = 0
and Ai = —mA. Consequently, Eqs. (2.15) are formally
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and constant scalar field

—2gi/(gi gz) r2

m+1 (2.17b)

(2.17c)

equivalent to those of the Schwarzschild —de Sitter solu-
tion in m+2 dimensions, and can be integrated explicitly
in terms of the coordinate r". We therefore obtain the so-
lution

g~gdx dx = h—dt +6, dr" +r" g~pdX dxp,

(2.17a)
with

where C is an arbitrary constant, and Z ) 0. (We have
used the freedom of rescaling t to remove an unphysical
constant. ) Thus we find a solution with A ) 0 provided
that A ) 0. In the case of spherical symmetry these solu-
tions are topologically a product of two-dimensional anti-
de Sitter space with an m spher" a type of Robinson-
Bertotti solution. Solutions with A ( 0 and A ( 0 simi-
larly include a product of two-dimensional de Sitter space
with m-dimensional hyperbolic space.

To compare these results with our later studies of the
five-dimensional phase space it is useful also to give a
description of the three-dimensional phase space here.

Provided that A g 0 then the only critical points at a
finite distance from the origin are the lines

C being an arbitrary constant. In the case of the higher-
order theories with potentials (1.13), a conformal trans-
formation back to the original metric yields the solution and

Z=0, Y=X, (2.21)

with

ds = Ddt +—b, dr +r g~pdX dxP, (2.18a) Z=O, (m+ 1)X
m —1

(2.22)

2GM A+
—2(~—i)/n r2

r 1 m+1 (2.18b)

i g pdx dxP, (2.20)
/'(m —1)A I

A

and M = C/(2ap ( —)(" &/( "&). [We have rescaled t
in obtaining (2.18).] The solutions are asymptotically de
Sitter if A ) 0 (or anti —de Sitter if A ( 0). In the case of
the R+ aRz theory, we have

2GM mr'=A— 2.19r (rn+ —1)(m+ 2)(m —2)a '

and consequently solutions of this type exist only for
m ) 2, i.e., for D ) 4. These solutions are asymp-
totically anti —de Sitter if a ) 0. For n ) 2 solutions
of the type (2.18) also exist for D = 4. In general, it is
possible to find more than one branch of solutions —some
of which are asymptotically de Sitter, and some of which
are asymptotically anti —de Sitter.

If M = 0 we retrieve cosmological de Sitter solutions,
the existence of which has been discussed previously by
Barrow and Ottewill [8] for an arbitrary f(R) Lagrangian
in four dimensions, and by Madsen and Barrow [31] for
more generalized higher-derivative Lagrangians in arbi-
trary dimensions.

The solutions (2.17) do not exhaust all possible so-
lutions to Eqs. (2.15). In particular, a special class of
solutions for which r(() is everywhere constant are also
admitted. These solutions may be determined by direct
integration of (2.15) in the case that Y = X. Since P = 0
in this instance we have Y' = X' and (2.15) reduces to a
two-dimensional autonomous system. The equations can
be readily integrated using the coordinate Z = e", and
we find

g.bdx dx' = p'»~&»-»~

dZ2
x Zdt +—

These solutions have A = 0 as well as W = Z = 0. So-
lutions lying in the Z = 0 plane, as depicted in Fig. 1,
are Schwarzschild solutions. Equations (2.15) can be in-
tegrated directly in this case since

Y = (X+k), (2.23)

FIG. 1. Trajectories in the R' = 0, Z = 0, V = Y plane.
The bold lines Y = X and Y = (m+ 1)X/(m —1) represent
critical points which respectively correspond to the horizons of
the positive-mass Schwarzschild solutions (dashed lines), and
the singularities of the negative-mass Schwarzschild solutions.
The trajectory through the origin is Bat space.

where k is an arbitrary constant. The critical points in
the first quadrant are found to correspond to the limit
( -+ —oo, while the critical points in the third quad-
rant correspond to the limit ( -+ oo. We find that
end points of trajectories on the line Y = X corre-
spond to horizons with r" ~ const, while end points of
trajectories on the line Y = (m+ 1)X/(m —1) corre-
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spond to r" —+ 0 singularities. The Z = 0 trajectories
ending on the line Y = X thus represent positive-mass
Schwarzschild solutions, while those ending on the line
Y = (m+1)X/(m —1) represent negative-mass Schwarz-
schild solutions with naked singularities. The constant k
in (2.23) is related to the Schwarzschild mass: the k = 0
trajectories represent flat space. Furthermore, if a trajec-
tory which corresponds to a positive-mass Schwarzschild
solution in one quadrant is traced back to the opposite
quadrant, then one obtains the negative-mass Schwarz-
schild solution of the same absolute mass in the A ) 0
region.

If A = 0 then additional critical points exist near the
origin. Furthermore, (2.15) reduces to a two-dimensional
autonomous system for all X, Y, and Z. We will defer
discussion of this special subspace until Sec. III.

Small perturbations about the critical points (2.21)
and (2.22) yield the eigenvalues A = 0, Yp, 2Xp in the
three-dimensional subspace [where Yp = Xp or Yp

(m+ 1)Xp/(m —1) as appropriate], and additional eigen-
values A = 0, Yp for perturbations in the extra direc-
tions in the full five-dimensional phase space. The pat-
tern of trajectories is therefore identical to that of the
corresponding trajectories in [28) and [29]. In the three-

I

X = psin8cosg, Y = psin8sing, Z = pcos8.

(2.24)

The surface at infinity is then brought to a finite distance
from the origin by the transformation

~=I(1 —P) ', 0(p&1. (2.25)

If we define a coordinate r by dr = p d( = p(l —p) id(,
then on the sphere at infinity, i.e. , at p = 1, dP/dr = 0
identically while

dimensional subspace each critical point (Xp, Yp, 0) in the
first (third) quadrant repels (attracts) a two-dimensional
set of trajectories which lie approximately in the plane
Y = (mX p Xp)/(m —1). Since the trajectories are ap-
proximately planar the one zero eigenvalue corresponds
to the degenerate direction perpendicular to this plane.
In the five-dimensional phase space there is an extra de-
generate direction, and the dimension of the set of tra-
jectories repelled (attracted) for first (third) quadrant
trajectories increases by one.

To complete the description of the phase space it is nec-
essary to describe the critical points at infinity. Following
[28] and [29], we introduce spherical polar coordinates

(m —1= cos8 —Acos 8(cosg+sinP) —sin 8 sing+Pi! cosP+sinP!
7 m

(2.26a)

dP 1 —A cos 8 (cos P —sin P) + sin 8P& sin P —cos P !

2 ~ 2 — m —1.
d~ sin 8 m

(2.26b)

where

P, = m (m+1) cos P —2mcosgsing+ (m —1) sin P .

(2.26c)

I

points Li 3 (L34) repel (attract) a two-dimensional set
of trajectories, which are unphysical, however, since they
are confined to the sphere at infinity.

(ii) Two critical points, which we will denote Mi and
Mz, are located at

Four sets of critical points are found.
(i) First of all we obtain the end points of the lines of

critical points Y = X and Y = (m+ 1)X/(m —1), for
which A = W = Z = 0. The points located at

7r8=—2'
m

P = arctan
I

(m —lp
(2.29a)

or

vr Ger

4' 4
(2.27a) X=koo, Z=0, (2.29b)

X=koo, Y= X, Z=0, (2.27b)

will be denoted Lq and L3. The points located at

m+1)
!P = arctan

m —1

or

(2.28a)

in the A ) 0 portion of the phase space. These points
correspond to the asymptotic region (r" ~ oo) of the
Schwarzschild solutions which lie in the Z = 0 plane.
These are the only trajectories which end on these points:
they are found to be saddle points with respect to other
directions in the phase space.

(iii) If A ( 0 then there are two critical points, which
we will denote Sq and S2, which are located at

qm —1) Z=0, (2.28b)

or

8 = arctany —2A,
vr 5'
4' 4

(2.30a)

will be denoted L2 and L4. As for points at a finite
distance from the origin, the points Lq and L3 correspond
to horizons, and L2 and L4 to r" —+ 0 singularities. The

(2.30b)
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( m-1
(2.32)IXel ~

l 1+( 1)

the quadratic equationand Ye is given by solving
'

uation

1 — )X +g c =0,(m-1 o—Y —2mXeYe+ (m+ 1 —g

(2.33)
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FIG. 3. The hemisphere at infinity for the three-dimensional (anti —)de Sitter subspace: (a) A ( 0; (b) A ) 0.

Consider the W = 0 subspace. If g & m+ 1 then the
pattern of the trajectories is the same as in [28] and [29]
since all critical points lie in the first and third quad-
rants. Points with Yo ) 0 (first quadrant) correspond
to the limit ( —+ —oo, and those with Yo ( 0 (third
quadrant) to the limit ( ~ +oo. Each point in the first
(third) quadrant repels (attracts) a two-dimensional set
of trajectories which lie approximately in the plane

Xg ——

1+ (m —1)g s
(2.34)

Y =
~

~
(X + ( [1 + (m —1)g, ]Xo

qm —1)
—(m —l)g, c, )'~ ).

There is a zero eigenvalue corresponding to the degener-
ate direction perpendicular to this plane. In terms of the
coordinate r" one finds that r" ~ 0 at all critical points
except those for which c~ = mk, which correspond to
horizons. These special critical points are of course those
lying in the W = 0, Z = 0, V = Y plane (cf. Sec.
IIB). Figure 1 thus represents the plane which bisects
the W = 0, Z = 0 subspace to pick out the Schwarz-
schild solutions.

If g )m+ 1 then points for which ~Xo~ (Xq, where
1

lie in the first and third quadrants, and have the same
properties as for g

z (m+1. If ~Xo] ) Xq, on the other
hand, then one critical point lies in each quadrant. The
two points in the first and third quadrants have the same
properties as before. At the critical points in the second
and fourth quadrants we find that r" —+ oo. As before
there is one degenerate direction corresponding to a zero
eigenvalue. However, both points are now saddle points
with respect to the remaining two directions. Each criti-
cal point in the second (fourth) quadrant repels (attracts)
one trajectory from the A ) 0 region and one trajectory
from the A & 0 region of the phase space: these are the
Z = 0 solutions discussed in Appendix B 1, and depicted
in Fig. 4(b). Each point in the second (fourth) quadrant
similarly attracts (repels) one trajectory for each sign of
A: these trajectories are in fact the A = 0 solutions dis-1'
cussed in Appendix B2, and depicted in Fig. 5(c). Their
asymptotic form is given by (B27). Thus trajectories
in the A & 0 and A & 0 regions of the phase space for
which Z is not identically zero do not have end points in
the second and fourth quadrants. If such solutions have
asymptotic regions, the limit i —+ oo must be approached
at critical points at the phase space infinity.

The phase space infinity of the W = 0 subspace can
be studied once again by introducing coordinates (2.24),
(2.25). The following equations are obtained for the an-
gular coordinates on the p = 1 sphere at infinity:

dt9 A, m —1= cos8 —cos 8 cosP+ (1 —g ) sing —sin 8 sing+ P2 cosP+ sing
~d~ m 1 rm

(2.35a)

dP
d7-

A, , , , fm 1. ——i cos 8[(1 —g ) cosp —sing]+ sin 8 P2 ~

sing —cosp
~sin 8 m m

(2.35b)
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where

P = m+1 —g cos P —2mcosgsing+(m —1)sin P
l. +(m —1)g s . 1

(2.35c)

Four sets of critical points are found.

(i) Once again we obtain the end points of the curves
of critical points with A = W = Z = 0. These points,
which we will denote Is s, are located at

'7re=—
2

P = arctan
m —1

(2.36a)

(b)

&, (0
A, y0

A, &0

A, &0

h

FIG. 4. The projection of trajectories in the W = 0, Z =
0 subspace onto the X,Y plane, with V given by (2.12), for
nonzero c~: (a) g (m+1; (b) g, )m+1. The broken line
corresponds to the Schwarzschild solution. The bold lines rep-
resent sections through the cone of critical points A = 0, W =
0, Z = 0. If c~ = 0 we obtain the section which bisects the
cone, so that instead of being hyperbolas the critical points
fall on the lines Y = [1/(m —1)](m + [1+(rn —1)g J ).

FIG. 5. The projection of trajectories in the W = 0, A = 0
subspace onto the X,Y plane, with V given by (2.12), for
nonzero c~: (a) g (m+1; (b) g = m+1; (c) g )m+1.
The bold lines represent the same critical points as in Fig. 4.
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or or

X=koo, Y=X
(mk 1+g 2)

m —1
Z=O.

(2.36b) Z=
I

r/2

X.

(2.38b)

t
m+I —gz

8 = arctan A, ~ +
m

/m+1 —g, '~
P = arctan

)
- 1/2

m+1 —g z)
(2.37a)

or

X =choo,
t'm+1 —g 'l

x,
rn )

(2.37b)

t'm+ I —g ') '~'
1

m ]
X,

on the A = 0 surface. In the full five-dimensional phase
space these points also have

These points have the same properties as those outlined
above for the appropriate cases of the A = W = Z = 0
points at finite distances from the origin.

(ii) We once again obtain the critical points Mi and
Mz given by (2.29). As before, these points, correspond-
ing to asymptotically fiat solutions, are found to act as
saddles with respect to all trajectories other than the
two-dimensional bunch of W = Z = 0 Schwarzschild so-
lutions.

(iii) If Ai ) 0 and g
2 & rn + 1 or if Ai & 0 and

g
z & m+ 1 then there are two critical points, which we

will denote Ni and Nz , which a. re located at

(Ai 1+(m —l)g 2 )
In the full five-dimensional phase space these points also
have

W=0, (mg, ' - g, g, +11V=i ' '' X
( 1+ (rn —1)g z )

(2.38c)

If g
2 & 1 these points lie in the A & 0 portion of the

1
phase space, while if g

z ) 1 they have A & 0. If g
z = 1

they are degenerate with points Ni and Nz.
If g

z & 1 the point Pi (Pz) in the first (third) quadrant

attracts (repels) a two-dimensional set of A & 0 trajecto-
ries, acting as a saddle with respect to other directions.
The two-dimensional separatrix separates A & 0 trajecto-
ries with an end point on Ni (Nz) from trajectories with
two end points on the A = W = Z = 0 curve. If g & 1

then Pi (P2) attracts (repels) a three-dimensional set of
trajectories: all A ) 0 solutions apart from those lying in
the Z = 0 plane.

In Figs. 6 and 7 we sketch trajectories on the hemi-
sphere at infinity of the W = 0 subspace for the various
cases which give distinct behaviors.

The properties of the Z = 0 subspace follow by sym-
metry upon making the substitutions Y ~ V, Z +-+ W,
A, ~ Az, and gi ~ gz in the above discussion. To set
our notation, the critical points on the sphere at infinity
located at

W=0, t'm+ I - g, g, & ~
m

(2.37c) X =+oo,
(rn+ 1 —g, '~V=

i ~X,
rn )

If g
z & 1 then the point Ni (N2) in the first (third)

quadrant attracts (repels) a three-dimensional set of tra-
jectories in the three-dimensional subspace. (Ni attracts
all trajectories in the A & 0 region, and some A & 0 tra-
jectories if g & 1.) If 1 & g & m+ 1 then Ni (N2)
only attracts (repels) the two-dimensional set of trajec-
tories lying in the A = 0 surface, and acts as a saddle
with respect to other directions. If g

2 = m+ 1 then
1

Nq and N2 are degenerate with the points L5 and L7. If
g ) m+ 1 then the point Ni (Nq) lying in the fourth

(second) quadrant repels (attracts) a three-dimensional
set of trajectories in the subspace.

(iv) If Ai & 0 then there are two critical points, which
we will denote Pq and P2, which are located at

$2Ai 5~
8 = arctan! ' 1+ (m —1)g( m 4' 4

( +I g,
'&'"-W�! X,

rnAz )
&(m+1- g, g, ) &1 2Z=O,

X =+oo,

W= X,
A2 1+ m —1

g g~g2m ' — +1)
( 1+(m —l)g 2 )

V=X,

will be denoted Rq and B2. The points located at

(2.39)

(2.40)

(2.38a) will be denoted Qi and Qq.
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D. Global properties of solutions

We turn now to the global properties of the solutions as
deduced from the nature of trajectories in the full five-

dimensional phase space with A P 0. The behavior of
the trajectories may be pieced together in a relatively
straightforward manner from the properties of trajecto-
ries in the subspaces already discussed, since if A g 0

the only critical points at infinity other than those al-

ready found are the extension of points Li s to the one-

m — 1+ m —1g
&y&

m —1

m+ 1+ m —1g2
m —1

(2.41)

The points L(y) are located at

parameter family of critical points which coincide with
the intersection of the A = 0, Z = 0, W = 0 surface
and the sphere at infinity. We shall denote the whole set

(L(y)), where

7r8=—2'
/=0 L-, I MII6

A&0

7I0= —
i

2
/=0 Ml 16 AI'& L,s

M, 16
A&0

M2 L8

7rg= —i

2
/=0 Ml L6 U) LH

FIG. 6. The hemisphere at infinity for the three-dimensional W = 0 subspace with Ai ) 0: (a) g & 1; (b) g, = 1; (c)
1&g, &m+1;(d) g2&m+1.
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,'(a )

Ml LG L7 M2 Ls P=2m

L-, EI & Ls

FIG. 7. The hemisphere at infinity for the three-dimensional W = 0 subspace with A~ & 0: (a) g, & m+ 1; (b) g,
2 & m+1.

X=koo, Y =yX, Z=0, W=0,
(2.42)

I mg~(g, —
g~) + 1+ (m —1)g,gz yk 2my —(m —l)y~+g 2 —m —1)

V= 1+ (rn —1)g,2 X.

Generically, apart from a few exceptions7 trajectories
which are not confined to the sphere at infinity have at
least one critical point on the A = W = Z = 0 curve.
Provided that g

2 & m+1 and g
2 & m+1, then all such

critical points take values Xo, Yo, and Vo which are ei-
ther all positive, or all negative. They respectively either
repel or attract a three-dimensional set of integral curves
in the five-dimensional phase space, the remaining two
directions being degenerate. The points all correspond
to r" = 0 singularities with the exception of the points
with Yo = Uo which correspond to horizons.

If g ) m+ 1 or g ) m+ 1 then in addition to
the critical points for which Xo, Yo, and Uo are all of the
same sign, critical points of mixed signs also exist. These
critical points are saddle points with respect to most tra-
jectories in the phase space. The W = Z = 0 solutions

The W = 0, A = 0, g ) 1 solutions given by Eqs. (B29)—
(B35) in Appendix B have end points on Nq and N2 on the
sphere at infinity, and have no asymptotic region. A sim-
ilar class of solutions exists for Z = 0. Also, in the case of
the Robinson-Bertotti-type solutions (2.20), some trajectories
join the points Sz and S2 [cf. Fig. 2(b)j.

form one separatrix of trajectories with end points at the
saddle points; for these solutions we still have r" ~ 0
as the critical points are approached. Other separatri-
ces are formed by the A = W = 0 solutions, or the
A = Z = 0 solutions, as appropriate. For these solu-
tions r" ~ oo as the saddle points are approached, as is
discussed in Appendix B.For most trajectories, however,
including the A ) 0 ones which are of prime interest to
us, it is necessary to examine the behavior of the solu-
tions at the phase space infinity in order to determine
the asymptotic (r" ~ oo) behavior of solutions for which
an asymptotic region exists. Apart from such solutions
there are also many trajectories with two end points on
the A = W = Z = 0 curve which have no asymptotic re-
gion. Generally, they connect two points at which r" —+ 0.
However, a subset with two end points in the U = Y,
W = pZ subspace describes Schwarzschild —de Sitter-like
solutions, as was discussed in Sec. II B.

All critical points at infinity other than the points I (y)
and Sq q are found to correspond to r" ~ oo provided that
0&g &m+1 and0&g &m+1. Ifg~ =Othen
the points Pq, z correspond to r" ~ const (indicating the
presence of Robinson-Bertotti-like solutions), while the
points Ny ~ still correspond to r" ~ oo. The same is true
for the points Qq q and Bq 2, respectively, if gz

——0. If

g )m+ 1 then points Xq q correspond to r" —+ 0, while
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TABLE I. Asymptotic form of solutions for trajectories approaching critical points at infinity
from within the sphere at infinity.

My, 2

Ng, 2

R,2

+1,2

Values of constants
A&0
g &m+1, A~&0,

g, g0, A, &0, sgnA

g2$0, A2&0, sgnA

g, '& m+1, A, &0,
A'&0, A=o

'

= sgn (g, —1)
= sgn (g —1)
A=O

2th

const
r2

„-2/u,
'

„-2/u, '

r2
r2

2@

const

r l-2(u ' —~)

const

const

r 2
-2(a '-~)
A 2r

2lco'

const

r gl

m/g

-m/g

r g2

const

0&a3&n4& . &n, &&a, &1, (2.44)

If g & m+ 1 or g ) m+ 1 then we will also have
r" ~ oo for A = 0 trajectories which approach points L(y)
with y & 0. However, such trajectories are confined to the
sphere at infinity and thus do not represent physical integral
curves, and so we omit them.

if g & m+1 then the points Ri z similarly correspond to
r" ~ 0. To discuss the asymptotic form of the solutions
it is perhaps more convenient to examine the behavior
of the metric functions of the more usual Schwarzschild-
type coordinates

g i,dx dx = —e "dt +e "dr" +r" g pdx dxP, (2.43)

rather than (2.1a). In Table I we display the asymptotic
form of the metric functions (2.43), and of the scalar
field, for integral curves from regions of the phase space
at a finite distance from the origin which approach each
of the critical points on the sphere at infinity for which
T ~OO.

In order to classify the various solutions we must first
of all determine the nature of the various critical points
at infinity. It is straightforward but laborious to evaluate
the eigenvalue spectrum for small perturbations about
the points. In Table II we summarize the results for such
an analysis. We display the eigenvalues for the points
with X & 0. For the corresponding points with X & 0
the sign of the eigenvalues is simply reversed.

The qualitative behavior of the trajectories is largely
dependent on the values of gi and g2, apart from the
case of points Mi 2. These points, the only ones which
correspond to solutions asymptotically flat in terms of r",

are end points for a three-dimensional set of solutions for
all values of gi and g2. These solutions are just those
lying in the W = Z = 0 subspace, which is physically
equivalent to Ai = Az —— ——A, = 0. Thus models with
nonzero A,. possess no solutions which are asymptotically
flat in terms of r" if A g 0.

The eigenvalues for small perturbations near the points
Ni z, Pi 2, Qi,z, and Ri z are essentially independent of
the constants g, , i & 3. The only exception is one eigen-
value at each point in the case that at least one of the
n; or P; is less than one-half. On account of the ordering
(2.2) we also have

and

1&Ps&P4» P. i&P. &0. (2.45)

Thus either ns or P, has the smallest value of the n, and
P;—this value being important in defining coordinates
at the phase space infinity which lead to a well-defined
spectrum of linearized perturbations. If we define

gs ifns&P, )

g~ otherwise, (2.46)

g, ifP, &ns,
gP g2 otherwise, (2.47)

then we find that one of the eigenvalues at the points
Ni, 2, Pi,2 depends on the factor (gi —g ), while one of
the eigenvalues at the points Qi, z, Ri,2 depends on the
factor (g&

—g2). However, since both these factors are
positive for each choice of o. and P there is no qualitative
difference between the alternatives.

In Table III we summarize the nature of the set of
solutions with end points at Ni q and Pi z. The corre-
sponding results for Ri,2 and Qi, 2, respectively, may be
obtained by substituting gi -+ g2, W -+ Z. We display
the dimension, d~, of the maximal set, A, of trajecto-
ries with end points at each point —for g & m+ 1 this
means the dimension of the set of trajectories attracted
to (repelled from) the point Ni (N2), and vice versa if
g & m+1. In the case of the point Pi (P2) it means the
dimension of the set of trajectories attracted (repelled).
Each point with d~ & 5 will also be the end point for a
(5 —dA)-dimensional separatrix of saddle-point trajecto-
ries. Of most interest are the points which are end points
for a five-dimensional set of trajectories, as they repre-
sent solutions with the most typical behavior. If gi & 0
then such points (Ni q) exist only when g & m+ 1 and1.
Az & 0. Such points exist for all g~ & 0 if A~ ) 0: for
g & 1 they are the points N~2, and for g & 1 the
points P~ ~. For the higher-derivative theories, however,
g& & 0 and g & m+ 1 and thus the points Nq q or
P~ 2 are end points for at most a four-dimensional set of
solutions.

The nature of the set of solutions with end points at
Sq g and Tq, q is dependent on both the constants g,. and
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TABLE II. Eigenvalues of critical points at infinity. The eigenvalues for small perturbations
which are degenerate have the degeneracy listed in parentheses. The values of y and e listed are
defined by (2.41) and V = vX in (2.42).

Eigenvalues (with degeneracies)

1(v)
My

Ng

Sy

0, (2); 2; y; v.
—1, (3)

1
(2)

(m + 1 —g, '), (3); —(g,
' —1);

1 t 9+(m —9)g2 l-1, (2); 1+
2

I 1+(m —1)g ~ )
—1, (2); 1+1 I' 9+(m-9)g ~ )

2
~

1+(m —1)g2 J
(m+ 1 —g ), (3); —(g —1);

1 ( 8m(g,—2; —1; 1; i
—m+ m~-

'2m

—'(g, —g.)

g~)
1+ (m —1)g 2

'

.
— (.— )
1+ (m —l)g '

—
g~'

(gs —g.)
—g2)Au ~

A

—(m+ 1) —2
(2)

(
2m

8(m+1)(g, —g~)As 't

A

the constants A, However, the three eigenvalues corre-
sponding to directions which lie within the anti —de Sitter
subspace V = Y, W = pZ are independent of the g,. and
A, , and so any differences are determined by the remain-
ing two eigenvalues, which are given by the solutions of
the equations

/m+ 11 2(m+ l)(g& —gz)A~A'+
i

m msA

for the points Tq 2, where

(2.48b)

A'+A+ (' ') '=o,
mA

for the points Sq,2, and

(2.48a)
A~ = Asg2p + ) A,.g,.cr,p

7=3
S

= —
A~g~

—) A,. g,.P,.p (2.48c)

Ng g

TABLE III. Nature of trajectories that approach points Nq, 2 and Pq 2.

Nature of solutions (A)
0&g &1
—1(g~ &0
g~ =1

g &0, 1(g & +1
g, (0, 1(g & m+1
g, &0, g, '&m+1
g, (0, g, &m+1

0&g (1
—1&g, &0
g~&1
g~ (—1

4
5

5
3

4

W=0, A &0; W=O, A &0
A&0 A&0
W = 0, A & 0; 3-dim. W = 0, A ( 0 separatrix
A & 0; 4-dim. A ( 0 separatrix
W=O, A=O

A&0; A&0
W=O, A&0; W=O, A(0

Nature of solutions (A)
W = 0, A & 0 separatrix
A ( 0 separatrix
W=O, A&0
A&0
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For all choices we find only two possibilities: the dimen-

sion of the maximal set of trajectories with end points
at Si z is either three or four; while the dimension of the
maximal set of trajectories with end points at Ti q is ei-
ther four or five. The latter was true in the case of the
Kaluza-Klein models studied in [29].

This completes our classification of the solutions for
Einstein gravity coupled to a scalar field with potential
(1.10) for which the constant A, defined by (2.14) and
(2.15d), is nonzero. For nonzero A,. solutions which are
asymptotically fiat in terms of r" do not exist. This is not
the case if A = 0, however, as we shall see in the next
section.

III. SOLUTIONS VfITH A
SCHYVARZSCHILD SUBSPACE

(SPECIAL POLYNOMIAL R THEORIES)

If there exist solutions p of (2.14) such that the con-
stant A defined by (2.15d) vanishes, then the structure of
the phase space is significantly altered. No such solutions
exist if s = 2. However, if s ) 3, which applies in the
case of the R+ aR2 theory and other higher-derivative
models with potential (1.13), then such solutions are pos-
sible. We see from (2.17) that if A = 0 we immediately
obtain the Schwarzschild solution —thus all solutions ly-
ing in the three-dimensional subspace V = Y, W = pZ
(for appropriate p), and not just those in the Z = 0
plane, are Schwarzschild solutions. This may be verified
by direct integration since Eqs. (2.15) are now equivalent
to the equations which lead to the solutions of Appendix
Bl, with the added restriction that ci = mk.

If we compare the phase-space structure with that of
the subspace of Sec. II B, we observe that the points Si q

and Ti,2 do not exist in the Schwarzschild subspace. In-
stead, we have an additional one-parameter family of crit-
ical points at a finite distance from the origin. These
may be parametrized in terms of their arbitrary value of
Z = Zo ) 0, and are located at

with solution

Z = C, !X+mk!'/'! X —mk! i"+'l/i'("-'lj

if k g 0, or

Z = t Xm/(m 1)

(3.3a)

(3.3b)

X = psin8cosg,

Z(m-1)/rn = co 8,

Y = psin8sing,
(3.4)

and perform the same analysis as before. This yields the
plot Fig. 10(b) for the sphere at infinity. In these coor-
dinates we obtain a line of critical points on the sphere
at infinity with arbitrary angle 8:

if k = 0, where Co is an arbitrary constant in both cases.
The pattern of these trajectories is depicted in Fig. 9.
The critical points at +mk are of course those that lie on
the A = W = Z = 0 curve, and as expected they either
attract or repel a two-dimensional bunch of solutions in
the subspace. From Figs. 8 and 9 we can see that for
finite Zo the points O(ZO) neither attract nor repel any
trajectories, and so there are no solutions for which they
are end points. Clearly, however, all trajectories which
reach infinity other than those in the planes depicted in

Fig. 8 approach the point Oi. This is borne out by the
plot of the hemisphere at infinity with coordinates 8 and

P defined by (2.24), which is shown in Fig. 10(a).
The fact that Oi appears to be an end point for many

solutions is in fact somethin of a misnomer, which arises
from the fact that Z X~ i ii as X ~ oo for all so-
lutions with an asymptotic region, so that Z grows more
rapidly than either X or Y. Thus although the solutions
(3.3) do not have X = 0 or Y = 0 as Z -+ oo, they are
nonetheless projected onto the north pole, Oi, if coordi-
nates (2.24) are used. This degeneracy can be lifted if
instead of (2.24) we use coordinates (p, 8, |t) defined by

X' = X'- ~'k'
Z' = (X+ k) Z,

(3.2a)

(3.2b)

W = 7Zs. (3.1)

We shall denote these points O(Ze), and the point at
infinity (Zo -+ oo) will be denoted Oi. These are the
only additional critical points.

Small perturbations about the points O(Zo) yield three
zero eigenvalues, indicating a high degree of degeneracy
However, their properties with regard to the structure
of the phase space may be ascertained from the following
observations. Firstly, if Y = X or Y = (m+1)x/(m —1),
then P = 0, X' = 0, and Y' = 0, so that the motion of the
trajectories is entirely in the Z direction, as is depicted
in Fig. 8. Furthermore, since (2.23) is now true for all
solutions we may foliate the thr~~™-dimensional subspace
by a stack of planes Y = m(X + k)/(m —1) to which
trajectories are confined. Each plane is described by a
two-dimensional autonomous system

X'

FIQ. 8. The plane Y = X or Y = (m + 1)X/(m —1)
in the Schwarzschild subspace. Both axes are one-parameter
families of critical points. The solution in the Y = X plane
corresponds to the A = 0, A = 0 limit of (2.20), while the
solution in the 'Y = (m + 1)X/(m —1) plane corresponds
to the limit gi = 0, Aq = 0 of the solutions (B13)—(B21) in
Appendix B.
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/ m
P = arctan

~

qm —I) (3.5)

/ /

/ /

/ /

/

/

/

/

/
1

n, j
/

/ a
//

/

—mike m/kf

FIG. 9. The planes Y = m(X+k)/(m —1) in the Schwarz-
schild subspace: (a) k = 0; (b) k & 0. The dashed trajectories
are positive-mass Schwarzschild solutions. If A: ) 0 these tra-
jectories are located in the X & —m~k~ region.

Perturbations about these critical points still yield one
zero eigenvalue, corresponding to the degenerate direc-
tion 9, but each point in the first (third) quadrant is
found to attract (repel) a two-dimensional set of solu-
tions from regions of the phase space at a finite distance
from the origin.

The crucial question now is: do any trajectories which
lie outside the Schwarzschild subspace have an end point
at O~? If such trajectories do exist, and if any of them
curve back to another end point in the Schwarzschild sub-
space corresponding to a horizon, then we would have
solutions with nontrivial scalar fields which violate the
no-hair theorems. The corresponding Schwarzschild so-
lution in any equivalent higher-derivative theory would
be nonunique. The answer is that the eigenvalues for
perturbations in the two extra directions are given by

2= -2
(g, —g)A, (3.6)

where A~ is given by (2.48c). Provided that A~ ) 0 then
Oq will be a "center" with respect to the extra direc-
tions, and the only solutions with an end point there will
indeed be just the Schwarzschild solutions. If A~ & 0,
however, then Oi will be a saddle point with respect to
the extra two directions, and a four-dimensional separa-
trix of solutions will have an end point at Oi within the
full five-dimensional phase space. Unfortunately, it is not

0,

Ll Ml Lo
/1 = —!!~

@=0 L;I, i/I& L I

I

I

I

I

I

I

I

I
I

I

I

I

O(0)
0 0 I

g
2
/=0 Ml L, Li II2 L.I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

p= 27i

FIG. 10. The hemisphere at infinity for the three-dimensional Schwarzschild subspace: (a) with 8, It/ defined by (2.24); (b)
with 8, P defined by (3.4).
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immediately obvious whether the solutions with an end
point at Oi which lie outside the Schwarzschild subspace
have a second end point on the A = W = Z = 0 curve
at a point corresponding to a horizon or to a singular-
ity. Thus we cannot extend the no-hair theorem, or the
corresponding uniqueness theorem for higher-derivative
theories, to the case in which A~ ( 0.

For the R+ aR theory, or indeed for any action (1.7)
with coefficients (1.11), which gives rise to an equivalent
potential (1.13), we find that a Schwarzschild subspace
is obtained only for s = 1 and p = 1. Consequently,
A~ = m(n —1)/(4nagm+ 1) and

4a(m+1) ' (3 7)

= —e "diaz+ e2"dr2+ r~y dx~dz~. (3.8)

(Near the points Tq 2 the solutions are of course still
asymptotically anti —de Sitter in terms of the coordinate
r as well as r".) It is evident that, as required, none of
these solutions are asymptotically flat.

From Table III, we see that for the higher-derivative
theories points Ni, z are end points for the three-
dimensional set of W = 0, A = 0 solutions, while points
Pi, z are end points for the four-dimensional set of W = 0,
A & 0 solutions. The constant g2 can take either sign
depending on the relative values of rn and n, and its ab-
solute value is only restricted by y

2 ( rn+ 1. Thus

so that Oi is an end point for Schwarzschild solutions
only provided a & 0. This is of course the same condition
required for Whitt's proof in the case of the R+ aRz
theory (cf. Appendix A).

To complete our proof of the uniqueness theorem for
higher-derivative black holes it is still necessary to check
the asymptotic behavior of the metric functions near the
critical points at infinity for which e2" is not asymptoti-
cally constant in terms of the physical radial coordinate r
instead of the coordinate r" used in Table I. The results for
higher-derivative actions with equivalent potential (1.13)
are listed in Table IV, in terms of metric functions for
the physical metric in Schwarzschild-type coordinates:

( -4i~o
exp

~ I g gd*" dx
mmmm+ 1)

the dimension of the maximal set of solutions with end
points at Ri, z and Qi z is three, four, or five depending
on the particular values of m and n. For m = 2 (i.e. ,
the four-dimensional theory) and n & 3, points Ri 2 are
end points for a 6ve-dimensional set of solutions of either
sign of A, while points Qi 2 are similarly end points for
a four-dimensional separatrix. If m = 2 and n = 2, the
dimension of these sets is reduced by one with the ad-
ditional restriction that Z = 0. In this case, or for any
m and n such that m = 2(n —1), the points Ri z corre-
spond to asymptotically anti —de Sitter solutions. These
solutions appear to form a special class unrelated to those
of Sec. IIB.

The points Si,z and Ti,z exist provided that m g 2(n—
1), p being given by roots of the polynomial (2.14):

]2(n —1) —m] (Eg ~
)

—2n(gp &") +m+2 =p,

6' = —1)

which gives

(m+21
Em —2

m&2, (3.11)

(m+ 2)(m —2)a ' (3.12)

as is appropriate for the exact solution (2.19). Thus the
points Si,z and Ti,z exist only for a ( 0, m & 2. We find
that

-m im+2q
8agm+1 (m —2 j (3.13)

and consequently a four-dimensional set of trajectories

for which sp2~" P 1 (and p & 0). If we factor out the
Schwarzschild root (3.9) reduces to the polynomial

"-1 n-2
]p(n —1) —m] (Ep ~") —(m+ 2) ) (Ep ~") = p.

j=0

(3.10)

For the R+ aRz theory (n = 2), for example, the only
solution (with p & 0) is

TABLE IV. Asymptotic form of the higher-derivative theory metric for polynomial R actions
(1.7) with coefficients (1.11) in terms of the physical radial coordinate r, for the critical points at
infinity at which r is not proportional to r".

Ng, 2

Values of constants
~-1

&0, A=0

e2Q

r2

2v

R,2

Ry, 2

&0, A&0
a

m+2(n-1), —&0,a
sgn A = sgn [m —4n(n —1)]
—&0, A=O
a

r4/( +)

r4{m—i)(2n —i)/ fm —2(~—i)]

r2

const

const

r [~—4~(~—&)]/[(~—&)(2~—&)]
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have end points at Si,2, and a five-dimensional set of
trajectories have end points at the points Ti 2, with anti-
de Sitter asymptotics. If a & 0, the structure of the phase
space is completely different: the points Si 2 and Ti 2 do
not exist. Instead we find a class of solutions with two
end points lying in the V = Y, W = (m + 2)Z/(m—
2) subspac" these are asymptotically de Sitter. In the
case of four dimensions (rn = 2) no subspaces of purely
Schwarzschild —(anti-)de Sitter solutions exist in the R+
aR2 theory. However, the points Ri,2 (which are end
points for a four-dimensional set of solutions) nonetheless
have anti —de Sitter asymptotics.

we shall see, however, that in the general case the 6eld
equations become equivalent to those given by one ex-
ponential sum potential or another near all the critical
points. Consequently, the global properties of all theories
polynomial in R can be obtained from the results of Secs.
II and III. As an independent check on this argument in
one case, however, we shall first treat the general cubic
theory in detail.

A. The R+ aR2+ bR theory

IV. GENERAL POLYNOMIAL R THEORIES

The analysis of the previous two sections applies ex-
actly only to those polynomial R theories with coeffi-
cients (1.11). For Lagrangians of degree n & 3 in R

I

The general cubic theory with f = R+ aR + bR
is described by a potential (1.6) which contains terms
nonpolynomial in exp [i4o /gD —1]. The potential (1.6)
may be conveniently written as

f —4gieo. & ( 4g2z—o ) bs A4 f —8(gi —g2)~o l / (—4gsKo l
Aiexp

I

'
I +A2exp

I

'
I + —'exp

I

' '
I

+Asexx ~

where

m+2
2&m+ 1'

-(m —4)
4/m+ 1

'
1

v'm+ 1'

(4.la)

(4.1b)

,

/', 9 ')

27b' (, 2 p
' A2 = —26'E'6 a

3 3$ A, = —'(a'-3b), (4.1c)

and 8 is now defined by

1 if 1+3bR/a & 0,
—1 if 1+3bR/a ( 0. (4.1d)

As before, s is defined by (1.2b). The quantities gi, g2, and g3 are still identical to those given by (2.10a) for n = 3.
However, the coefficients A,. now differ in general from those given by (2.10c)—the new coefficients A, reduce to the
values (2.10c), with A4 ——0, in the special case a2 = 3b, when the potential is an exponential sum. Our new definition
for Z also reduces to the former definition (1.13b) if a2 = 3b The Einste. in-scalar field equations with the potential
(4.1) are given by

- 3/2
("= (m —1) Ae ~ + A e "+ A e + —e ("

Ibs[ A

2(q+2X) /3
3 ) (4.2a)

g" = m(m —1)Ae ~+ —m+1 —g A e "+—(m+1 —g g ) A e + —e (" ")
m m

( + 1 )A 2(|i+2x)/3 gl
( )A 2(2@+x)/3 + 4 e2(q —x)m g)g3 3e g2 4e

IbsI A2

- 3/2

(4.2b)

)(" = m(m —1)Ae ~+ —(m+1 —g g ) A e "+—m+1 —g A e" + e("—
m 1 2 1 m IbsI A

(m + ] g g ) A e2(q+2x)/3 2
(g g )A e2(2/+x)/3 + 4 e2(q x)1 g

m 2 3 3 m ' 2 4
Ib~I A 2

(4.2c)
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with the constraint

2m('(g2rj' —giy') 1+ (m —1)g2,2 1+ (m —1)gig2, , 1+ (m —1)gi

Ae" Ae" b A / A

+(m ])Ae ~+ + e ~ + e ~& ~~ + e ~&+ &)/3 —0 (42d)
m m Ibe

I A, m

where the variables (, rj, and y are defined as before by (2.3)—(2.5). If we now define the variables X, Y, Z, V, and

W by (2.7) once again, and use the constraint (4.2d) to eliminate the e2& terms from (4.2a)—(4.2c) we obtain the
first-order system

x'= —(A z'+A r'~A w'/'z'/')—
m 1 2 + 3 m

(4.3a)

Y' = (g, —1)A,Z y (g, g —1)A I' + (g,g —1)A W / Z / + g, (g, —g )A Z /3I' / —P, (4.3b)

V' = (gig —1)AIZ + (g —1)A2I'2+ (g2g3
—1)A3W4 3Z +g (g —g2)A4Z / I' / —P, (4.3c)

Z'= YZ, (4.sd)

W'= VW, (4.3e)

where b&0, a2 &sb, g = —1) (a2 —4b) ea & 0.

be
- 3/4

r = ' w'/'+ —'z'/'
Ibel A2

(4.sf)

b&0,

or if

a &Sb, 8=+1, ea &0, (4.4)

and P is still given by (2.8f).
The differences between Eqs. (4.3) and (2.8) do not

give rise to any significant changes to the analysis of Secs.
II and III. The position of all critical points W = 0 and
Z = 0, and in particular the A = W = Z = 0 surface, is
unchanged, as are the eigenvalues for small perturbations
about them. The number of critical points at infinity
with Z P 0 or W P 0 is also the same, and their location
is more or less the same. For points RI,2 and QI 2 the
definitions (2.39) and (2.40) are the same, if we now use

A2 as defined in (4.2c). These points now exist if cEja (
0. In the case of points NI, 2 and Pi,2, we must make the

replacement Ai ~ Ai + A4 A4jA2 in the definitions
- 1/2

(2.37) and (2.38), with Ai, A2, and A4 given by (4.2c).
These points now exist if

(4 5)

In the case of points SI,2, TI,2, and Oi, our previous
definitions are once again valid if we replace Eqs. (2.14)
and (2.15d), which respectively define p and A, by

A
- 3/2

Aigi + A2g2
4 4/3

2
+ Asgsy4/3

aild

- I/2

+A, (g, —g, ) —' + ~4/3
2

= 0, (4.6)

—1
- 3/2

A +A —4+~4/3
m 2

+ A3P4/3 (4.7)

Here the plus (minus) sign corresponds to be & 0 (be (
0). The eigenvalues about the various critical points are
unchanged from those given in Table II, if A~ is defined

- 1/2

A, ~ A, g2
A

+~ + 3A3g, + 3A, (g, g, )
A

+~ /4/3 4 4/3 4 4 3

2 . 2

. —
1/2)

- —1/2-
= —Ag ——Ag7

1 4/3 4 4 3 43 A4
1 1 3 3 3 A

-(2. +g)~/+ —.1 2
2 2

(4.8)

instead of (2.48c).
A Schwarzschild subspace (A = 0) is obtained only for e = +1 and e = +1, the appropriate solution then being

given by p = 1. Eigenvalues for small perturbations within the subspace give the same results as previously, and
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furthermore we find that for perturbations in the additional two directions the eigenvalues are once again

2
0 4a(m+ 1)

(4.9)

Thus just as in the special case of polynomial actions with coefficients (1.11), the black hole uniqueness theorem
applies to solutions with a & 0. Most significantly, this result applies independently of the coefficient b of the R
term.

With regard to the (anti —)de Sitter subspaces, we find that (4.6) has the solution

(m+ 2) (m —2)a2 —4(m —4)b + ag(m —2) a —4m(m —4)b

2(m —4)~bs

3 (4b - a')
ifm$4,

if m=4,
(4.10)

where the sign of s is taken so as to make the right-hand side (RHS) positive. Consequently,

~-4~'A = ~

—(m —2)a p Q(m —2)~a~ —4m(rn —4)b

2(m + 2)(m —4)b

3G
ifm=4,

(4.11)

Thus exact Schwarzschild —de Sitter-type solutions of the form (2.18) are also obtained for m = 2, in contrast with the
R+ aR2 theory. Furthermore, although in the case of the R+ aR theory only anti —de Sitter solutions are admissable
if a & 0, for the present theory both de Sitter and anti —de Sitter solutions are obtained for a & 0 if m g 4 (for either
sign of b)

B. Theories of arbitrary degree

At the next order with f = R+ aRs+ bRs+ cR the polynomial giving R in terms of f' has three branches, giving
rise to potentials such as

V=
z sexp~ ~

+ac q
—2bc Zo —6c q Z +Z +3c Z +Zs f 2DKo—lb 's s 4 4 (4.12a)

where

(8q=
/

-ac —b~ [,16cs (3
(4.12b)

and

= 1 3 2
2Ko.

E 4ebc —b —be 1 —e exp
~ ),64c3 (QD —1

(4.12c)

q3++ 2 (4.12d)

Such a potential would lead once again to equations similar to (4.3), if the g. of (2.10a) with n = 4 are used, but

now with a further level of nesting of terms involving irrational roots In the s.pecial ease that 3b2 = 8ac (i.e. , q = 0),
E+ ——2ZO and Z = 0, so that the potential (4.12) and the resulting differential equations become almost identical

to those of the R+ aR2 + bRs theory, the only diKerences being the values of the A, and the factors o,s and ps [which

appear implicitly in (4.3) in the fractional powers].
We will not study the theory generated by the potential (4.12) in detail, but remark that it should not lead to any

differences from our former analysis any more substantial than, say, the differences between the cubic and quadratic
theories. In particular, the uniqueness of the Schwarzschild solutions should still apply to theories with a & 0.

We will now show that the uniqueness theorem does indeed apply to theories with a polynomial R action of arbitrary
degree n, if a2 & 0. We note, first of all, that the Einstein-scalar field equations with a general potential V, derived

from the action (1.4a), are given by

("= (m —1) Ae ~ —4K Vexp
2(V,X —e,n)

g~
—

g2
(4.13a)



46 BLACK HOLES IN HIGHER-DERIVATIVE GRAVITY THEORIES 1497

(m+1)4z V dV
rI" = m(rn —1)Ae ~—

m
+ eg exp'do

2(gi X —g2rl)
7

gl
—

g2
(4.13b)

with the constraint

(rn+ 1)4~ V dV (giy —gzg)+-g, -p '
m dO' gl

—
g2

(4.13c)

2m('(g rI' —g ~') 1+ (m —1)g&,z 1+ (rn —l)giga(m+ 1)(' + ' +
( )z

g' —2
(

)z' rI'X'
gl

1+ (m —1)g, 4zzV
+ ' y' + (rn —1)Aez~-

(g, —g,)' m
e (g'" g'") =0 (4 13d)

gl —
g2

where we have used the coordinates (2.1), and functions (, (7, and g defined by (2.3)—(2.5) with gi and gz as yet
undetermined (apart from the assumption that gi g gz). In (4.13) o is assumed to be defined implicitly by the inverse
relation to (2.4) and (2.5), viz. ,

m(y —rl)
~o = —

/

2 (gi —g2)

For a general polynomial R action (1.1), (1.7) this implicit definition becomes

( 2ro ')[ /2n —1 y —rl l
sexp

~
1=«xpI

I
=1+).p aR" '

(,urn+ I p g n

on account of (1.2), while

V= exp~ ' ~) (p —1)a R",s f 4g, &co )—
4z2 ( m j

aiid

s ( 4giro')—
m~ ( m )

exp
~

i
~ (g, —gs)R+) (g, —pgs)a„R~

(4.14)

(4.15)

(4.16)

(4.17)

if we take gi, gz, and gs to be given by (2.10a) as before. Thus if we define variables X, Y, Z, V and W, by (2.7) we
obtain the five-dimensional autonomous system of first-order differential equations

—8ZX' = ) (p —1)a„R"—
mp=2

(4.18a)

2 n—8'Z
g, (g, —g,)R+) g, —1 —p(g, gs

—1) a„R& —P
P=2

(m+ 2)R+ ) [m+ 2p] a R" —P,
—6'Z

p=2
(4.18b)

—GZ
n

22[21 23) +0. (2122 —') —&(2223 —') 'p)1') —p
p=2

—8'Z 2 n

4(n —1)(m+ 1)
[2(n —1) —m +[))1[ (2n + m) + 2(2n ——1)2[ a R~) —P,p

p=2
(4.18c)

Z'= YZ, (4.18d)

(4.18e)



1498 SALVATORE MIGNEMI AND DAVID L. WILTSHIRE 46

where R is now defined implicitly in terms of W and Z
by

/ W 2{n—i)/n

Z
= 1+) pa„R"

p=2
(4.18f)

m+ ) [m —2(p —1)]a Ri' i = 0. (4.19)

The three-dimensional subspace is given by V = Y and
W = pZ, where, by (4.18f),

2(n —1)/n 1 + ) ~ RP-1

p=2
(4.20)

R being a solution of (4.19). The field equations of the
subspace are once again given by (2.15) with A now de-
fined by

and P is still defined by (2.8f).
The properties of the phase space defined by (4.18)

differ little in their essentials from the examples studied
earlier. We first note that an (anti —)de Sitter subspace
is defined by the (constant) values of R given by roots of
the polynomial

kz
)

ky
76'

kv

(4.23)

and classifying the b = 0 critical points of the resulting
field equations

db
z f, + (m —1)P~ (4.24a)

= —((y —1)z f, —giz f2+ P&[(m —1)y —m]),
dy 1 2 2

of the conditions (ii) is R = 0. We therefore retrieve the
same critical points as were found in Secs. II and III, viz. ,

(i) the familiar W = 0, Z = 0, A = 0 surface discussed
in Sec. II; (ii) X = Y = V = 0, W = Z = Zo (R = 0).
These are the points O(Zp) which lie in the Schwarzschild
subspace, discussed in Sec. III.

The phase space at infinity may be studied either by
a direct analysis of the four-sphere at infinity, using an
approach similar to that described in Secs. II 8 and Sec.
IIC, or by the computationally more simple method of
defining new variables b, y, v, z, and ur by

A = —) (p —1)a„R".
p=2

(4.21)
(4.24b)

Our earlier results concerning the (anti —)de Sitter sub-
space follow through. In particular, we are lead to the
Schwarzschild —de Sitter —type solutions (2.18), which in
terms of the original physical metric are given by

= —((v —1)z fi —g2z f2+ Pz[(m —1)v —m]),

(4.24c)

ds = Ddt +6 —dr +r g /3dx dX~,

with

(4.22a) my + z fi + (m —l)P&, (4.24d)

2GM
Tm —1

Q„" 2(p —1)a R" r2

m(m+ 1) 1+ Q„" 2 pa„R&-'

(4.22b)

= —mv+z f, + (m —1)Pq,

where dr = 6 id(, P&
= 6 P, and

(4.24e)

R being a solution of (4.19). Furthermore, we once again
obtain Robinson-Bertotti solutions of the form (2.20) for
our new definitions of p and A.

Let us now consider the critical points of the system
(4.18). It can be readily seen from (4.18a)—(4.18c) that
the only critical points at finite values of X, Y, V, Z, and
W must all have P = 0, and also either (i) W = Z = 0;s
or (ii) R+ p„" 2 pa R" = 0 and R+ Q„" 2a„R" = 0.
The only value of A which simultaneously satisfies both

Ostensibly it would. seem that we can simply take Z = 0
here. However, since R is defined implicity in terms of W/Z
the summation terms in (4.18a)—(4.18c) will not vanish simply
if the overall factor of Z vanishes. The leading order R"
term within the summations is of order W Z, and so for
consistency one must also require that R' = 0 when setting
Z= 0,

f, = s) (p —1)a„R", (4.24f)

f, —= s (g, —g, )R+ ).(g, pg, ) a„R", —
p=2

(4.24g)

with A now defined implicity in terms of m and z. This
method picks out all critical points at infinity apart from
those with X = 0. To obtain all critical points we must
repeat the calculation with each of the phase-space coor-
dinates in turn defined as +1/b.

It is convenient to divide the critical points at infinity
arising from this analysis into three classes according to
the behavior of the scalar curvature R at the points: (i)
R = 0; (U) R = const g 0; or (iii) R ~ oo.

(i) Critical points with R = 0 have fi = 0 and f2 =
0. Consequently the only possibilities admitted by the
equations (4.24) are the points L(y), defined by (2.41),
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(2.42), and the points Mi z, defined by (2.29) (with V =
Y and W = 0 also). If we repeat the above analysis for
the system of equations defined by putting Z = 1/6, with
the other variables proportional to Z, then for R = 0 we
also obtain the point Oi defined by the Zo ~ oo limit of
(3.1).

(ii) If R = const g 0 then we must have z g 0 and
tu g 0 on account of (4.18f). Equations (4.24) then imply
that v = y and f&

——0. This latter condition is equivalent
to (4.19) for R g 0. Thus such critical points must lie
in the anti —de Sitter subspace, which as we have already
discussed is well defined. By the analysis of Sec. IIB,
these critical points are therefore Si,z and Ti,q, where the

p and A of the defining relation (2.30b) and (2.31b) are
now taken to be given by (4.20) and (4.21), respectively.

(iii) Obviously points at which R ~ oo cannot corre-
spond to regular solutions. However, it is nevertheless
interesting to check whether the structure of the phase
space is preserved when compared to our earlier exam-
ples. If R -+ oo, then, on account of (4.15),

1/(n —i)
R + sexp~na„(pm+ I p

(4.25)

In the limit R -+ oo the field equations are therefore
equivalent to those derived from an exponential sum po-
tential (1.10) consisting of a n+ 1 term, with gi, gz, and

gs given by (2.10a) and

2(n —1) + m(j —3)
2(n —1)gm+ 1

4&y &n+1. (4.26)

We could also derive the values of the appropriate co-
efficients A,. ; however, they are not of much concern to
us here. We merely note that since the field equations
are equivalent to those of an exponential sum potential,
the only critical points at which R ~ oo are precisely
the points Ni 2, Pi z, Qi z, and Ri,z (with appropriate
A,. in the definitions). The asymptotic form of the so-
lutions is therefore given by Table I, or in terms of the
physical metric, by Table IV. In particular, all of these
critical points correspond to asymptotic regions in which
the physical metric is not asymptotically flat.

Thus the only integral curves which join a critical point
corresponding to a horizon to a critical point correspond-
ing to an asymptotically flat region must be the trajec-
tories with one end point on the curve formed by the
intersection of the W = 0, Z = 0, A = 0 surface with the
Schwarzschild subspace, and with a second end point at
Mq 2 or Oq. It therefore only remains to determine the
dimension of the set of such solutions. As before, this
may be found by a linearized analysis of small perturba-
tions about the points. This analysis will be unchanged
from that of Secs. II and III since by (4.15) we have, to
leading order in R,

sexp
~ I

= 1+2aR+ O(R ).2

(Qm+ 1)
(4.27)

Consequently, the linearized perturbation equations will
be identical to those obtained in the B+aR~ theory. In
particular, if a& ) 0 then no trajectories in directions
orthogonal to the Schwarzschild subspace will have end
points at Mi, s or Oi. This completes our proof of the
uniqueness theorem. We have of course assumed that
a2 g 0 throughout. If az ——0 then it seems likely that
the properties of the asymptotically flat solutions will be
essentially determined by the value of a, where p is thep)
least value such that a„P 0.

V. DISCUSSION

To conclude, we have shown that in theories with an
action polynomial in the Ricci scalar, the only static
spherically symmetric solution with a regular horizon is
the Schwarzschild solution, provided that the coefficient

az ——a of the quadratic term is positive. In fact, if we
drop the condition of regularity on the horizon then the
only asymptotically flat solutions are still the positive-
and negative-mass Schwarzschild solutions. The gener-
alised scalar potential model of Sec. II does possess non-
Schwarzschild W = 0, Z = 0, A ) 0 solutions with
naked singularities which approach flat space asymptot-
ically near the points Mi 2. However, these solutions
correspond physically to Ai = Az = = A, = 0, a
possibility which is not admitted in the higher-derivative
theories. We have not considered the theories for which
the quadratic terms vanish but which have nonzero terms
at higher order. In such cases the condition az ) 0 pre-
sumably translates into a condition on the coefficients
of higher terms in the series. The question of solutions
with a2 ( 0 is also not fully clear, and could perhaps be
resolved by a numerical study.

The fact that we have been able to prove a unique-
ness theorem for static spherically symmetric black holes
in the case that az ) 0 has immediate important physi-
cal implications when considered in conjunction with the
earlier work of Pechlaner and Sexi [19] and Michel [20].
These authors observed that in the case of the R+ aR2
theory in four dimensions the solutions with R = 0 are
not, the solutions which correspond to the weak-field limit
about any physical body such as a star or point particle.
This is also the case for the general theory with a poly-
nomial R action which we are considering here. Suppose,
for example, that we wish to match our solutions onto a
star with energy-momentum tensor T~b in its interior. If
we add such a term to (1.8) and trace the result we find
that

(D —2)R+ ) a
~

& ——
~

R&+ (D —1)&(p —1)2P-s[RaR+ (p —2)R'R.]
= 2~'T. (5.1)
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Thus if we set T = 0 at the surface of the star we cannot
conclude, as in the case of the Schwarzschild solution,
that B = 0. Our results show, however, that if a2 ) 0 and
R g 0 anywhere in the domain of outer communications,
then the solutions are not asyrnptoticatty Pat.

Pechlaner and Sexi, on the contrary, assumed the exis-
tence of non-Schwarzschild solutions which are asymptot-
ically Hat. Our full nonlinear analysis seems to invalidate
this assumption in the a& ) 0 case. Consequently, their
weak-field analysis of the R+ aRz theory in four dimen-
sions, in which they derived experimental bounds on the
parameter a from resulting fifth-force-type effects, needs
to be reexamined with appropriately changed boundary
conditions.

If the Schwarzschild solutions are not the solutions of
physical interest in these models, it would seem that the
large class of asymptotically anti —de Sitter and de Sit-
ter solutions hold more promise. These include both
the exact solutions (2.18) [with A given, for example, by
(3.12) and (4.11) in the quadratic and cubic order theo-
ries, respectively], and also other solutions asymptotic to
them at infinity, or at the de Sitter cosmological horizon.
Asymptotically (anti —)de Sitter solutions have also been
found in a number of models in D ) 4 dimensions which
incorporate a Gauss-Bonnet term [32—34] and other di-
mensionally continued Euler densities [35], and thus ap-
pear to be a generic feature of higher-derivative theories.
In fact, maximally symmetric solutions have been found
to exist in a much wider class of higher-derivative models
[31], so presumably such models also possess asymptoti-
cally (anti —)de Sitter black hole solutions.

Returning to the models with dimensionally continued
Euler densities, we note that similarly to the solutions
found here, only asymptotically anti —de Sitter solutions
are found if the coefficient of the Gauss-Bonnet term is
positive in the quadratic theory, while a de Sitter branch
can be obtained at higher order [34]. One important
difference between our solutions and those of Boulware
and Deser [32], for example, is that the asymptotically
anti —de Sitter branch of the Boulware-Deser solutions has
a negative gravitational mass, giving rise to an instability.
Our solutions have a positive gravitational mass, and so
the question of their stability is still an open problem.
The issue of the weak-field limit has not been addressed
in Refs. [32—34], since of course it is really only relevant
in compactified models.

If the de Sitter sector is to be treated as a serious
physical model it is clear that the effective cosmological
term must be small to be consistent with observation. It
is interesting to note that recent astronomical evidence
actually favors a small positive cosmological constant
[36]. If higher-order terms in R are obtained from the
dimensional reduction of an action corresponding to the
low-energy limit of a higher-dimensional string theory,
then the status of the effective cosmological term is at
best uncertain. If we ignore the values of the dilaton

' The "best-fit" value favored in Ref. [36] is A = 3.1 x 10
m, or A = 8.1 x 10 in dimensionless Planck uni&s.

and compacton and assume that the compactification
scale is approximately of order ~n' (in units in which
c = h = 1, as used throughout this paper), where n' is
the Regge slope parameter, then the coefficients a„are
of order (E pi „,k) &" il, and A is of order (Ep& „,&), to
within a few orders of magnitude. Such a colossally large
effective cosmological term would of course spell disaster
for these models. However, no definite statements can be
made without some knowledge of the expectation values
of the dilaton and compacton fields, both of which couple
nontrivially to the higher-order curvature terms in four
dimensions. In fact, these scalar fields should really be
treated dynamically, which would necessitate a complete
reexamination of the model. In the D ) 4 uncompact-
ified quadratic order theory with a Gauss-Bonnet term
the dilaton has the effect of removing the anti —de Sitter
branch [34], but it is not clear how the dilaton would
affect compactified models.

In view of these problems it would also be interesting,
especially in the quadratic order case in four dimensions,
to consider the addition to the Lagrangian of a term com-
prising the square of the Ricci tensor. In that case the
effective theory contains a massive spin-2 field with a
nontrivial coupling to gravity in addition to the scalar
field. The effective energy-momentum tensor of the ex-
tra excitations does not satisfy criteria usually required in
the proof of the no-hair theorems, and thus it seems plau-
sible that the no-hair theorems could be circumvented in
such a model. However, the dynamical system arising
from a static spherically symmetric ansatz for the met-
ric and the other fields is considerably more complicated
than in the models we have studied in this paper, and it
is not clear to us whether it can be reduced to a tractable
form.

We remark parenthetically that the results of this pa-
per seem to hold up some hope for the problem of finding
black hole solutions in dimensionally reduced theories in
which the internal space is non-Ricci flat, since such mod-
els can also be treated by the formalism of Secs. II and
III. In [28] and [29] the potential corresponding to (1.10)
was limited to two terms at most. However, we have seen
that at least three exponential terms are required in the
potential in order to obtain a Schwarzschild subspace,
and thus no asymptotically flat solutions were found in

[28] and [29] for internal spaces of nonzero curvature.
More complicated models with s ) 3 (or some equivalent

condition if more than one scalar field is present) may
yield more interesting results.
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APPENDIX A l(, b.k,md) = C(1+2aR) (A7a)

Pab = 2m[akb] ~ (Al)

where m' is the spacelike Killing vector with period 2n.

and k is the timelike Killing vector normalized to unity
at infinity. These vector fields commute [39]:

In the case of the quadratic action R+ aRz in four
dimensions with a ) 0, Whitt [21] has shown that, pro-
vided the energy momentum of any additional matter
fields satisfies certain conditions, then the usual no-hair
theorem for stationary, axisymmetric, asymptotically flat
black holes [37] is still valid. He was able to obtain this
result by proving that the curvature scalar for such so-
lutions vanishes in the domain of outer communications,
and therefore the effective theory coincides with the usual
Einstein-Hilbert theory. Unfortunately his proof cannot
be generalized to more general polynomial actions of the
form (1.7). For completeness we will present an account
of his proof here, in order to show why the theorem can-
not be directly extended to more general polynomial R
actions, and also to correct some errors present in the
original paper.

Whitt's proof is based on a study of the four-
dimensional Killing bivector [38]:

and

l[a.bkcmd] = C 1 + ) a&pR l ~abed ~ (A7b)

k[a;bpcd] = 0~ m[a bPcd] = 0 (A8)

throughout the domain of outer communications.
From (A8) it follows [40] that if the domain of outer

communications is simply connected and admits no
closed timelike curves, then p, b is timelike throughout
the domain of outer communications, becoming null on
its inner boundary, which is a null hypersurface.

At this point Whitt [21] considers the trace of the
field equations in the absence of matter, which for the
quadratic theory yield

—6aR"., + R = 0. ( 9)

where C is an arbitrary constant. Now we know that
the left-hand side of (A7) vanishes on the axis of rota-
tion since m = 0 there. On account of the asymptotic
flatness of the solutions R cannot be singular everywhere
on the axis, and hence C must vanish giving

kbm. -mbk. =O.;5 ;5 (A2) One can now multiply by R and integrate over the do-
main of outer communications to obtain

We will take la to denote either of the Killing vectors k'
and m'. Making use of (A2) and the identity 6a RR~ = 6a ' .~ —g x+ —g z .

(l(, ,bl,))"= slcRc(alb), (A3)
(A10)

which is valid for any Killing vector [40], we find

(l(a,bkcmd]) = —
z l Rd[akbmc]

;d 1d (A4)

We can now use the vacuum field equations of the higher-
derivative theory to evaluate the right-hand side of this
expression. For the R+ aRz case one finds

).d
—a l R, (dakbm)c

l(,bk, md]
' (A5a)

or in the general case, with field equations (1.8),

Q
"

~ a~I Rgl kgm, ))

~(i+@ ...,a~-~)
(A5b)

—aR'"t(a.akgmc
(~l( .gk, mg)' (A6a)

and

(l(a bkcmd))'.—P„" z a„p(Ri' ) "l(d akbmc).
2 1+ "qapR~ 1

(A6b)

The solution of Eqs. (A6) is given, respectively, by

Using the orthogonality of the Killing vectors to R, and
the antisymmetry of the derivatives of the Killing vectors,
these expressions become, respectively,

—R+ ) a„(p —2)R" + 3p(R" )' j=0.(A11)

The left-hand side vanishes because R, is orthogonal to
the inner boundary and is zero on the outer boundary due
to asymptotic flatness. Moreover, the right-hand side is
positive definite, provided a ) 0, since R,, cannot be
timelike anywhere in the domain of outer communica-
tions by virtue of being orthogonal to p b. Hence R must
be identically zero there.

The conformally rescaled theory coincides, therefore,
with the usual Einstein theory since the scalar field o is
clearly zero if R vanishes and it follows that the unique-
ness theorem for stationary, axisymmetric, asymptoti-
cally flat solutions still holds. Moreover, it is easy to
see that the result remains valid when additional mat-
ter fields are included in the action, provided that the
energy-momentum tensor is traceless, T = 0, and sat-
isfies the matter circularity condition [40] Td(akbm, ]

= 0.
In such cases the usual no-hair theorems are still valid.
These conditions are always satisfied, in particular, by
a stationary, axisymmetric electromagnetic field. Unfor-
tunately, however, Whitt's result cannot be extended to
the general polynomial R action since in that case the
argument for R being zero in the domain of outer com-
munications breaks down. Specifically, the trace of the
field equation now becomes
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and therefore, integrating by parts and discarding the
boundary term as before we find

R~g —gd x+.) (p —2)a„R"+ g g—d z

= ) 3p(p —1)a f R~ B,,R"J gd4—x. (A12)
u=2

The integrals in the sum on the left-hand side do not have
a definite sign for even p, while the integrals in the sum
on the right-hand side do not have a definite sign for odd
p. Thus it is impossible to conclude from this relation
that R must vanish in the general case, or indeed in any
special case other than n = 2, a& ) 0.

APPENDIX B

We list here the exact solutions obtained in the cases (i)
V = 0, i.e. , Ai = Az

—— ——A, appropriate to the W = 0,
Z = 0 subspace, and (ii) s = 1, A = 0, appropriate to
the A = 0 surface in the W = 0 subspace. Corresponding
solutions for the A = 0 surface in the Z = 0 subspace
may be obtained by substituting gi —p gz, Ai —p A2.

1. Solutions with R = 0 and Z = 0

The one-parameter family of solutions was derived in
[28]. In that case solutions were parametrized in terms of
the number n, of extra dimensions in the Kaluza-Klein
model. Here a parametrization in terms of gi (or g&) is
more natural. We will use the former parametrization.
We find

CAi
W

1
exp —(rn —1)C( (Bl)

(( + k() + const, (82)

e" =A()e- o', (B3)

(rn —1)CAi exp z (m —1)C(
(m —1)CAi exp [(rn —l)C(]+ ap+ z(m —l)C hi '

CAi )' 1
r" = exp

l ap+ -(m —1)C (
p 1

2g it(r (m —l)g (ci —mk)
+ const,

m 1+ (m —1)g z

where

b, i =—A —A, exp [(m —1)C(,'], (B7)

horizon. This can be immediately verified to be true
since (B5) can be inverted. If we choose

while k, Ap, and Ai are arbitrary constants, C is a
nonzero constant given by

4(rn —1) 1+ (m —1)g, C = rn k + (m —1)c, g, ,

(Bs)

we Gnd

AAp/lAl, C ) 0,
lAljAp, C & 0,

l&lr™1)'

(Blo)

(Bl1)

and the constant ao is defined by

mk+ (m —1)g,zc,

1+ (rn —l)g
(B9)

which correspond to the domain of outer communications
of the positive-mass Schwarzschild solution for A ) O.

Similarly, as ( —+ +oo we find r —+ 0, giving rise to a
singularity, unless ci = mk = ap

——2(m —1)lCl. In that

and lies in the range z(m —1)lCl & ap —& &(m —l)lCl.
Solutions have an asymptotic (r —p oo) region only if
A &0.

As ( —+ —oo we find r"' —+ 0, giving rise to a singularity
except in the special case ci = mk = ap

———
z (m —1)lCl,

when r ~ const, suggesting the possible presence of a
"Equations (B10)—(B12) correct a sign discrepancy in [28]

for the A & 0 and ( ~ +oo cases.
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case we once again obtain (Bll) if we choose

—iA]/Ap, C) 0,
—AAp/[A], C ( 0. (812)

2. Solutions with W = 0 and A = 0

These solutions may be derived as in [28]. If g
2 (

m+1 we find

CBg 1—e" = exp —C(
2

(813)

m(TI + k()
e = Bo exp 2 )m+1 —g1

m 1/(m+1-g 2)lm (m l) CBl (1-e" =B B exp
[

—C+mk —(m —1)b ~(0 2 0) (815)

A

ev

) 1/(m+1-g )

m+ 1 —
g& Bp 2 By exp

& +

CBl2exp C( + (2lC+ b ) &2
(816)

CB /1 ) - '~("+'-g ')
r" = exp

~

—C+b ~(
BpB2 62 (2 (817)

g /(m+1 —g )
(2gl&& ) 1 CBl (1 — 1

exp
~

'
I

=
B exp -C+ (mk+ bp) () 2 2 k l )

(818)

where

62 = Al —Bl exp C(

with

(819a)

m+1B m C + 0
/(B ~+'B ~i C (0

then we find the solution

(823)

A, :——(m+1 —g, ) A„ (819b)
2

g P
ds = TZkdt +T —l — +T g pdX dX

while Bp, Bl, B2, and k are arbitrary constants, C is a
nonzero constant given by

z(1+(m —1)g )C =mP+(m+1 —g )g, c, ,

(820)

where

b, =A, 1—

(824a)

(824b)
~A, ((m+1 —g c) g

and the constant bp is defined by while the scalar field is given by

(g
c —1)mg+ (m+ 1 —g, c) g, cc~

1+ (m —1)g
(821)

&2glrcr )
exp

m

2

m+1 g1
(824c)

and lies in the range —2[C[ & bp & 2[C[.
We now find that the limit ( —g —oo corresponds to

r" —+ 0 except in the special instances when mk/(g 2—
1

1) = cl ——bp ———
2 [C[, for which r" —+ const, suggesting

the possible presence of a horizon. This indeed the case:
(817) can be inverted and if we make the choice

Similarly the limit ( —g +oo also corresponds to r ~0"
except for the special cases when mk/(g —1) = cl ——

bp
——2[C[ which r" g const. Equation (817) can once

again be inverted, and we retrieve the solution (2.18) if
we now make the choice (822) andl2

2 2 ]1 B 1 1

fA+ 1 —g1
(822) ' There are some sign discrepancies in [28j and [29) for the

expressions corresponding to (B23), (B24b), and (B25).
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—A, /(Bo +'B~ ), C & 0,
B m+1B m g+0 (B25)

where

The spacetimes thus have naked singularities except in
the special cases above.

An asymptotic region is defined only for Ai ) 0:
r" ~ oo when C( = ln ~Ai/Bi ~. This limit is approached
at the points Ni 2 at infinity [cf. (2.37)j. All Ai ) 0 solu-
tions have one end point at Ni or Nq, and another end
point on the Ai ——0 curve of critical points. The Ai ( 0
solutions have one end point on the Ai ——0 curve in
the first quadrant, and another end point on the Ai

——0
curve in the third quadrant. The asymptotic form of all
the Ai ) 0 solutions (B15)—(B18) is given by

2' ~2e ~T )
e2+u ~ Tmgz (B26)

e2tl p2'tl p )
e2v P2vp

(2giro )
exp

~

r
m

(B27a)

Thus none of the solutions is asymptotically flat. The
general solution holds for C g 0. If one sets C = 0 while
integrating the differential equations one finds a solution
which corresponds to the C = 0 limit of (B24).

If g
2 )m+ 1 then the solutions given by expressions

(B13)—(B21) are still valid but bo now lies in the range

bo & —2~C~, bo & 2~C). Furthermore, the behavior of
the solutions and the direction of trajectories near the
critical points is greatly changed in some instances. We
now find that the limit ( ~ —oo corresponds to r" ~ 0
as before if bo ( —&~C~. However, if bo & ~~C~ we find
that r" ~ oo. Similarly, the limit ( ~ +oo corresponds
to r" ~ 0 if bz & 2 ~C(, and r" ~ oo if b& & —

z ~C~. Critical
points in the first and third quadrants have r —+ 0, w"hile

those in the fourth and second quadrants have r" ~ oo.
Since each solution has a different end point in the r" ~ oo
regime, the asymptotic behaviors vary. We Gnd

+2~C~ + mk —(m —l)b
ho+ 2/CJ

(B27b)

m (a+ —,'~c~)

b, + -'[c[ (B27c)

+-,'~C~+, ', (mK+ b,)

bo + -'fC/
(B27d)

and the upper (lower) sign refers to ( —+ —oo (( —+ +oo).
For the limiting case solutions with bo

——2~C~, if ( ~
—oo, or bo

———
z ~C~, if ( ~ +oo we obtain the asymptotic

behavior appropriate to (B24), viz. ,

g —m+1e ~T1 g +m —1
e T 1 e2eu ~ T™g1

(B28)

The limit C( = ln ~Ai/Bi ~

for the Ai ( 0 solutions,
which is reached at the points Ni, q, now corresponds to
r" -+ 0. The Ai ( 0 solutions given by (B13)—(B21)
all have one end point at Ni or N2 and another end
point on the Ai = 0 curve. If this second end point is
in the fourth or second quadrant the solutions have an
asymptotic region; otherwise they do not. The Ai ) 0
solutions, on the other hand, all have asymptotic regions:
they now describe trajectories with one end point on the
A = 0 curve in the first (or third) quadrant, and a second
end point on the same curve in the fourth (or second)
quadrant.

In addition to the above solutions, a second group of
solutions also exist if g & m+ 1 and Al & 0. These
solutions are given by

e" Icl

Ai cos C(( —(0)
(B29)

m(ri+ k()—
g —m —1

1

(B30)

1 g —m —12

e"=Bo B2' ' Al'"C cos C 0 exp m-1bo-mk (B31)

P

e
g —m —1 Bp - - m/t(g 2 —m —].)

2

A C cos C —
0 exp —k

bo+ Ctan C(( —(s)
(B32)

/'( '- -)
T" = A C cos C —

0 ezP —$0 (B33)
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1/( '—m-1)
exp~

'
~

=
~ [A '

[C~~ coe C(( —
g~) )

'
exp —(mk+b eN (B34)

where A~ and bo are defined as before, (o, Bo, B2, and k are arbitrary constants, and C is a nonzero constant given

by

[1+(m —1)g ]C = (g —m —1)g c —m k . (B35)

These solutions have no asymptotic region, and correspond to trajectories with one end point at Nq and a second end
point at N2. These end points are reached when ( = ('o + (2j + 1)/(2vr~C~), for integer j.

If g
2 = m+ 1 we find the solutions

1

(B36)

e~ = Be exp (k(+ xcBce ~), (B37)

1/m
e" = Bc Bs

~
exp k —(m —1)bo (+A~Bye

m (m g)( (B38)

Ae" =
mBo exp + 1B1e ~

k+ bq + A~BgCe~~
(B39)

r"= exp + 0 + 1B1e
0 2

(B40)

/2g&ito ) 1 ( 1
exp~ ' ~=

~
exp k+ bs—

E m & B2& m+1~o
(m+1)/m

(+A1B~ecg (B41)

where Bo, B» and B2 are arbitrary constants,

1 (C
bs = — —+(m+1)c,m (2 (B42)

phase space, all trajectories approach the points Nq, q at
infinity which coincide with points Ls,q In the c.ase that
k = —c~ = bc ——C/2—we can invert (B40), and if we
make the choice

a constant which lies in the range )k~
A

v'm' —1 ~c, [/m, and C is a nonzero constant given by
B2 ——Bo

—1 m, Bo2
(B44)

t' 2C=
~ ~

mk+ m k —(m —1)c2
gm —1) . 1 ) (B43)

and has the same sign as k. We now find that for k ) 0
as ( ~ —oo r" ~ 0 except in the case that k = —c1

bo ——C/2, w—hen r" p const. The same is true for k ( 0
in the limit ( ~ +oo. On the other hand, if k ( 0
and ( ~ —oo, or if k ) 0 and (' —+ +oo, then r" ~ oo.
All solutions have an asymptotic region. In terms of the

/ 2g~KO )
exp

/

'
/

= Bor +'.
m ) (B45b)

we obtain the solution

ds = r" Clnr" dt —+ . +r" go dz dz~,
C lnr- P

(B45a)

with scalar field

[1) H. Weyl, Ann. Phys. (Leipzig) 59, 101 (1919);Phys. Z.
22, 473 (1921).

[2] K.S. Stelle, Phys. Rev. D 16, 953 (1977); Gen. Relativ.
Gravit. 9, 353 (1977).

[3] I. Antoniadis and E.T. Tomboulis, Phys. Rev. D 33, 2756
(1986).

[4] D.A. Johnston, Nucl. Phys. B297, 721 (1988).

[5] A.A. Starobinsky, Phys. Lett. 91B, 99 (1980).
6 R. Kerner, Gen. Relativ. Gravit. 14, 453 (1982).
[7 A.A. Starobinsky, Pis'ma Astron. Zh. 9, 579 (1982) [Sov.

Astron. Lett. 9, 302 (1983)).
[8] J.D. Barrow and A.C. Ottewill, J. Phys. A 16, 2757

(1983).
[9] M.B Mijic, M.S. Morris, and W.-M. Suen, Phys. Rev. D



1506 SALVATORE MIGNEMI AND DAVID L. WILTSHIRE

34, 2934 (1986); A.A. Starobinsky and H.-J. Schmidt,
Class. Quantum Grav. 4, 695 (1987); A.L. Berkin, Phys.
Rev. D 42, 1016 (1990).

[10] S.W. Hawking and J.C. Luttrell, Nucl. Phys. B247, 250
(1984).

[ll G.T. Horowitz, Phys. Rev. D 31, 1169 (1985).
[12] H.F. Dowker and R. Lafiamme, Nucl. Phys. B366, 209

(1991).
[13] B. Zwiebach, Phys. Lett. 156B, 315 (1985); B. Zumino,

Phys. Rep. 137, 109 (1986).
[14] J. Madore, Phys. Lett. 110A, 289 (1985); F. Miiller-

Hoissen, Phys. Lett. 163B,106 (1985); S. Mignemi, Mod.
Phys. Lett. A 1, 337 (1986).

[15] R.C. Myers, Nucl. Phys. B289, 701 (1987).
[16] A.L. Berkin and K. Maeda, Phys. Lett. B 245, 348

(1990).
[17] Q. Shafi and C. Wetterich, Phys. Lett. 129B,387 (1983);

152B, 51 (1985).
[18] K. Maeda, Phys. Rev. D 37, 858 (1988); 39, 3159 (1989);

J.D. Barrovr and S. Cotsakis, Phys. Lett. 8 258, 299
(1991).

[19] E. Pechlaner and R. Sexi, Commun. Math. Phys. 2, 165
(1966).

[20] F.C. Michel, Ann. Phys. (N.Y.) 76, 281 (1973).
[21] B. Whitt, Phys. Lett. 145B, 176 (1984).
[22] P.W. Higgs, Nuovo Cimento 11,816 (1959).
[23 G. Magnano, M. Ferraris, and M. Francaviglia, Gen. Rel-

ativ. Gravit. 19, 465 (1987); Class. Quantum Grav. 7,
557 (1990); A. Jakubiec and J. Kijowski, Phys. Rev. D
37, 1406 (1988); J.D. Barrow and S. Cotsakis, Phys. Lett.
B 214, 515 (1988).

[24] B. Shahid-Saless, Phys. Rev. D 35, 467 (1987).

[25] H. Buchdahl, Nuovo Cimento 23, 91 (1961).
[26] J.E. Chase, Commun. Math. Phys. 19, 276 (1970); J.D.

Bekenstein, Phys. Rev. D 5, 1239 (1972); 5, 2403 (1972).
[27] G.W. Gibbons, in The Physical Universe: Proceedings of

the XIIAutumn Schoot, Lisbon, l990, edited by J.D. Bar-
rovr, A.B. Henriques, M.T.V.T. Lago, and M.S. Longair
(Springer, Berlin, 1991).

[28] S. Mignemi and D.L. Wiltshire, Class. Quantum Grav.
6, 987 (1989).

29] D.L. Wiltshire, Phys. Rev. D 44, 1100 (1991).
[30 G.W. Gibbons and K. Maeda, Nucl. Phys. B298, 741

(1988).

[31] M.S. Madsen and J.D. Barrow, Nucl. Phys. B323, 242
(1989).

[32] D.G. Boulware and S. Deser, Phys. Rev. Lett. 55, 2656
(1985).

[33) D.L. Wiltshire, Phys. Lett. 169B, 36 (1986); Phys. Rev.
D 38, 2445 (1988).

[34] D.G. Boulware and S. Deser, Phys. Lett. B 173, 409
(1986).

[35] J.T. Wheeler, Nucl. Phys. B273, 732 (1986); B. Whitt,
Phys. Rev. D 38, 3000 (1988).

[36] J. Hoell snd W. Priester, Astron. Astrophys. 251, L23
(1991).

[37] B.Carter, in Gravitation in Astrophysics (Cargese 1986),
Proceedings of the NATO Advanced Study Institute,
Cargese, France, 1986, edited by B. Carter and J.B.Har-

tle, NATO ASI Series B:Physics, Vol. 156 (Plenum, New

York, 1987).
[38] A. Papapetrou, Ann. Inst. H. Poincare A4, 83 (1966).
[39] B. Carter, J. Math. Phys. 10, 70 (1969).
[40] B. Carter, Commun. Math. Phys. 30, 261 (1973).


