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A simple formula is derived for the variation of mass and other asymptotic conserved quantities
in Einstein-Yang-Mills theory. For asymptotically flat initial data with a single asymptotic region
and no interior boundary, it follows directly from our mass-variation formula that initial data for
stationary solutions are extrema of mass at fixed electric charge. When generalized to include an
interior boundary, this formula provides a simple derivation of a generalized form of the first law
of black-hole mechanics. We also argue, but do not rigorously prove, that in the case of a single
asymptotic region with no interior boundary stationarity is necessary for an extremum of mass
at fixed charge; when an interior boundary is present, we argue that a necessary condition for an
extremum of mass at fixed angular momentum, electric charge, and boundary area is that the solution
be a stationary black hole, with the boundary serving as the bifurcation surface of the horizon. Then,
by a completely different argument, we prove that if a foliation by maximal slices (i.e., slices with a
vanishing trace of extrinsic curvature) exists, a necessary condition for an extremum of mass when
no interior boundary is present is that the solution be static. A generalization of the argument to
the case in which an interior boundary is present proves that a necessary condition for a solution of
the Einstein-Yang-Mills equation to be an extremum of mass at fixed area of the boundary surface
is that the solution be static. This enables us to prove (modulo the existence of a maximal slice)
that if the stationary Killing field of a stationary black hole with bifurcate Killing horizon is normal
to the horizon, and if the electrostatic potential asymptotically vanishes at infinity, then the black
hole must be static. (This closes a significant gap in the black-hole uniqueness theorems.) Finally,
by generalizing the type of argument used to predict the “sphaleron” solution of Yang-Mills-Higgs
theory, we argue that the initial-data space for Einstein-Yang-Mills theory with a single asymptotic
region should contain a countable infinity of saddle points of mass. Similarly in the case of an
interior boundary, there should exist a countable infinity of saddle points of mass at fixed boundary
area. We propose that this accounts for the existence and properties of the Bartnik-McKinnon and
colored black-hole solutions. Similar arguments in the black-hole case indicate the presence of a
countable infinity of extrema of mass at fixed area, electric charge, and angular momentum, thus
suggesting the existence of colored generalizations of the charged Kerr solutions. A number of other
conjectures concerning stationary solutions of the Einstein-Yang-Mills equations and related systems
are formulated. Among these is the prediction of the existence of a countable infinity of new static
solutions of the Yang-Mills-Higgs equations related to the sphaleron.
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I. INTRODUCTION

In the past few years, static, asymptotically flat so-
lutions to the Einstein-Yang-Mills equations with gauge
group G=SU(2) have been discovered. First, Bartnik and
McKinnon [1] numerically obtained a discrete family of
globally static, spherically symmetric, solutions on R%.
(A rigorous proof of the existence of these solutions has
recently been given [2].) Soon thereafter analogous fami-
lies of static, spherically symmetric “colored black holes”
were found [3-5]. The discovery of all of these solutions
came as a surprise to most researchers, since there are no
analogous solutions in Einstein-Maxwell theory, and the
black hole uniqueness theorems, proven for other fields,
generally had been viewed as indicating the unlikelihood
of the existence of colored black holes.

The existence of these solutions raises a number of
questions, among the most prominent of which are the
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following. (i) What is the essential feature (or features)
of the Yang-Mills group G, which is responsible for the
existence of the new solutions, i.e., why does one obtain
new solutions with G=SU(2) but not with G =U(1)? (ii)
What accounts for the features of these new solutions,
such as their discreteness and instability? (iii) Would one
expect any further new solutions of similar character, in
particular, ones which are stationary but not spherically
symmetric and, perhaps, not static?

One of the two principal goals of this paper is to pro-
pose answers to all of the above questions. We shall argue
that the key feature of the Yang-Mills group G, which
gives rise to the new solutions is the presence of so-called
“large gauge transformations,” i.e., cross sections of the
(trivial) Yang-Mills bundle which cannot be continuously
deformed into each other. Thus, we claim that it is essen-
tial that G have a nonvanishing third homotopy group,
as occurs for SU(2), or, more generally, for any compact
semisimple Lie group. The relevance of the large gauge
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transformations is that they cause the mass functional on
the phase space of Einstein-Yang-Millls theory to possess
a countably infinite set of disconnected minima—namely,
flat spacetime with vanishing Yang-Mills potential and all
large gauge transformations of this solution—rather than
a single minimum. Consequently, we shall argue that ad-
ditional saddle points of the mass function should exist.
Indeed, we shall argue for the existence of an infinite
sequence of saddle points, with each successive saddle
point having larger mass and a larger number of unsta-
ble modes. We believe that these saddle points account
for the existence of the Bartnik-McKinnon and colored
black-hole solutions. In this manner, the discreteness
and instability of these solutions are naturally explained.
Similar arguments predict new solutions which are col-
ored analogues of the charged Kerr black holes.

A crucial facet of our plausibility argument to account
for the known Einstein-Yang-Mills solutions and to pre-
dict new ones concerns the relationship between extrema
of the mass functional and stationary solutions. The sec-
ond principal goal of this paper is to explore this rela-
tionship in detail. We consider the (constrained) phase
space of Einstein-Yang-Mills theory, i.e., the set of initial
data (hgp, 72, AT, E%) on a hypersurface ¥ satisfying
the Einstein and Yang-Mills constraints. (Our notational
conventions on indices are explained near the end of this
section and the phase space and the constraints are in-
troduced in Sec. II.) We focus attention on the following
two cases: (a) The initial data is asymptotically flat with
a single asymptotic region and no interior boundary; (b)
in addition to the single asymptotically flat region, there
is an interior boundary two-surface S. In Sec. II, we
prove that in case (a), initial data for stationary solu-
tions are extrema of mass at fixed electric charge (mea-
sured at infinity). Furthermore, if the electrostatic po-
tential A" vanishes at infinity, then stationary solutions
are extrema of mass even with respect to variations that
change the electric charge. A generalization of these re-
sults to case (b) proves that stationary black holes always
are extrema of mass at fixed electric charge, angular mo-
mentum, and horizon area. Furthermore, if A, vanishes
at infinity and the angular velocity of the horizon van-
ishes, then stationary black holes are extrema of mass
when merely the horizon area is held fixed. As a by-
product of this analysis, we obtain a simple proof of a
generalization of the first law of black-hole mechanics.
Arguments are also presented in support of the converse
of these results—specifically, that in case (a) extrema of
mass at fixed charge are stationary solutions and in case
(b) that extrema of mass at fixed electric charge, angu-
lar momentum, and boundary surface area are stationary
black holes. However, we do not succeed in obtaining a
rigorous proof of these converse results.

Nevertheless, in Sec. III we succeed in proving the fol-
lowing results: If a foliation of the spacetime by asymp-
totically flat, maximal (i.e., with vanishing trace of the
extrinsic curvature) surfaces exists, then in case (a)
extrema of mass always correspond to static solutions
whereas in case (b) extrema of mass at fixed boundary
area always correspond to static black holes. The hy-
potheses of these results are stronger than the converses

DANIEL SUDARSKY AND ROBERT M. WALD 46

described at the end of the previous paragraph in that
they require in case (a) an extremum of mass with re-
spect to all variations satisfying the constraints rather
than merely those preserving electric charge, and in case
(b) they require an extremum of mass with respect to
variations which may change the charge and/or angular
momentum. In addition, a maximal foliation is assumed.
However, the conclusion also is stronger in that the solu-
tion must be static rather than merely stationary. (The
precise definition of static used in this paper is given at
the end of this section.)

By combining the results of Sec. III with those of
Sec. II, we obtain as by-products of our analysis the fol-
lowing conclusions (modulo the existence of a maximal
slice). In case (a) it follows that any stationary solution
of the Einstein-Yang-Mills equation for which 4" van-
ishes asymptotically (or for which the Yang-Mills electric
charge @Q vanishes) must be static. In case (b), it fol-
lows that any stationary black hole with bifurcate Killing
horizon for which A" vanishes asymptotically (or Q = 0)
and for which the stationary Killing field is normal to the
horizon (or for which the canonical angular momentum
J vanishes) must be static. This second result closes a
significant gap that has existed in the proof of the black-
hole uniqueness theorems.

In Sec. IV, we present our plausibility arguments for
the existence of Einstein-Yang-Mills solutions. The ar-
gument is similar in character to the type of argument
used to predict the existence of the sphaleron solution
[6, 7] of the Yang-Mills-Higgs system but our argument
predicts an infinite sequence of new solutions. For the
purpose of making our arguments, we assume conditions
on the mass function sufficient to ensure that a Rieman-
nian metric Gap on I' can be chosen so that the flow
generated by the vector field M4 = —GABVgm carries
each point of T to a critical point of m. (Here, upper case
latin letters denote indices of tensor fields on I', viewed
as an infinite dimensional manifold.) Our discussion is
heuristic in that we do not attempt to precisely define
a manifold structure on I' nor prove, e.g., that m is a
differentiable function on I'. (Actually there is a dif-
ficulty with our assumption due to the behavior of m
along certain “nonlinear scaling directions” in I', but our
arguments in Sec. [V take account of this behavior.) As
already mentioned above, on the phase space I' corre-
sponding to case (a), the mass functional has a count-
ably infinite, disconnected set of absolute minima (with
m = 0), corresponding to trivial initial data and all large
gauge transformations of this trivial data. We argue that
because the set of absolute minima of m is disconnected
whereas I is connected, the flow defined by M# cannot
carry all points of phase space to the flat spacetime ab-
solute minima (or other local minima, if any exist). By
minimizing m over the set I'; of points which do not flow
to local minima, we argue for the existence of a saddle
point of m, with m = m; > 0. By the results of Sec. III,
this yields a static solution to the Einstein-Yang-Mills
equations, which should be unstable because small per-
turbations can decrease m. We believe that this accounts
for the n = 1 Bartnik-McKinnon solution.

Again, the minima of m on I’y (which correspond to
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saddle points of m on I') will be composed of a count-
ably infinite set of disconnected components on account
of the presence of large gauge transformations. We now
repeat the above argument, replacing I' by I';. (To do
so, we must make the additional assumption that I'; is
connected.) We conclude that there should exist an ad-
ditional saddle point, which implies the existence of an-
other static solution with mass my > m; and one ad-
ditional unstable mode. We believe that this solution
is precisely the n = 2 Bartnik-McKinnon solution and
that further repetition of this argument accounts for all
of the higher n Bartnik-McKinnon solutions. A similar
argument explains the existence of the discrete family of
colored black-hole solutions at any given value of horizon
surface area.

The above argument depends only upon the qualita-
tive features of phase space resulting from the presence of
“large gauge transformations,” the existence of (trivial)
known minima of the mass functional, and the relation-
ship between extrema of mass and stationary and static
solutions developed in Secs. II and III. Hence, the same
basic argument can be used to predict the existence of
additional new stationary solutions to the Einstein-Yang-
Mills equations as well as new stationary solutions for
similar systems, such as the Yang-Mills-Higgs equations.
In particular, on the basis of this argument, we conjecture
that there exist new colored black-hole solutions which
are related to the charged Kerr solutions in the same
way as the known colored black holes are related to the
Schwarzschild black hole. We also conjecture that there
exist new static solutions to the Yang-Mills-Higgs sys-
tem which are analogues of the n > 1 Bartnik-McKinnon
solution. (The n = 1 Bartnik-McKinnon solution pre-
sumably corresponds to the known sphaleron solution.)
These and other conjectures are formulated at the end of
Sec. IV.

We shall adhere to the following conventions on index
notation in this paper: As already mentioned above, we
shall use upper case latin indices to denote tensor in-
dices on phase space, e.g., V 4m denotes the gradient of
the mass functional on phase space. Lower case greek in-
dices will be used to denote tensors on (four-dimensional)
spacetime, e.g., g, denotes the (Lorentzian) spacetime
metric. Lower case latin indices will denote tensors on
the (three-dimensional, spacelike) Cauchy hypersurface
Y used to define initial data, e.g., hqp denotes the (Rie-
mannian) metric on ¥. Finally, we shall use upper case
greek indices for the Yang-Mills Lie algebra. Thus, 4,
denotes the (Lie-algebra-valued, four-component) Yang-
Mills potential on spacetime, and A, denotes the (Lie-
algebra-valued, three-component) Yang-Mills potential
on X. The structure tensor for the Lie algebra is denoted
'y o and Lie algebra indices are raised and lowered with
the Killing metric —2c4.Ac4:4. All indices are intended
as abstract indices, though little harm will be done by
viewing them as representing components.

We shall use units where G = ¢ = 1, and we choose
the Yang-Mills coupling constant to be unity. Thus, the
Einstein-Yang-Mills action takes the form

Sgym = /M[R - F AP V=g, (1)
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where R is the (spacetime) scalar curvature, and F,,* is
the (spacetime) Yang-Mills field strength:

Fr =2V AL +chad AL (2)

We have omitted the usual overall factor of 1/167 in
Eq. (1), since it would be a nuisance to carry that fac-
tor through our definitions of canonically conjugate mo-
menta, etc. However, to agree with conventions, we will,
in effect, reinsert that factor when we define mass and
other quantities in Sec. II.

Finally, we explain the precise meaning of the terms
“stationary” and “static” used throughout this paper.
First, for an ordinary Hamiltonian system in particle me-
chanics, we say that a solution is stationary if it is time
independent, i.e., if the time derivative of all ¢’s and p’s
vanish. We say that a solution is static if in addition
to being stationary, all of the momenta vanish. For the
Einstein-Yang-Mills (EYM) system, these definitions are
carried over as follows: Let (M;gu., AHA) be an asymp-
totically flat solution to the EYM equations on space-
time manifold M. We say that this solution is stationary
if there exists a Killing field t* of g,, which asymptoti-
cally approaches a time translation at infinity, and is such
that for some choice of gauge for the Yang-Mills field we
have f,’tA”A = 0. Note that it is not required that t*#
be timelike outside of a neighborhood of infinity. We say
that this solution is static if the stationary Killing field
t* is hypersurface orthogonal and the Yang-Mills elec-
tric field [see Eq. (8) below] vanishes on these orthogonal
hypersurfaces. Since the extrinsic curvature of the or-
thogonal hypersurfaces vanishes, this corresponds to the
vanishing of both the Einstein and Yang-Mills momenta
[see Egs. (6) and (7) below]. Note that our terminol-
ogy differs slightly from usage common in general rela-
tivity where “static” normally would mean hypersurface
orthogonality of t* but would not require the vanishing
of the electric field.

II. STATIONARY SOLUTIONS
AND EXTREMA OF MASS

In ordinary Hamiltonian particle mechanics on a phase
space I' the dynamical evolution equations take the form

VaH = Qaph®, (3)

where H : T' — R is the Hamiltonian, h* is the Hamil-
tonian vector field on I" (i.e., the possible dynamical tra-
jectories are the integral curves of h*), and Qap is the
symplectic form on I'. Since Q4p is nondegenerate, we
can invert Eq. (3) to obtain

hA = QABVRpH (4)

where Q48 denotes the inverse symplectic form. (This
yields the usual form of Hamilton’s equation of motion
with Q@ = 3" dpAdg .) From Egs. (3) and (4), we immedi-
ately obtain the following key conclusion: A point X € T’
is an extremum of H (i.e., VAH = 0 at X) if and only
if X corresponds to a stationary solution (i.e., h* = 0
at X ). (Note: We shall use the words “extremum” and
“critical point” interchangeably throughout this paper.)



1456 DANIEL SUDARSKY AND ROBERT M. WALD 46

The above result holds even when constraints are
present on I', i.e., when the allowed points of phase space
are restricted to a submanifold ' ¢ T' . However, the
“only if” direction of this result is of less interest in this
case because H is required to be an extremum with re-
spect to variations which violate the constraints and thus
are unphysical. A more relevant result is obtained by
pulling back Eq. (3) to I':

VaH = Qaph®, (5)

where Q45 denotes the pullback of Q4p to T' and V4
denotes the gradient operator on I . (It is assumed here
that h4 on T is tangent to T, i.e., that dynamical evolu-
tion preserves the constraints.) From Eq. (5) we imme-
diately obtain the following result: A point X € T is an
extremum of H on T (i.e., VaH =0 at X so that H is
an extremum with respect to all variations which satisfy
the constraints) if and only if h* is a degeneracy direc-
tion of Qap (i.e., Qaph® = 0). (By definition, Q45
will fail to be nondegenerate if some of the constraints
are first class.) In the case where Q4p is degenerate, the
degeneracy vectors normally are interpreted as represent-
ing pure gauge variations. Thus, the above result may
be interpreted as saying that X € T is an extremum of
H under constrained variations if and only if it is gauge
equivalent to a stationary solution.

The main purpose of this section is to extend the above
results to general relativity. Of course, these results
would be immediately applicable if we could rigorously
define an infinite dimensional manifold structure on the
phase space I of general relativity and its constraint sub-
manifold T, define a symplectic form Qp on T, define
the infinitesimal time evolution operator as a vector field
h4 on T and find a differentiable function H on I' such
that Eq. (3) holds on I'. However, there are formidable
technical difficulties in proceeding in this manner and we
shall not attempt to follow this route. Nevertheless, as
we shall see, it is quite simple to derive a formula corre-
sponding to Eq. (3) for the variation of the Hamiltonian
of general relativity, which allows us to prove (rigorously)
that initial data corresponding to stationary solutions are
extrema of H on T'. In the Einstein-Yang-Mills (EYM)
case, this shows that initial data for stationary solutions
are extrema of the Arnowitt-Deser-Misner (ADM) mass
at fixed electric charge. A generalization of this deriva-
tion to include an interior boundary surface enables us
to easily obtain a strengthened version of the first law
of black-hole mechanics and prove that stationary black
holes are extrema of ADM mass at fixed electric charge,
angular momentum, and horizon area. We are not able to
give a rigorous proof of the converse results—i.e., in the
first case, that extrema of mass at fixed electric charge
are initial data for solutions which are stationary and, in
the second case, that extrema of mass at fixed electric
charge, angular momentum, and boundary area corre-
spond to stationary black holes. However, we sketch an
argument for this which we believe could be made into a
rigorous proof with further analysis. In addition, rigor-
ous results along these lines will be proven in Sec. III.

As we shall see more explicitly below, it is essential that

the proper “boundary terms” be included in the defini-
tion of H in order that Eq. (3) will hold. The precise form
of these boundary terms will depend upon the theory un-
der consideration. In order to be explicit and definite
about these terms, we shall restrict attention here to the
case of SU(2) Einstein-Yang-Mills (EYM) theory, which,
of course, is the case of prime interest for our applica-
tions in Sec. IV. (For simplicity, we also shall restrict at-
tention to the case when the Yang-Mills principal bundle
over spacetime is trivial, so that a globally smooth Yang-
Mills potential AMA exists.) Note, however, that all of the
analysis of this section and the next also applies straight-
forwardly to Einstein-Maxwell theory. Indeed, the only
place in this section and the next where the SU(2) struc-
ture of the Yang-Mills gauge group G is used is in the
derivation of Eq. (41), which is used to obtain Eqgs. (47)
and (49). [For G=U(1) Eq. (41) holds trivially.] Thus the
results of this section and the next could be generalized to
the case of an arbitrary compact Yang-Mills gauge group
G by making appropriate changes in Egs. (47) and (49).
(Compactness of G is needed to ensure the existence of
a positive definite invariant metric for the Lie algebra.)
Furthermore, the arguments of Sec. IV apply to the case
of an arbitrary compact G which is semisimple. Finally,
we emphasize that most of the considerations of this sec-
tion are extremely general; indeed, they should be appli-
cable to any diffeomorphism invariant theory which can
be given a Hamiltonian formulation.

Some of the analysis of this section is closely related
to the results of Schutz and Sorkin [8]. Indeed, our proof
that stationary solutions are extrema of H can be viewed,
in essence, as a Hamiltonian version of their Lagrangian
argument. The main difference in the two analyses is
that we keep explicit track of the boundary terms which
occur, and we generalize the results to include an interior
boundary. In addition, the issue of whether an extremum
of H with respect to only constrained variations implies
stationarity was not considered by Schutz and Sorkin.

The Hamiltonian formulation of Einstein Yang-Mills
theory given below is closely related to the work of Ben-
guria, Cordero, and Teitelboim [9]. An important dif-
ference between these two analysis occurs in the choice
of the variables which are identified as “nondynamical.”
We identify the lapse and shift vector N* and the normal
component n“A”A of the Yang-Mills potential as nondy-
namical [see discussion below Eq. (2.29)], whereas Ben-
guria et al. [9], in effect, identify N* and N*A  as non-
dynamical. This difference is of no consequence when the
lapse is nonzero, but when the lapse vanishes, it is not
consistent to view NV “A”A as nondynamical. This causes
some differences in the analysis of angular momentum.

A point in the phase space I' of EYM the-
ory corresponds to the specification of the fields
(hab, ™%, A, E%) on a three-dimensional manifold X.
Here hgp is a Riemannian metric on ¥ and AaA is a Lie-
algebra-valued one-form on ¥ . (Our index notational
conventions were stated near the end of Sec. I above.)
The momentum 7% canonically conjugate to h,p is re-
lated to the extrinsic curvature K, of ¥ in the spacetime
obtained by evolving this initial data by
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7 = VR(K® — h*K). (6)

The momentum II%, canonically conjugate to A2, is
simply

HaA = 4EaA, (7)

where E? is the electric field in the evolved spacetime,
viewed as a tensor density of weight, 1/2, i.e.,

B\ = VhE, ¥, ®)

where n# is the unit normal to ¥ in the evolved space-
time and the (spacetime) Yang-Mills field strength F, A
is given by Eq. (2). (Here spatial indices are raised and
lowered with the spatial metric hop and the Lie algebra
indices are lowered and raised with the Killing metric
—1chac’ka.) In Egs. (6) and (8), the quantity “VA” is

defined by
\/Enabcv (9)

€abc =
where €45 is the volume element on ¥ associated with
hay and 7gpe is an arbitrary fixed volume element (e.g.,
associated with a local coordinate system) on X.

We shall be concerned in this paper only with asymp-
totically flat initial data. We shall take “asymptotically
flat” to mean the following: There is an “asymptotic re-
gion” U C ¥ which is diffeomorphic to (R® — B) with B
compact and U is such that, in U,

hab = €ab + hap(8, ) /T + o(r~1), (10)
7% = 79(0, ) /1% + o(r~2), (11)
Al = A00,0)/r+o(r™), (12)
By = E°%\(8,9)/r* + o(r™?), (13)

where e is the pullback to ¥ (under the above diffeo-
morphism) of the flat metric on R3, and (r, 6, ) are stan-
dard spherical coordinates with respect to eg, . [For these
asymptotic conditions, the fixed volume element 74 im-
plicit in the expressions (6) and (8) for 7*® and E?, is
chosen in U to be the volume element associated with
eqb.] We also require that any kth-order derivatives of
these quantities (with respect to the flat derivative oper-
ator associated with egp) fall off k powers of r faster than
specified in Egs. (10)-(13). In addition, since we shall
wish to employ the notion of angular momentum for cer-
tain purposes below, we impose the further restrictions
on the initial data which are needed to ensure that an-
gular momentum is well defined (see below). For many
of our results, it appears likely that the relatively strong
asymptotic conditions we use could be weakened to the
Sobolev space conditions which ensure that ADM mass
is well defined [10], but we shall not investigate this issue
further here.

As already mentioned in the Introduction, we shall fo-
cus attention on the following two cases.

Case (a): X is a manifold without boundary and can
be written as the disjoint union of an “asymptotic re-
gion” U and a compact set C. The phase space I'® is

1457

taken to consist of all smooth initial data on ¥ which
are asymptotically flat on U in the above sense. (Since
we shall not attempt to define a manifold structure on
['(®), there is no harm done in restricting consideration
to smooth initial data.)

Case (b): X is a manifold with boundary and the
boundary is comprised by a compact two-surface S; fur-
thermore, T is the union of a compact set C' (containing
S) and an asymptotic region U. The phase space I'®)
consists of all smooth initial data on ¥ which are asymp-
totically flat on U.

As is well known, constraints are present in Einstein-
Yang-Mills theory. The allowed initial data is restricted
to the constraint submanifold I' defined by the vanishing
at each point x € ¥ of the quantities

0 =Ca = 4VhD,(E%/Vh)
= 4[VhDo(E°y /Vh) + cof ATE%),  (14)

0=_Co = Vh[~R + (1/h)(masm® — i7?)]
+(2/VR)E B + VREMFY, (15)

0 =C, = —2VhDy(n 2 /Vh) + AF,MEY, (16)

where D, is the derivative operator on ¥ compatible
with the metric hqp , D, denotes the (metric compati-
ble) gauge-covariant derivative operator, and R denotes
the scalar curvature of hgp.

The equations of motion of EYM theory can be for-
mally derived from a Hamiltonian H. Indeed, we shall
see below that in case (a), a true Hamiltonian satisfying
Eq. (3) can be found by including certain “surface inte-
gral contributions” to H. In any case, the “volume in-
tegral contribution,” Hy to H has the “pure constraint”
form

Hy = / (N“C,, + NHANCY), (1)
z

where the fixed volume element 744, [see Eq. (9)] is under-
stood here and below in all volume integrals over X. As
we shall explain further below, N* has the interpretation
of being the “lapse” and “shift” functions and A" has the
interpretation of being the component of the spacetime
Yang-Mills potential normal to . Neither N* nor A,
are to be viewed as dynamical variables and they may
be prescribed arbitrarily. The “pure constraint” form of
Hy is not special to EYM theory; in fact, the “volume
integral contribution” to any Hamiltonian arising from a
diffeomorphism-invariant Lagrangian always takes such
a form (see the appendix of [11]).

If we compute the change in Hy caused by arbitrary
infinitesimal variations (6hqp, 679,642, 6E%) of com-
pact support, we obtain, after integration by parts, the
formula

§Hy = / (P®6hap+QapbT P +RY AN +S,A6ES),
z

(18)
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where P*®, Qs, R, and SaA are given by
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R = —4[VRDy(N°F%) + NOcpf Ag E°A — £5:E%],

P = VRN a® 4+ VR[h® DD (N°) — D*D®(N°)] (21)
— LN, (19)
N S, = 4[N°E A /Vh 4+ Do(NAM) + £3: A0, (22)
Qab = —=(27gp — Thap) + £ nihgb, 20
b \/ﬁ( b b) + £nihab (20) with
J
a® = (2/h)(E°\E® — $h*°E E°)) + 2(FXF." + Jh**FRF.3)
+(R® — Lh®R) + (1/h)[(2me, 7 — wm?®) — Ihob(nlrey — I72)). (23)

In Eqgs. (19)—(22) we have inserted the index i on £y: to
emphasize that the Lie derivatives here are to be taken
on the manifold ¥ with respect to the vector field N.
(By contrast, the symbol £y used below denotes the
Lie derivative on the spacetime manifold with respect to
N*#.) The Lie derivatives of hy, and AaA are the ordinary
Lie derivatives of these tensor fields, i.e.,

£nihap = 2Dy Ny,
(24)
£niAD = N®DyAM + APADNY,

but the Lie derivatives of the tensor densities 72 and
E%, are to be understood throughout this paper as the
natural notion of Lie derivative for tensor densities, i.e.,

1
Lyt = yﬂCde £+ (1% 7ege)

= VAN®D (n®®/VR) — 2n¢*D_N® + 1% D N,
(25)

1
£ni EY g;ﬂdefNi(EaAﬂbcd)
VhN°D.(E% /Vh) — E,D.N® + E% D.N°,

(26)

where the ordinary expression for the Lie derivatives of
tensor fields is understood on the right-hand side of the
first line of (25) and (26), and 7%¢ = nlab< is defined by
nabcnabc = 3!

The Einstein-Yang-Mills equations are precisely equiv-
alent to the constraint equations (14)-(16) (which can
be obtained by extremizing Hy with respect to N# and
AgM) together with the evolution equations obtained from
Eq. (18),

ab — _pab. (27)
hab = Qab, (28)
E8, = —R% /4, (29)
AP =814 (30)

—

Indeed for a given (arbitrarily prescribed) choice of
N# and A (with N° # 0), if we are given a solu-
tion (has(t), m30(t), AL (t), B4 () to Egs. (14)-(16) and
Egs. (27)-(30) on X, we obtain a spacetime solution
(9uv» AuA) to the EYM equations on the spacetime man-
ifold M = R x ¥ as follows: If we let (z1, 2, z3) denote
local coordinates on ¥, the components of the spacetime
metric g,, in coordinates (t,x1,z2,%3) on M are given
by

3
ds? = —[(N°)? — N°N,]dt* + ) _ Nidt da*

3
+ hijdaida? (31)

2%

[In Eq. (31)—and only in this equation—the indices i, j
must be viewed as coordinate components rather than
abstract indices.] This gives N° the interpretation of
being the “lapse function” and N the interpretation of
being the “shift vector” for the ¢t = const hypersurfaces
on M. The spacetime Yang-Mills potential AMA then is
determined by the conditions that its pullback to any
t = const hypersurface be A,A(t) and that its normal
component n“A,* be Ay*, where n# is the unit normal
to the t =const hypersurface in the metric (31). The
overdots appearing in Egs. (27)-(30) then correspond to
Lie derivatives with respect to N* in the spacetime con-
structed in this manner.

As mentioned above, N* and A,* are not viewed as
dynamical variables; i.e., they are not represented in the
phase space I'. We may choose N* and A, arbitrarily
and, by solving Egs. (14)—(16) and (27)—(30), obtain a so-
lution of the EYM equations on R x ¥ as described above.
Our choice of N* is dictated by the type of “time evo-
lution” we seek. We shall be interested only in the case
where N* corresponds asymptotically to a time transla-
tion or rotation, so we shall restrict attention to those
cases. With regard to Ay", we would be free to choose
A = 0, but this would, in certain cases, exclude the
possibility of choosing a gauge in which A] is station-
ary (i.e., time independent). For this reason, we will
restrict A, only by requiring that it approach an (angle-
dependent) limit A;*(8, ) as r — oo and that the kth
derivatives of A, are O(1/r¥) as r — oo.
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Equation (18) is precisely of the form of Eq. (3) con-
tracted into a vector on I' corresponding to a pertur-
bation (6hqp, 67, 8A,2,6E%) of compact support on
Y. However, as pointed out by Regge and Teitelboim
[12] in the vacuum case, Eq. (18) fails to hold for Hy
when we perturb towards arbitrary nearby initial data,
i.e., when (8hgp, 67°°) merely satisfy asymptotic flatness
boundary conditions at infinity (i.e., rather than being
of compact support). The reason is that nonvanishing
“surface terms” will arise when one integrates by parts
to try to put §Hy in the form of Eq. (18). However, in
case (a) these surface terms can be canceled by adding
additional surface terms to Hy to obtain H. Hence, gen-
eralizing the Regge-Teitelboim Hamiltonian to the EYM
case, we obtain, as the Hamiltonian in case (a) (ie., a
single asymptotic region with no interior boundary),

H=Hy + f dS%{ N°[8°hap — Buhy?] + 2N®map/ VR

+4(N°AP + NP AP Eq n/VR}.
(32)

Here the surface integrals are taken over two-spheres of
coordinate radius r (with dS® representing the proper
volume element on these surfaces), with the limit as
r — 0o then taken. (The derivative operator 9, appear-
ing in the first term is the one associated with the flat
metric ey, and the index of hgp in that term is raised with
e®. The term “VR” is the square root of the determi-
nant of h,p with respect to the volume element associated
with egp, i.e., near infinity we choose g5 [see Eq. (9)] to
coincide with the volume element associated with egp.)
The first two terms are the same as obtained by Regge
and Teitelboim [12] in the vacuum case. By a direct cal-
culation, it can be verified that for all asymptotically flat
perturbations, i.e., not merely ones of compact support,
and for N* and A" satisfying the asymptotic conditions
of the previous paragraph, we have

§H = / (P®6hap+ Qapdm® + R AN + 8,26 B2 );
=

(33)

i.e., Eq. (3) is satisfied.

We define the canonical energy € on the constraint sub-
manifold I" of phase space to be the Hamiltonian function
H (multiplied by 1/167) corresponding to the case where
N*" is an asymptotic time translation, i.e., N° — 1 and
N¢ — 0 at infinity. Recalling that Hy is pure constraint
and hence vanishes on T, we obtain, from Eq. (32),

E=m+ (1/4n) jf dS°® A Eqa, (34)
where m is the ADM mass, defined by
m = (1/161) }{ dS°[8hap — Buhy?]. (35)

Thus, the canonical energy differs from the ADM mass
by the term
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Eym = (1/4) j[ dS° AP Eay, (36)
o

which is highly “gauge dependent” since A,* can be
chosen arbitrarily. However, if we consider a station-
ary solution of the EYM equations, then A,* is uniquely
determined—up to addition of a gauge covariantly con-
stant Lie-algebra-valued scalar field which commutes
with E% (if any exist) and up to a time-independent
gauge transformation—by the condition that AA = 0
and E% = 0 for all time when N* is chosen to be
the stationary Killing field. If we make this choice of
A for a stationary solution, then Eyas becomes in-
variantly defined, since it is manifestly invariant under
a time-independent gauge transformation and addition
of a gauge-covariantly constant scalar field also does not
change €y s on account of the constraint (14). Further-
more, for this choice of A", we have, by Eq. (30),

0=AA = N°EA/VR + Do (N°AM)

+ LN AL (37)
Contracting this equation with A", we find
0 = 8,(A" Aop) + O(r72), (38)

which shows that the magnitude of Ag* is asymptotically
constant. We define V' by

V = lim (Ag*App)Y/2. (39)
r—00
In addition, Eq. (29) yields
0= —E% = VADy(N°F%) + N, LA AL E®,
‘—-eNz' EGA, (40)

which shows that, asymptotically, A;* and E,* point in
the same Lie algebra direction, i.e.,
APE = 0(r3) (41)

0 a .
[Here, the fact that we are considering G =SU(2) has

been used.] Finally, by contracting (37) with N°A,? and
taking the divergence of the resulting equation, we find

D®Dax* = O(1/r*), (42)

where x* = N94A and x2 = x%xa, and where we have
made use of (14), (41) and of the fact that N° — 1 and
N¢ =0(1/r) as r — oco. From this we conclude that

x> =V2+C/r+o(1)r) (43)
with C a constant. Applying D, to (43) we obtain

2N°AoaD (NP AP) = —C/r? + o(1/r?). (44)
But, by (37) we have

D (N°AP) = —EA 4+ o(1/r2). (45)
Substituting this equation in (44), we obtain

NCALE p = C/2r% 4+ o(1/7?). (46)
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Thus, taking Eq. (41) into account, we find that, in the
stationary case,

Eym =VAQ, (47)
where the Yang-Mills charge Q is defined by [13]

Q= :t(1/47r)}{ |[E%7a|dS, (48)

where r® denotes the unit radial vector in the met-
ric eqp, vertical bars denote the Lie-algebra norm,
and the + choice is made depending upon whether
lim, o 72 A E% 1, = C/2is positive or negative. Thus,
in the stationary case, £y ps has the interpretation of be-
ing the electrostatic contribution to the energy due to the
presence of a charge with a nonzero potential at infinity.

A similar analysis establishes that for an arbitrary
(nonstationary) perturbation of a stationary solution, we
have

6Eym = (1/4r) f AP 6En = VQ, (49)
where
6Q = +£(1/4n)é j{ |E%rq|dS. (50)

By construction, H satisfies Eq. (33) for perturbations
of any initial data set in ' for any choice of A, ap-
proaching a direction-dependent limit at infinity and for
any choice of N* which asymptotically approaches a time
translation (or rotation) at infinity. Consider, now, ini-
tial data in I'* corresponding to a stationary solution
to the EYM equations. Suppose we choose N* to be
the stationary Killing field and choose A, so that 4}
and E% are time independent. Then, for this choice
of N* and A it follows from Egs. (27)-(30) that the
right-hand side of Eq. (33) vanishes. Taking into ac-
count Egs. (34), (36), and (49), we obtain the following
theorem.

Theorem 2.1. Let (hqp, %, AN, B4, ) be smooth data
for a stationary, asymptotically flat solution of the EYM
equations for case (a) defined above (i.e., the initial data
surface ¥ has only one asymptotic region and no inte-
rior boundary). Let (6hab,67rab,6AaA,6E“A) denote an
arbitrary (not necessarily stationary) smooth, asymptot-
ically flat solution of the linearized constraint equations.
Then, we have

0 =66 =6m+V6Q. (51)

Thus, in particular, every stationary solution is an ex-
tremum of ADM mass m [defined by Eq. (35)] at fixed
Yang-Mills electric charge Q [defined by Eq. (48)].

We emphasize that the proof of this theorem consists
of a straightforward computation starting from the def-
inition of &£, Eq. (34). Our discussion above concerning
the existence of a Hamiltonian formulation of EYM the-
ory merely serves to explain why a simple result such as
Eq. (51) should be expected. The issue of whether the
converse of this theorem is valid, i.e., whether extrema
of mass at fixed electric charge correspond to stationary
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solutions, will be addressed at the end of this section.

In an exactly similar manner, we define the canonical
angular momentum J on the constraint submanifold I of
phase space to be the Hamiltonian function H (multiplied
by —1/167) corresponding to the case where N* is an
asymptotic rotation at infinity, i.e., N9 — 0 and N* —
¢%, where ¢ is a rotational Killing field of e;;, . From
Eq. (32), we obtain,

J = —(1/16m) 7{ (2057 + 44° AN E%)dS,.  (52)
o0

The first term is just the Regge-Teitelboim [12] expres-
sion for angular momentum in the vacuum case. The
second term does not appear to have been considered
previously (see, however, Eq. (2.11) of [9] and the foot-
note to Eq. (4) of [14]), although it would arise (as a term
to be added to the usual volume integral expression for
angular momentum) even for the case of Maxwell fields
in flat spacetime. In particular, as indicated above, this
term does not appear in the definition of angular momen-
tum given in [9)].

For initial data merely satisfying the asymptotic con-
ditions (10)—(13), the first surface integral in the expres-
sion for J need not have a limit as r — oco. (The limit
as v — oo of the second surface integral always exists,
but need not be gauge invariant.) Thus, additional re-
strictions on the initial data must be imposed in order
that J be well defined. One possible set of additional
restrictions is suggested by the following formula for 7
which is obtained by converting the surface integral ex-
pression (52) to a volume integral and then using the
constraints (14) and (16):

J = —(1/16m) / (T8 £ 43 hop + AE% £4: A1), (53)
b))

where ¢° is any vector field on ¥ which asymptotically
approaches a rotational Killing field of e43. From Eq. (53)
we see that if ¢* can be chosen so that £4ihg, and
£ 4 A fall off slightly faster than required by our asymp-
totic conditions, i.e., if

Lgihgp = O(1/r1Fe), (54)

L£4AN =01/, (55)

then the integral (53) converges, and J is well defined.
An alternative set of restrictions which also should en-
sure that J is well defined is that the magnetic part of
the Weyl tensor [15] and the Yang-Mills magnetic field
fall off slightly faster than automatically required by our
asymptotic conditions. We shall not attempt here to in-
vestigate the relationship between these and other pos-
sible restrictions [16, 17], but shall merely assume below
in any context in which J is used, that we have imposed
suitable asymptotic restrictions to make J well defined.

In parallel with Theorem 2.1 above, Eq. (33) imme-
diately yields the following result: For the phase space
I'®) of case (a), any axisymmetric data satisfying the
constraints is an extremum of 7 on the constraint sub-
manifold T(®) ie., §7 = 0 for any perturbation off of
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an axisymmetric background. In addition, Eq. (53) also
shows that in case (a), we have J = 0 for any axisym-
metric solution.

We turn now to case (b), where, again, ¥ has one
asymptotic region U, but now X has a smooth “interior
boundary” S. Again, the initial data is required to be
asymptotically flat on U. In this case, however, it does
not appear that we can obtain a Hamiltonian function H
on I'® which satisfies Eq. (33) [i.e., the version of Eq. (3)
appropriate to EYM theory] unless we put strong restric-
tions on N* at S. Nevertheless, we can obtain a general-
ization of Theorem 2.1 in the following manner. Again,
we define Hy by Eq. (17). Then Hy vanishes identically
on the constraint submanifold. Hence, if we consider any
initial data satisfying the constraints and perturb it to-
wards another solution of the constraints, the linearized
perturbation obviously satisfies
|

1461

0=6Hy = / N#6C,, + / N*AMGCH. (56)
by by

We integrate this equation by parts to remove all the
derivatives from the perturbations as in the derivation
of Eq. (18) above. When we do so, we obtain a volume
integral which is precisely the same as the right-hand
side of Eq. (18). In addition, we obtain surface integral
terms arising both from infinity and from the interior
boundary S. The surface terms at infinity are identical to
those occurring in case (a), which were computed above.
The surface terms at S can be computed in an entirely
straightforward manner. The case of prime interest for
our purposes occurs when N* asymptotically approaches
a linear combination of a time translation and rotation at
infinity, i.e., more precisely, as 7 — oo we have N° — 1
and N — Q¢* where ¢° is an axial Killing field of eqp
and 2 is a constant. In that case, we obtain

167(6€ — Q8T) = / (P%®6hap + Qapb7®® + RY A + S, 6E%) + j‘{ dS, Dy N°(h®°h* — h®®h°d)sh 4
S

— }{ dS,[N°(h3ehbd — h9h°d) Dy(8heq) + (2/VR)NOS(1%) — (1/VR) N6 Ry,
S

+(4/Vh)(N° AP + NPAM6ES, — ANCFa, A6 AY,),

where £ and J again are defined by Egs. (34) and (52).
We emphasize that Eq (57 ) is an identity which is sat-
isfied whenever (hqp, 72%, A2, E® ") is an asymptotically
flat solution of the constramts, (6hab,67rab A, A SEC ‘)
is an asymptotically flat solution of the lmearlzed con-
straints, A;* has a (direction-dependent) limit as 7 — oo,
and N* asymptotically approaches the linear combina-
tion t# + Q@* of a time translation and rotation at infin-
ity. (A,® and N* otherwise can be chosen arbitrarily.)
Note that no boundary conditions whatsoever have been
imposed on any quantities at S. We also emphasize that
the proof of Eq. (57) consists of the straightforward cal-
culation outlined above.

Suppose, now, that we are given a solution of the EYM
equations describing a stationary black hole with bifur-
cate Killing horizon. By a theorem of Hawking [18], there
exists a Killing field x* which vanishes on the bifurcation
2-surface. One possibility is that x* coincides with the
given stationary Killing field t* . If not, then Hawking’s
theorem states that the black hole is axisymmetric and
x* is a linear combination of t* and the axial Killing field
¢*. Thus, in either case there is a constant Q0 (possibly
zero) such that

x* =t + Qo# (58)
and €2 then has the interpretation of being the angular
velocity of the horizon.

We now choose ¥ to be an asymptotically flat hyper-
surface which intersects (and terminates at) the bifurca-
tion 2-surface S of the stationary black hole. We choose
N# = x* and we choose A" so that AA = E% =
0. Then the volume integral in Eq. (57) vanishes by
Eqgs. (27)—(30) (since the background solution is station-
ary) as does the second surface integral contribution from

(57)

s (since N¥ =0 on S). The derivative of N° normal to
S is proportional to the surface gravity « of the horizon.
Since & is constant over S (see, e.g., [19]), this term can
be pulled out of the integral, and we obtain

f dSaDy(N®)6hea(h®°hb? — hePhed) = 2k6A4,  (59)
S

where A is the area of S. Taking into account Eq. (57)
and the second equality of Eq. (51), we thus obtain the
following theorem.

Theorem 2.2. Let (hqp, 7%, A2, E%) on a hypersur-
face ¥ be smooth, asymptotically flat initial data for
a stationary black hole, whose bifurcation 2-surface, S,
lies on X. Let (6hqp, 679,642, 6E%) be an arbitrary
smooth asymptotically flat solution of the linearized con-
straints on X. Then, we have

sm +V6Q — Q8T = (1/8m)k5A, (60)

where m, V, Q, J, and Q are defined by
Eqs (35), (39), (48), (52), and (58), respectively. Thus,
in particular, any stationary black hole with bifurcate
Killing horizon is an extremum of mass at fixed electric
charge, canonical angular momentum, and horizon area.

Theorem 2.2 is, in essence, an extension of the first
law of black-hole mechanics [20] to the EYM case. Sev-
eral points, however, are worthy of emphasis. First, our
derivation proves that Eq. (60) actually holds for arbi-
trary asymptotically flat perturbations of a stationary
black hole, not merely for perturbations to other station-
ary black holes as required in the usual formulation and
proof of the first law [20]. A proof of the first law un-
der a weakening of the hypothesis that the perturbation
take one to a nearby stationary black hole was previously
given by Hawking [21], but his derivation still required
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that the perturbation be axisymmetric and “(t-¢) sym-
metric.”

Second, as discussed above, our definition of canon-
ical angular momentum differs from the usual Regge-
Teitelboim surface integral by the second surface inte-
gral appearing in Eq. (52). In the Maxwell case with a
globally smooth A, [i.e., a trivial U(1) bundle], if one
considers only stationary perturbations of a stationary
black hole, this term would not contribute since both A4,
and 8 A, will fall off faster than 1/r at infinity. However,
even in the Maxwell case, this term can contribute to 6.7
for nonstationary perturbations. Our derivation shows
that its contribution must be included in Eq. (60). In
the EYM case, this term can, in principle, contribute to
60J even for stationary perturbations.

Third, a term of the form V6@ could be expected to ap-
pear in Eq. (60) by analogy with the form of the first law
in Einstein-Maxwell theory. However, in EYM theory,
it does not seem obvious, a priori, whether one should
expect to find the 6Q term to represent the change in
electric charge at infinity or at the horizon, since these
two quantities need not be equal. Our formula (60) shows
that it is the change in charge at infinity which is relevant
to the first law.

Finally, it is worth noting that although the term Vé6Q
is present in Eq. (60), there is no corresponding term
present for magnetic charge. In Einstein-Maxwell the-
ory, the absence of such a term is not surprising, since
for a globally smooth A, the magnetic charge auto-
matically vanishes, and even if one generalizes the the-
ory to consider nontrivial U(1) bundles, the magnetic
charge is quantized by the Dirac quantization condi-
tion and thus cannot vary under a perturbation. How-
ever, in EYM theory magnetic charge is not quantized
and can vary under perturbations. Magnetically charged
Reissner-Nordstrom black holes exist in EYM theory
at the discrete values P, of magnetic charge given by
the Dirac condition and at all values of horizon surface
area A > 4rP2. Our formula (60) already shows that
two Reissner-Nordstrom solutions of different magnetic
charge and the same area A cannot be connected by a
sequence of stationary black-hole solutions of area A and
) = J = 0 since those solutions have different masses.
It strongly suggests that although magnetic charge is not
quantized in EYM theory, the possible values it can take
for stationary black holes probably are quantized.

Theorem 2.1 establishes that in case (a) a stationary
solution is an extremum of m at fixed @ with respect to
all first-order variations in the initial data which satisfy
the linearized constraints. Theorem 2.2 similarly estab-
lishes that in case (b), stationary black holes are extrema
of m at fixed Q and 7 and at fixed area A of the bound-
ary surface S. We turn our attention, now, to the issue
of whether the converse of these results hold; specifically,
whether, in case (a), initial data which are an extremum
of m at fixed Q are necessarily initial data for a stationary
solution and whether, in case (b), initial data which are
an extremum of m at fixed @, J, and A are necessarily
initial data for a stationary black hole.

Cousider case (a), and, for simplicity, we analyze, first,
the pure vacuum case; i.e., we set to zero the Yang-Mills

initial data and their variations in all of our formulas.
Then, £ = m and Eq. (33) reduces to

16wém = / (P®S8hap + Qapbmab), (61)
b

where P and Q,; are given by Egs. (19) and (20) with
A} = E% = 0. Now, if &m = 0 for all (6hgs, 572),
it would follow immediately from Eq. (61) that P =
0, Qq = 0, and thus that the solution determined by
the initial data is stationary. This is, in essence, the
result obtained by Schutz and Sorkin [8]. However, the
situation of interest for us is the case where ém = 0
only when (6hqy, §72%) satisfy the linearized constraints,
in which case stationarity (up to gauge) does not follow
immediately.

An argument that extrema of mass with respect to
properly constrained variations implies stationarity (in
the vacuum case) was given by Brill, Deser, and Fadeev
[22]. They start with the surface integral formula (35)
for m and propose to treat the constraints on the varia-
tions (8hap, 67°°) by the method of “Lagrange multipli-
ers.” This leads them to extremize the quantity

m' =m+ (1/167r)/ L, (62)
>

with respect to unconstrained variations, where the vec-
tor field L* on ¥ is a Lagrange multiplier. Now, let
(8hap, 67%?) be a variation (not necessarily satisfying the
constraints) of compact support on X.. Then §m will van-
ish (since it is given by a surface integral at infinity) and
since, in the vacuum case under consideration here, the
second term in Eq. (62) is of the same form as Hy [see
Eq. (17)], the requirement that m’ be an extremum with
respect to all such variations implies that L* must be a
Killing field [see Eq. (18) and Eqgs. (27)-(28)]. Further
arguments (not explicitly made in [22]) would then show
that L* must asymptotically approach a time transla-
tion, so that the initial data correspond to a stationary
solution.

The above argument is deficient in several respects.
One difficulty is that m, being given by a surface integral
expression, is not likely to be suitably differentiable off of
T, though this could probably be remedied by defining m
off of T by adding Hy to the surface integral expression.
However, the most serious deficiency involves the lack of
justification for the above form of the Lagrange multi-
plier method in the case relevant here where infinitely
many constraints are present [since Eqgs. (14)—(16) must
hold at each point of ¥]. This method would be justi-
fied if we could introduce a metric G4 on the uncon-
strained phase space I' such that for points that lie on
the constraint submanifold T' every tangent vector (i.e.,
linearized perturbation) X“ can be written uniquely as
the sum of a vector Y tangent to I (i.e., a perturbation
satisfying the linearized constraints) plus a vector of the
form GABV ([, L#C,,) for some L¥*. Indeed, it is the ex-
istence of such a decomposition which would ensure that
extrema of m with respect to constrained variations co-
incide with extrema of m’ with respect to unconstrained
variations. (In finite dimensions, any metric gives rise to
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such a decomposition with respect to the constraints, so
there is no difficulty with the use of the Lagrange multi-
plier method in finite dimensions or in infinite dimensions
when only finitely many constraints are present.)

If one chooses an (appropriately weighted) L? inner
product to define G 4B, one could come close to obtaining
the desired decomposition. However, at best, the second
term in the decomposition would be expressible as a limit
of terms of the form GABVp( [, L¥C,) and this limit
need not itself have the desired form. Thus, although
suggestive, the argument of [22] certainly falls short of
providing a proof that, in the vacuum case, extrema of
mass correspond to stationary solutions.

The following appears to us to be the most promising
line of argument toward proving the validity of the above
converses to theorems 2.1 and 2.2. We consider, again,
case (a) and, for simplicity, we again initially consider
the vacuum case. We claim, first, that given any initial
data (hgp, m) satisfying the constraints there always ex-
ists a perturbation of the initial data (8hqp, 67%%) which
satisfies the linearized constraints in a neighborhood of
infinity (but not necessarily on all of ¥ ) and which yields
a nonvanishing change in mass, ém # 0. Indeed, if the
initial data (hgp,7°P) satisfies 7% = 0 in a neighbor-
hood of infinity, we can obtain the desired perturbed
initial data by using the conformal method (described
further in the next section), taking the perturbed con-
formal factor to be a monopole solution of the linearized
Lichnerowicz equation in a neighborhood of infinity and
smoothly extending it to the interior in an arbitrary fash-
ion. If 72, # 0 in a neighborhood of infinity, we can “time
evolve” the initial data to make 7% = 0 in a neighbor-
hood of infinity, obtain the desired perturbed initial data
on this new time slice, and then evolve the perturbed
initial data backward in time to obtain the desired per-
turbed data on the original slice. ~

Given the above perturbation (6hgp, 57%°) to the initial
data, the key issue becomes the following: Can we find a
new asymptotically flat perturbation (6h,p, 67%°) to the
initial data which satisfies

6C, =S, (63)
with
S, = —6C, (64)

such that 6h,;, falls off at infinity sufficiently rapidly that
ém = 07 If the answer is “yes,” then the combined per-
turbation to the initial data (8hap + Shap, 67 + 672P)
will satisfy the linearized constraints with mass variation
oém # 0. Thus, a necessary condition for an extremum of
mass is that Eq. (63) have no solution with 8k, falling
off at infinity sufficiently rapidly that ém = 0.

The question of whether Eq. (63) can be solved is
essentially the same question as arises when analyzing
the issue of linearization stability [23], i.e., the issue of
whether, given a solution of the linearized constraint
equations, one can find a corresponding one-parameter
family of exact solutions. In that case one again encoun-
ters an equation of the form (63), except that now the
left-hand side represents the linearized change in C,, due
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to the second-order perturbation and the source term S,
now represents the contribution to the second-order per-
turbation equations arising from the terms quadratic in
the first-order perturbation. If one can solve Eq. (63)
with an arbitrary S, then the implicit function theorem
guarantees linearization stability. On the other hand, if
there is a source term S, which can be constructed from
a first-order perturbation for which Eq. (63) cannot be
solved, then linearization stability fails for that pertur-
bation.

The issue of linearization stability has been extensively
analyzed in the case where the Cauchy surface ¥ is com-
pact (without boundary), under the additional hypothe-
sis that K = const [where K = —7% /(2v/h) denotes the
trace of the extrinsic curvature of ¥ in the spacetime]. It
has been shown [23] that in the compact case, Eq. (63)
can be solved for a given smooth source S, if and only
if S, is orthogonal (in the L? sense) to the kernel of the
L? adjoint A! of the linear operator A defined by

A(8hgp, 67°%) = 6C,,. (65)

Now, the adjoint operator A" can be computed by con-
sidering the integral

/ M*6C,
z

and integrating by parts to remove all derivatives from
Shqp and 6790, (No boundary terms arise here since ¥ is
compact.) However, in the vacuum case under consider-
ation here, the integral (66) is precisely of the form § Hy,
where Hy was defined by Eq. (17). Equation (18) thus ef-
fectively computes A, and Egs. (27) and (28) show that
M* lies in the kernel of A, if and only if M* is a Killing
field. Hence, we recover Moncrief’s result [24] that lin-
earization instability can occur only when the spacetime
admits a Killing field.

In the asymptotically flat case (a), with no additional
restrictions on the perturbations, if we multiply Eq. (63)
by M* and integrate over ¥, we find that a necessary
condition for solving (63) is that S, must be orthogonal
to any M* for which P% = 0 and Q,, = 0 and for
which the additional surface term at infinity obtained in
this case vanishes identically. These conditions require
M* to be a Killing field which vanishes asymptotically
as r — oo. In analogy with the results proven in the
compact case, it seems reasonable to conjecture that this
condition also is sufficient to be able to solve Eq. (63)
for any smooth S, of sufficiently rapid falloff at infinity.
If so, this strongly suggests that all asymptotically flat
spacetimes are linearization stable, since it should not
be difficult to prove that there cannot exist Killing fields
which vanish asymptotically.

If we now apply this argument to the case of interest
for us, namely, solving Eq. (63) for .S, of compact support
where we additionally require the perturbation to fall off
sufficiently rapidly that it satisfy §m = 0, then we find, as
the corresponding necessary condition to solve Eq. (63),
that S, must be orthogonal to any M* which is a Killing
field for which M® — 0 at infinity, but M° now may go
to a constant. We conjecture that this condition also is

(66)
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sufficient to solve Eq. (63) for any smooth S, of compact
support. If so, then a necessary condition for a vacuum
spacetime to be an extremum of mass with respect to
vacuum perturbations is that it be stationary. In fact,
in the next section under the additional hypothesis that
the spacetime admits a foliation by maximal slices, we
will give a rigorous proof of the stronger result that the
spacetime must be static.

The above argument can be generalized in a straight-
forward manner to the EYM equation for case (a). Again,
given any EYM initial data which satisfies the EYM con-
straints, there should be no difficulty in finding smooth
perturbed initial data which satisfies the linearized EYM
constraints in a neighborhood of infinity, and satisfies
6Q = 0 but ém # 0. Our task then is to solve linearized
constraints

6C, = S, (67)

8Ch = Sa (68)

(with S, = —ECM and Sy = —8C, smooth and of com-
pact support) for a perturbation (6hgp, 67%, 642, 6E%)
for which 6h,p and 6E%, fall off at infinity sufficiently
rapidly that ém = 6Q = 0. The left-hand sides of
Eqs. (67) and (68) define an operator B mapping a per-
turbation of EYM initial data into a covariant vector
field and Lie-algebra-valued scalar field on ¥. To com-
pute the adjoint of B we multiply Eq. (67) by a vec-
tor field M*, multiply Eq. (68) by a Lie-algebra-valued
function a®, and integrate the sum over £. As in the
vacuum case, in order that (M*,a®) be in the kernel of
Bt, M* must be a Killing field for the background initial
data; in addition, we now find that a® must be such that
AA = LyuAD =0 and B4 = £yE% = 0 for the
background spacetime in a gauge where M#¥A A = a*. If
our perturbed initial data were restricted only by asymp-
totic flatness conditions, then in order not to generate
surface terms at infinity we also must have M* — 0 and
a® — 0 as 7 — oo. However, with the additional re-
striction m = 6Q = 0, M° may approach a constant
and a® may approach an angle-dependent constant (pro-
portional to the 1/r% part of the radial component of the
background electric field) as 7 — oo . In parallel with the
vacuum case, we conjecture that Eqgs. (67) and (68) can
be solved for arbitrary smooth (S, Sa) of compact sup-
port unless there exist (M*,a?) satisfying those asymp-
totic conditions where M* is a Killing field for the back-
ground spacetime and a® is such that £ MuAaA =0 and
£mrE% = 0 in a gauge with M# A = a®. If so, this
means that a necessary condition for an extremum of
mass at fixed charge is that the background EYM data
correspond to a stationary solution.

In order to extend these arguments to case (b), we
again start with a perturbation (8hqp, 7%, 6A N, 6E%,)
which satisfies the constraints near infinity and also sat-
isfies 6Q = 0, 67 = 0 but ém # 0. In addition, we
require A = 0 at the boundary S, which easily can be
achieved by setting the perturbation equal to zero in a
neighborhood of S, since we do not attempt to solve the
constraints near S. Again we attempt to solve Egs. (67)

and (68), but now with the additional restriction at in-
finity that 67 = 0 as well as ém = §Q = 0; furthermore
at the boundary surface S, we require 64 = 0. As in the
previous case, in order to have a nontrivial element of
the kernel of Bf, the background spacetime must admit
a Killing field M* and a Lie-algebra-valued scalar field
a® such that £p. A =0 and £+ E% = 0 in a gauge
where M “AMA = a™. However, on account of our stronger
asymptotic conditions on the perturbation resulting from
the requirement that §7 = 0, in this case no surface
terms at infinity will be generated if M° approaches
a constant, M® approaches a rotational Killing field,
and a” approaches a (direction-dependent) constant as
r — oo. Furthermore, in order not to generate surface
terms at S, we must have M* =0 at S and D, M° must
have constant magnitude on S. The fact that the Killing
field M* vanishes at S implies that the null geodesics
orthogonal to S generate a bifurcate Killing horizon (see
[25]). These null geodesics generating the Killing horizon
cannot reach infinity (since M*M,, = 0 on the horizon
but M*M,, # 0 near infinity), and this implies that the
boundary of the future of S cannot intersect Z+. This
implies, in turn, that the causal future of S comprises
(or is contained within) a black hole. Furthermore, M°
cannot asymptotically vanish at infinity, since otherwise
the orbits of M* would have to be closed, but the orbits
of M* on the Killing horizon cannot be closed. [In any
case, if MO vanished at infinity, then the source terms
occurring in Egs. (67) and (68) would be orthogonal to
(M*,a"); i.e., they would be orthogonal to the kernel of
Bf.] It presumably follows that the spacetime must ad-
mit a Killing field t* which asymptotically approaches a
time translation at infinity; i.e., the spacetime must be
stationary (and if M* # t#, it also must be axisymmet-
ric). Thus, if an (M*, a") satisfying the above conditions
exists, the initial data for the background spacetime cor-
responds to a stationary black hole.

The nonexistence of (M#,a?) satisfying the above
asymptotic conditions at infinity and boundary condi-
tions at S is necessary in order to be able to solve
Egs. (67) and (68) with arbitrary smooth source terms
of compact support for a perturbation satisfying 67 =
§Q = ém = 6§ A = 0. We conjecture that the nonexistence
of such an (M*,a?) also is sufficient to solve Eqgs. (67)
and (68) for such a perturbation. If so, then the desired
converse of theorem 2.2 holds: In order for EYM initial
data for case (b) to be an extremum of mass at fixed
charge, canonical angular momentum, and area S, the
initial data must correspond to a stationary black hole,
with S being the bifurcation surface of a bifurcate Killing
horizon.

The above arguments, of course, fall short of provid-
ing complete proofs of the converses of theorems 2.1 and
2.2. The main missing ingredient is a generalization to
the asymptotically flat, EYM case of the theorems, used
in the analysis of linearization stability, giving necessary
and sufficient conditions for solving Eq. (63) for vacuum
perturbations on a compact manifold. Many of the stan-
dard theorems concerning elliptic operators on compact
manifolds have been generalized to the asymptotically
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flat case [26], but it appears that considerable further
work would have to be done to obtain the precise form
of the results which we require here. Fortunately, in the
next section we shall give a simple, rigorous proof of a
closely related result: Under the additional hypothesis of
the existence of a maximal (K = 0) foliation, in case (a)
any extremum of mass must be static and, in case (b),
any extremum of mass at fixed area of S must be a static
black hole. Our plausibility arguments concerning the ex-
istence and properties of the known Bartnik-McKinnon
and colored black-hole solutions will rely only on the re-
sults of the next section. However, our plausibility ar-
guments concerning the existence of new solutions will
rely on the converses of theorems 2.1 and 2.2 for which
we have given plausibility arguments above.

III. EXTREMA OF MASS AND STATIC
SOLUTIONS

In this section we shall show that a necessary condi-
tion for an EYM solution to be an extremum of mass is
that the solution be static. As explained at the end of
the Introduction, by static, we mean precisely that there
is a hypersurface orthogonal Killing field N*# which ap-
proaches a time translation at infinity, and, in addition,
that the Yang-Mills electric field E°, vanishes on the hy-
persurfaces orthogonal to N#. Our results apply to both
cases (a) and (b) of the preceding section. Note that our
hypotheses are stronger than those of the plausibility ar-
guments given at the end of the preceding section in that
in case (a) we require m to be an extremum with re-
spect to all variations (not just variations which preserve
Q) and in case (b) we require m to be extremum with
respect to all variations which keep A fixed (not just vari-
ations which keep A, @, and J fixed). In addition, we
require the existence of a foliation by asymptotically flat
maximal (K = 0) slices. On the other hand, the conclu-
sion of our theorems are correspondingly stronger, since
we prove that the solution must be static, not merely
stationary.

The results of this section will be used in our plausi-
bility arguments in Sec. IV for the existence and prop-
erties of the Bartnik-McKinnon and colored black-hole
solutions. In addition, by combining the theorems of this
section with those of the preceding section, we obtain a
number of results of interest in their own right. These
will be described at the end of this section.

Before we begin, it is worth pointing out that if we were
to consider a theory where the matter fields 1); are such
that the dominant energy condition is satisfied and the
Einstein-matter equations are scale invariant, it would
follow immediately that the only possible extremum of
mass in case (a) is flat spacetime (with no matter fields
present). Here, by scale invariant we mean that there is
a transformation of the form g,, — )\29,“,, P — A%
with A a constant which takes solutions to solutions.
[Thus, scale invariance will hold in most cases where
the matter fields obey linear equations, such as Einstein-
Maxwell theory (or vacuum general relativity).] Under
such a scale transformation, we have m — Am, so a nec-
essary condition for a solution to be an extremum of mass
is that m = 0. The positive energy theorem [27, 28] then

implies that the solution is flat spacetime. [Note that for
Einstein-Maxwell theory, we automatically have @ = 0 in
case (a), so theorem 2.1 then establishes that in case (a)
there cannot exist stationary solutions of the Einstein-
Maxwell equations apart from flat spacetime.] However,
since the EYM equations (for a non-Abelian Yang-Mills
group) are not scale invariant, this line of argument is
inapplicable here, as is manifestly demonstrated by the
existence of the Bartnik-McKinnon solutions.

Nevertheless, our approach in this section will be simi-
lar to the argument of the preceding paragraph in that we
will simply obtain explicitly a solution of the linearized
constraints for which ém # 0, noting that the procedure
will fail only when the background solution is static. This
linearized solution will be obtained via arguments simi-
lar to those given by O’Murchadha and York [52] and
will use a generalization to the EYM case of the confor-
mal approach for solving the constraint equations, which
has been extensively developed by York and collaborators
(see, e.g., [29]). The key observation upon which this ap-
proach relies is that for EYM initial data with 7, = 0,
the Einstein and Yang-Mills momentum constraint oper-
ators C, and Cp [defined by Egs. (14) and (16)], are con-
formally invariant. Specifically, it can be verified directly
that if (hgep, 72, A, E% ) satisfy the constraints (14)
and (16) with 7%, = 0, and if ¢ is any smooth, positive
function, then

hab = ¢*hap, (69)
79 — §~4gab, (70)
AN = AN, (71)
E° = E%, (72)

also satisfy Egs. (14) and (16). Hence, in order to obtain
a solution of the full set of constraint equations (14)-(16),
we need only solve the Lichnerowicz equation

R—8471D*D,¢ = (1/h)mobnp9~° + (2/R)EX E P ™"

+Fp Fiyg™ (73)
for the conformal factor ¢ which ensures that
(hap, m2%, A2, E%) solves (15), where all indices in
Eq. (73) are raised and lowered with Agp. [Of course we
are not guaranteed, in general, that a positive solution to
Eq. (73) will exist globally.] Similarly, in order to solve
the linearized constraint equations off of a background
solution (hgp, %%, A2, E%) with 7%, = 0, we need only
find a solution (6hap, 679°,6 A2, 8E%,) to the linearized

momentum constraints satisfying hes67 + Shapme® = 0
and then solve the linearized Lichnerowicz equation.
Consider, now, case (a) of the previous section [i.e.,
as defined precisely following Eq. (13) above, ¥ has
one asymptotic region and no interior boundary] and
let (hab, ™%, A, E%,) be asymptotically flat initial data
with 7%, = 0 which satisfies the constraints (14)—(16).
Then, since (14) and (16) are linear in the momenta w°
and E%, it is easy to verify that we obtain a solution
to the linearized momentum constraints (14) and (16) by
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simply scaling down the momenta, keeping h,p and A
fixed, i.e., by choosing

Shay = 6AM =0, (74)
Sﬂ_ab — _,n_ab’ (75)
SEGA = —EaA. (76)

Hence, we will obtain a solution to the full set of lin-
earized constraints by solving the linearized Lichnerowicz
equation

D®D,(8¢) — use = p, (77)
where

u= (1/R)r®map + (/W) E\ES" + 3F,p FR,  (78)

p = (1/4h)m%7,p + (1/2R)E4 E2. (79)
Thus, we have, u >0, p > 0, and as r — 0o, we have

p=0(1/rt), (80)

p=0(1/r%). (81)

We note, first, that since both y and p are non-negative
and fall off to zero sufficiently rapidly as r — oo , there
exists a (unique) solution to Eq. (77) with ¢ — 0 as
r — oo [see theorem (1.5) of [30] for the case & = R®
and the results of [31] for the general case]. Second, by
rewriting Eq. (77) as a flat space Laplace equation with
source term, it can be shown [32] that as r — oo, 6¢ is
of the form

¢ =c/r +o(1/r), (82)
where c is a constant. Derivatives of é¢ go to zero cor-
responding powers of r faster. Thus, the perturbation
constructed by this procedure is asymptotically flat. The
change in ADM mass, Eq. (35), associated with this per-
turbation, is easily computed to be

ém = 2c. (83)

Next, we note that Eq. (77) is of the form for which the
Hopf maximum principle applies (see, e.g. [33]), which
implies that 6¢ cannot achieve a local maximum at any
point £ € . Thus, if we consider the (compact) region of
3 enclosed by a sphere of coordinate radius r near infin-
ity, the maximum of §¢ in this region must be achieved
on the boundary. If we let r — oo and take Eq. (82) into
account, this implies that §¢ < 0 everywhere on X .

Finally, we note that the following lemma holds for
solutions to Eq. (77).

Lemma: Let ¢ be a solution of solution to Eq. (77)
on an asymptotically flat three-manifold %, with u > 0,
p>0and g = O(1/r?*¢) as r — oo for some € > 0.
Suppose further that §¢ < 0 everywhere on ¥, and 6¢ =
o(1/r) as r — o0, i.e., the asymptotic form (82) holds
with ¢ = 0. Then 8¢ = 0 on X, which, of course, is
possible only if p = 0 everywhere on ¥. In other words,
if p # 0 at some point of X, then every solution, 6¢, of
Eq. (77) having the asymptotic form (82) and satisfying
6¢ <0on X hasc#0.

A proof of this lemma is given in the appendix. As
a direct consequence of this lemma and the preceding
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remarks, we obtain the following theorem.

Theorem 3.1. Let (hqp, m®°, A, E4,) be an initial data
set in 7@ —i.e., T has one asymptotic region and no inte-
rior boundary, the data are asymptotically flat, and the
EYM constraints (14)-(16) are satisfied. Suppose fur-
thermore that 7%, = 0. Then, if 7®® # 0 or E% # 0
at some point x € X, there exists an asymptotically flat
perturbation (6h,s, 679,642, 6E%,) satisfying the lin-
earized EYM constraints such that ém # 0. Further-
more, if the background initial data satisfies @ = 0, there
exists a perturbation satisfying ém # 0 and 6Q = 0. In
other words, if 7%, = 0, a necessary condition for an ex-
tremum of mass is that 7% = E% = 0 everywhere on &;
in addition if @ = 0 this condition is also necessary for
an extremum of mass at fixed charge.

Proof: If 7 # 0 or E4 # 0 at z € X, then by
Eq. (79), we have p # 0 at . Hence, by Eq. (83) and
the above lemma, the asymptotically flat perturbation
constructed from Egs. (74)—(77) satisfies ém < 0. If Q =
0, this perturbation also satisfies 6Q = 0. O

As an immediate consequence of this theorem, we ob-
tain the following result.

Corollary: Let (M; gu,,,Fw,A) be a solution of the
EYM equations which can be foliated by maximal (K =
0) slices 3¢ such that the induced initial data on each ¥;
is in I'(®). Suppose that this solution is an extremum of
ADM mass on each slice [or an extremum of ADM mass
on each slice at (fixed) zero charge]. Then this solution
is static. Specifically the maximal slices are orthogonal
to a Killing field and E% = 0 on these slices.

Proof: By theorem 3.1 above we have 7% = 0 and

% = 0 on each %;. Let N 0 denote the lapse function
for the maximal slices, let n* denote the unit normal
field for these slices, and choose N#* = N%n# as the time
evolution vector field for these slices. Then, we obviously
have

£num®® = qab =0 (84)
and by Egs. (20) and (28) we also have
Lnvhgp = h;b =0 (85)

since 7% = 0 and N® = 0. Equations (84) and (85)
imply that N* is a Killing field for the spacetime metric
9uv = Py, — nuny, . This Killing field is orthogonal to
each ¥, and thus is manifestly hypersurface orthogonal.
Finally it is obvious that

£NuEY = E% =0 (86)
and taking A;® = 0 we obtain, from Egs. (22) and (30),
LnnAl =AM =0, (87)

so in this gauge, the Yang-Mills field is stationary. Thus
the solution is static. O

The above results are easily extended to case (b)
(where ¥ has one asymptotic region and an interior
boundary S). We again construct a solution to the lin-
earized constraints via Egs. (74)—(77). The only change
is that, in addition to the boundary condition 6¢ — 0
at infinity, we also impose the Dirichlet boundary con-
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dition é¢ = 0 on S. Note that since §¢ = 0 on S and
8hap = 0 everywhere, we automatically obtain a solution
to the linearized constraints with 64 = 0 on S. Repeti-
tion of the arguments leading to theorem 3.1 then yields
the following result.

Theorem 3.2. Let (hqp, 7%, A2, E%) be an initial data
set in T®—j.e., T has one asymptotic region and an in-
terior boundary S, the data are asymptotically flat, and
the EYM constraints (14)—(16) are satisfied. Suppose fur-
ther that 7%, = 0. Then, if 7%® # 0 or E% # 0 at some
point z € X, there exists an asymptotically flat pertur-
bation (6has, 67,842, 6E%,) satisfying the linearized
EYM constraints such that ém # 0 and 6A = 0. Fur-
thermore, if the background initial data satisfies Q = 0
or J = 0, then there exists a perturbation satisfy-
ing ém # 0, 6A = 0, and respectively, 6Q = 0 or
6J = 0. In other words, if 7% = 0, a necessary condi-
tion for an extremum of mass at fixed area A of S is that
7% = E% = 0 everywhere on ¥; if in addition, @ = 0 or
J = 0 this condition is necessary for an extremum of m
at fixed Q or J, respectively.

In parallel with the corollary to theorem 3.1, we have
the following additional result.

Corollary: Let (M;g,.,,F,*) be a solution of the
EYM equations which is asymptotically flat at spatial
and null infinity and is strongly asymptotically pre-
dictable (see, e.g., [18] or [19]). Suppose that a region of
M can be foliated by maximal slices ¥; such that each X;
terminates on the same boundary compact two-surface S
and the induced initial data on each ¥, is in I'®. Sup-
pose that on each slice this solution is an extremum of m
at fixed area of S [or it is an extremum of mass at fixed
area of S, and (fixed) zero charge and/or (fixed) zero an-
gular momentum]. Then the solution describes a static
black hole, and S is the bifurcation surface of a bifurcate
Killing horizon.

Proof: That the region foliated by X is static follows
exactly as in the proof of the corollary to theorem 3.1.
Since the lapse function N° of the foliation vanishes at .S,
the static Killing field N* = NOn* vanishes at S, which
implies that the null geodesics orthogonal to S generate
a bifurcate Killing horizon (see [25]). As in the argument
given at the end of Sec. II, the causal future of S must
comprise (or be contained within) a black hole. O

Remark: In the corollaries to theorems 3.1 and 3.2,
it should be possible to replace the assumption of a max-
imal foliation by the assumption that there is a single
maximal slice satisfying the stated conditions. Given
such a maximal slice, we expect that existence of a maxi-
mal foliation in case (a) should follow from the arguments
of proposition 3.3 of [37]. In case (b), we expect that ei-
ther the existence of a maximal foliation could also be
proven directly or that it could be proven that Nn#* is
a Killing field, where N? is a solution to the linear equa-
tion for the lapse function which preserves K = 0 to first
order. However, we shall not attempt to investigate this
issue further here.

Although our original intention in obtaining theorems
3.1 and 3.2 and their corollaries was for their use in the
plausibility arguments of Sec. IV, these results yield some
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new theorems of interest in their own right when com-
bined with theorems 2.1 and 2.2 of the preceding section.
In particular, for case (a), we have the following theorem.

Theorem 3.3. Let (M gy, F,,*) be a stationary solu-
tion of the EYM equations possessing a maximal (K = 0)
slice &, which is asymptotically orthogonal to the station-
ary Killing field, and on which the induced initial data
lies in T'(®), Suppose, further, that VQ = 0, where V and
Q were defined by Eqgs. (39) and (48), respectively. Then
the solution is static. In particular, this means that the
electric field vanishes whenever V or @ vanishes.

Proof : If VQ = 0, then either V = 0 or Q = 0.
By theorem 2.1 it follows that the solution is either an
extremum of m or an extremum of m at fixed (zero)
charge. By applying the stationary isometries to X, we
obtain a family ¥; of maximal slices with induced data
in T'(®), Hence, by the argument given in the proof of the
corollary to theorem 3.1, the solution is static. O

Note that this theorem generalizes corollary 1 of [34]
(see also [35, 36]) to the nonspherically symmetric case
and also shows that in the stationary case we can choose
V =0 if and only if @ = 0.

Similarly, for case (b) we have the following theorem.

Theorem 8.4. Let (M; gu,,,Fu,,A) be a solution of the
EYM equations describing a stationary black hole with
a bifurcate Killing horizon. Suppose there exists a max-
imal (K = 0) slice ¥ asymptotically orthogonal to the
stationary Killing field, passing through the bifurcation
surface S, and such that the induced initial data on
lies in T'®. Suppose further that VQ = QJ = 0 [see
Egs. (39), (48), (52), and (58)]. Then the solution is
static.

Proof: By applying the stationary isometries to X, we
obtain a family ¥; of hypersurfaces satisfying the condi-
tions of the corollary to theorem 3.2. The remainder of
the proof exactly parallels the proof of theorem 3.3.0

Apart from the unwanted hypothesis of the existence
of a maximal slice (see the remark below), theorem 3.4
applied to the vacuum case closes a gap that has existed
for many years in the black-hole uniqueness theorems.
A theorem of Hawking (see propositions 9.3.5 and 9.3.6
of [18]) is often quoted as having proved that a station-
ary black hole must either be static or axisymmetric. In
fact, however, the results actually establish the follow-
ing: First, modulo an analyticity assumption, the event
horizon of a stationary black hole (with Killing field t*
timelike at infinity) must be a Killing horizon. Second,
if the Killing field x* generating the horizon differs from
t#, then the black hole is axisymmetric; this corresponds
to the case Q # 0 [see Eq. (58)]. However, if x* = t* (i.e.,
Q = 0), then it has been proven that the black hole must
be static only when the additional hypothesis is made
that t# is strictly timelike outside of the horizon. In other
words, Hawking’s theorem does not treat the case where
Q = 0 but there exists an ergoregion outside the black
hole — although a plausibility argument was given that if
any such black hole exists, it should be unstable (see pp.
327-328 of [18] and see also [53]). In the vacuum case,
where V' = 0 holds automatically, theorem 3.4 considers
precisely the case of interest, namely, 2 = 0, and proves
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that the black hole must be static. Note, however, that
in the EYM case, theorem 3.4 leaves open the possibility
of nonstatic black holes with = 0. Indeed, in Sec. IV
we will conjecture that such solutions exist, although, in
accord with the plausibility arguments of [18], we expect
any such solutions to be unstable.

It is worth pointing that in the Einstein-Maxwell case
with trivial bundle we also can prove (subject to the
7,2 = 0 assumption) that in case (b) an extremum of m
at fixed Q and boundary surface area A must be static in
the restricted sense of being stationary with a hypersur-
face orthogonal Killing field (i.e., without the additional
demand that E® = 0). [In case (a) we already noted that
Q = 0 automatically in the Einstein-Maxwell theory and
we proved at the beginning of this section that there do
not exist any extrema of m apart from flat spacetime.]
This result is obtained in complete analogy with the dis-
cussion at the beginning of this section by choosing the
following conformal perturbation of the initial data

Shep = 6E° =0, (88)
bnab = —mab, (89)
SA(I = _Aaa (90)

in place of (74)—(76). Here we have made explicit use
of the fact that in the Abelian case the constraints (14)
and (16) are linear in A4,, and hence Egs. (88)—(90) solve
the linearized momentum constraints. The only remain-
ing requirement is that §¢ solve the linearized Lichnerow-
icz equation, which will again have the form (77) with
F,, F°® replacing (1/2h)E°E, in (79). Therefore in the
Abelian case with trivial bundle, a repetition of the ar-
gument leading to theorem 3.2 proves that (if 7,2 = 0)
a necessary condition for an extremum of mass at fixed
area, A, of S, and electric charge, Q, is that 7 = 0,
F,;, = 0. The analogous corollary states that a solution
which extremizes m at fixed Q and A is static (in the re-
stricted sense) and also has vanishing magnetic field (i.e.,
F,, = 0). Hence, combining these results with theorem
2.2, we obtain the following modification of theorem 3.4:
The condition that VQ = 0 can be dropped from the
hypothesis, and the conclusion is altered by interpreting
static in the restricted sense (i.e., not requiring E* = 0)
and adding the condition that Fgp = 0. Thus, the gap
in the black-hole uniqueness theorems discussed above is
also closed (under the maximal slice assumption) in the
Einstein-Maxwell case (with trivial bundle). Of course,
the original form of theorem 3.4 also remains valid in the
Einstein-Maxwell case.

Remark: It appears likely that the existence of a max-
imal slice can be proven for stationary solutions corre-
sponding to cases (a) and (b), i.e., that the results of
[37] can be generalized (under suitable global hypothe-
ses concerning the spacetime) to treat the case where the
stationary Killing field is known to be timelike only in a
neighborhood of infinity. If so, the word “maximal” can
be removed from the hypotheses of theorems 3.3 and 3.4.
This issue is presently being investigated.

Note added. The proof of the existence of maximal
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slices has now been completed, so the gap discussed above
that had existed in the black-hole uniqueness theorems
is now completely closed. A paper presenting this proof
is currently in preparation [38].

IV. STATIONARY EYM SOLUTIONS

In this section, we will give plausibility arguments for
the existence of stationary EYM solutions in the case
where the Yang-Mills gauge group is SU(2). The argu-
ments involve the behavior of the ADM mass m as a
function on the constraint submanifolds I'(®) and T'®.
[See Sec. II below Eq. (13) for the definitions of I'(*) and
f(b).] In short, we shall argue that mass function pos-
sesses a sequence of saddle points, which correspond to
the known Bartnik-McKinnon and colored black-hole so-
lutions as well as to new (i.e., as yet undiscovered) black-
hole solutions. By the results of Secs. II and III, these
extrema of mass correspond to stationary solutions.

Although there is a very well developed mathematical
theory proving the existence of saddle points in situations
similar to ours—namely, the “mountain pass lemma” and
related results (see, e.g., [39] and [40])—we see little hope
that the mass function on ['(®) or I'® could be proven
to satisfy the Palais-Smale or other similar conditions re-
quired in the hypotheses of these theorems. To keep our
discussion as simple as possible, we shall proceed by mak-
ing some assumptions about the mass function which are
convenient for making our arguments. Thus, needless to
say, we see no realistic prospect that the plausibility ar-
guments which we are about to give could be converted
into a genuine existence proof for EYM solutions. In our
view, the main value of our arguments lies in their ac-
counting for the existence and certain properties of the
known EYM solutions and in the conjectures that they
spawn regarding the existence and properties of other so-
lutions to the EYM equations and related systems. Some
conjectures suggested by our arguments will be listed at
the end of this section.

The key fact upon which our arguments are based is
the existence of “large gauge transformations” in SU(2)
Yang-Mills theory. To explain this concept, consider,
first, the case where “space” ¥ is the 3-sphere S3. Since
SU(2) also has the manifold structure S3, the trivial
Yang-Mills bundle has manifold structure S®x S3. [There
do not exist nontrivial SU(2) bundles over S3.] The spa-
tial Yang-Mills vector potential is described gauge in-
variantly by a connection on this principal bundle, and
a choice of gauge, which allows us to represent the con-
nection (as we have been doing above) by a Lie-algebra-
valued one-form field A,* on ¥, corresponds to a choice
of cross section of this bundle. Since the bundle is trivial,
cross sections exist globally and are specified by giving
a smooth map f : & —SU(2), i.e., a map from S3 to
53, However, there exist a countable infinity of such
maps, characterized by the winding number &, which are
homotopically inequivalent. This means that, for any
Yang-Mills connection, there exists a set of vector poten-
tial representatives {(4,*)x} which are gauge equivalent
but cannot be continuously deformed to each other via
a one-parameter family of gauge equivalent vector po-
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tentials. (However, they can be continuously deformed
to each other via a sequence of gauge inequivalent vector
potentials.) Note that for & = S3 the necessary and suffi-
cient condition for the existence of “large gauge transfor-
mations” (i.e., homotopically inequivalent cross sections)
for an arbitrary Yang-Mills group G is that the third ho-
motopy group w3 of G be nontrivial. This is the case
for any compact, simple (or semisimple) Lie group [41],
so our arguments below apply more generally. However,
it seems likely that the Einstein-Yang-Mills solutions we
would predict in this more general case will be the so-
lutions associated with an SU(2) [or SO(3)] subgroup of
G.

In the case ¥ = R® with asymptotic flatness conditions
on A, the situation with respect to “large gauge trans-
formations” is the same as for ¥ = §3, provided that we
also impose suitable asymptotic gauge conditions on 4,*
at infinity to restrict the asymptotic behavior of the cross
section. An example of such a gauge condition in the case
where the Yang-Mills magnetic field B,? is o(1/r2) is that
A be o(1/r) as r — co. We shall not attempt to select
a suitable gauge condition here for the general behavior
of initial data allowed by our asymptotic conditions, but
merely will assume below that this has been done.

Our analysis of case (a) in Secs. IT and IIT allows many
topologies for ¥ other than R3. However, assuming the
validity of the Poincaré conjecture, all of these other
topologies are nonsimply connected. Theorems of Gan-
non [42] then establish that the evolved spacetime must
be singular. Hence, globally nonsingular solutions to the
EYM equations in case (a) can occur only for & = R3,
and we shall restrict attention to that case.

Consider, now, the constraint submanifold I'® of
EYM phase space for case (a) (see Sec. II), with & = R3.
Consider the ADM mass m as a function on this phase
space, i.e., m : ['® — R. Although we know very lit-
tle about the function m, the positive mass theorem (27,
28] gives us one vital fact: The absolute minimum of m
is m = 0 and this minimum is achieved precisely when
the initial data correspond to Minkowski spacetime with
vanishing Yang-Mills field strength, F’ WA = 0. It is possi-
ble that other local minima of m exist. If so, then by the
corollary to theorem 3.1, these minima would correspond
to static solutions to the EYM equations. Furthermore,
these solutions should be stable to linearized perturba-
tions. However, we see no reason to expect the existence
of any such additional local minima of m. For this reason,
and for simplicity, we shall assume that the data corre-
sponding to the trivial solution (i.e., flat spacetime with
Fw,A = 0) are the only local minimum of m, although our
arguments below are applicable even if additional local
minima exist.

The key observation is that, on account of the pres-
ence of large gauge transformations, there are a count-
able number of disconnected regions of I'®) correspond-
ing to the trivial solution. In addition to the initial
data (hep = eqp, ™ = 0,42 = 0, E® = 0), together
with all initial data obtained by applying spacetime dif-
feomorphisms and “small” Yang-Mills gauge transforma-
tions to it, we also have, for each integer k, the data
(hab = €ap, ™ = 0, (A )k, E% = 0), and all diffeomor-

phisms and “small” gauge transformations of it, where
(A)g differs from A = 0 by a gauge transformation
in the kth homotopy class. This means that rather than
having a single minimum, the mass function m actually
has a countable infinity of disconnected minima.

It will be convenient, at this stage, to assume that we
can pass from ['(®) to a manifold I'®) whose points con-
sist of equivalence classes of points of I'® under trans-
formations corresponding to spacetime diffeomorphisms
and “small” Yang-Mills gauge transformations. (Since
m is invariant under such transformations, it is well de-
fined on I'(®).) The absolute minima of m on T'(®) then
comprise a countably infinite set of points.

For the purposes of making our argument, we shall
assume, further, that a complete Riemannian metric
Gap can be put on I'® such that (i) for any € > 0,
GABY ymV pm is bounded away from zero in the region
outside the balls of radius € around each critical point,
and (ii) the critical points of m are isolated in the sense
that there exists an € > 0 such that the distance between
any pair of critical points is greater than €. Actually, as
we shall explain further below, these assumptions are not
plausibly consistent with the fact that m must go to zero
along certain “nonlinear scaling directions” in I'(®); how-
ever, as we also shall explain below, the argument can be
modified to take this fact into account. In addition, when
we treat case (b) below, assumption (ii) probably will not
be strictly valid because the lowest magnetically charged
(Abelian) Reissner-Nordstrom black hole appears to be
an accumulation point of the critical points correspond-
ing to the colored black holes, but this violation of that
assumption will not affect our arguments. Apart from
these apparent violations, the above assumptions do not
appear to be blatantly implausible, although we also see
little reason to expect that they would hold in the pre-
cise form we have stated. Nevertheless, we believe that
the argument we are about to give is quite robust, and,
hence, not critically dependent upon the precise, specific
choice of assumptions we make.

Consider, now, the integral curves of the vector field
MA = —GABVYgm on '@, It follows from the as-
sumptions of the preceding paragraph, and the fact that
m > 0, that each point X € I'® must be carried by the
flow of these integral curves towards a critical point of
m. Furthermore, if a point X flows to a critical point
which is a local minimum of m, then so do all other
points in a sufficiently small open neighborhood of X,
i.e., the inverse image (under the flow of M4) of a lo-
cal minimum comprises an open subset of I'®). Now, as
discussed above, there exists a countably infinite set of
discrete global minima of m on ['(®). If there were no
other critical points of m other than these global minima
(and possibly additional local minima) we could thereby
express ['(®) as a disjoint union of open sets. However,
this contradicts the connectedness of I'(®) . Thus, there
must exist at least one additional extremum of m which
is not a local minimum. By the corollary to theorem 3.1,
this should correspond to a static solution of the EYM
equations. Since m is not a local minimum, this solution
should be unstable.
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The above argument corresponds, in essence, to the
argument given for the existence of the sphaleron solu-
tion [6, 7] of Yang-Mills-Higgs theory in flat spacetime.
However, we now shall show that by refining the above ar-
gument further (and, of course, making some additional
assumptions) a discrete infinity of new solutions actually
are predicted, which possess certain characteristic fea-
tures. We conjecture that a similar discrete infinity of
new solutions also should exist in Yang-Mills-Higgs the-
ory.

As argued above, not all points of I'®) can approach
local minima of m under the flow generated by M A Let
I'; ¢ T(® denote the set of points which do not flow to
local minima. Since I'® —TI'; is composed of disjoint open
sets, it seems reasonable to suppose that I'; is a surface
(possibly with cusps, bifurcations, etc.) of codimension 1
in (@), Clearly M4 must be everywhere tangent to I'y,
which implies that any critical point of m restricted to
I'; must be a critical point of m on I'®). Furthermore, by
construction, I'y must contain all critical points of m on
'@ which are not local minima on I'®), Hence, by the
above argument, there must be at least one critical point
of m on I';. We assume, now, that a critical point X; can
be found whose mass m; is less than or equal to that of
any other critical point of m on I'y. Then m; must be an
absolute minimum of m restricted to I';, since any point
of I'; with mass less than m; would have “nowhere to go”
under the flow generated by M#. (Of course, X; cannot
locally minimize m on ['(®) with respect to the direction
orthogonal to I'; since no local minimum of m on '@ can
lie on I';.) By the corollary to theorem 3.1, X; should
correspond to a static EYM solution. We believe that
this solution is precisely the n = 1 Bartnik-McKinnon
solution.

In fact, however, there actually must be a discrete in-
finity of local minima of m restricted to I';: namely X,
and all large gauge transformations of X;. (It is conceiv-
able that other local minima of m restricted to I'; also
exist, but we see no reason to expect this and, for simplic-
ity, will assume that no other local minima are present.)
Hence, the situation with respect to the mass function
m restricted to I'; is essentially the same as for the mass
function m on I'®). Under the additional hypothesis that
I'; is connected, a repetition of the argument of the pre-
vious paragraph predicts the existence of a submanifold
I'; € T'; of codimension 1 in I'; (and, hence, codimen-
sion 2 in f‘(a)) and a point X2 whose mass mgy minimizes
m restricted to I'y. Then X5 is an extremum of m on
'@ which is not a local minimum with respect to any
direction in I'(®) lying in the two-dimensional subspace
orthogonal to I';. We believe that X2 corresponds to
the n = 2 Bartnik-McKinnon solution. Continued repe-
tition of this argument should account for all the higher
n Bartnik-McKinnon solutions.

Before discussing some properties of the solutions pre-
dicted by the above argument, we point out a prob-
lem with the initial assumptions and explain how to
modify the argument to take this into account. Al-
though the EYM equations are not scale invariant (see
the third paragraph of Sec. III), the conformal invari-

ance of the momentum constraints allows us to define a
notion of “nonlinear scaling” of initial data as follows:
Given initial data (hap, 7%, A, E4,) in '@ we obtain
a one-parameter family of new initial data by choos-
ing (hap, 7%, A2, E%,) as “conformal initial data” (see
Sec. I1I) and then solving the Lichnerowicz equation (73)
with the asymptotic behavior ¢ — A at infinity (rather
than ¢ — 1), where A is a constant. (We then must per-
form a scaling diffeomorphism z — ' = A%z near infinity
so that the new data will satisfy our asymptotic flatness
conditions in the form stated in Sec. II.) The limit A — oo
corresponds to “(nonlinearly) scaling the configurations
to large size” but decreasing the energy density at a suf-
ficiently rapid rate that we would expect that m(\) — 0
in this limit. On the other hand, unless the original ini-
tial data was that of flat spacetime, as A is decreased we
would expect a tiny “bag of gold” configuration [43] to
be produced and that, as A — 0, this “bag” will “pinch
off.” We also would expect m(A) — 0 as A — 0. We have
verified numerically that this “pinch-off” behavior does
occur in some simple examples, and that in these exam-
ples m — 0 as A — oo and as A — 0. However, there is
no limit critical point in I'@ corresponding to A — oo
or A — 0 so (since the critical points are assumed to be
isolated) it is not plausible that the minimum distance
along this curve to all critical points approaches zero as
A — oo or A — 0. In that case, assumption (i) combined
with m — 0as A\ — oo or A\ — 0, and with m > 0
everywhere on I'(®) yields a contradiction.

However, this difficulty may be remedied by passing to
yet a new space I (‘Z) whose points consist of equivalence
classes of points of I'(*) under the above (nonlinear) scal-
ing. We define the mass function m’ on '@ to be the
maximum mass occurring in the scaling equivalence class
in (@) If a unique maximum of m/ occurs in all cases (as
it Goes in our numerical examples), then m’ should be a
well-behaved function on I (®)| and the above arguments
should apply to it. (Even if this is not strictly the case,
we believe that the argument is sufficiently robust that
the conclusions remain plausible.) If X’ € I'(® is an
extremum of m’ on I' (), then the corresponding point
X e '@ which maximizes m in the scaling direction will
be an extremum of m on ['(®, and, hence, should corre-
spond to a static solution. Thus, the only notable change
brought about by this modification of our argument is
that at each stationary solution (except flat spacetime)
there is an extra “unstable” (i.e., mass decreasing) direc-
tion corresponding to this scaling transformation.

We return, now, to consider the properties of the so-
lutions predicted by the above argument and compare
them with the properties of the Bartnik-McKinnon solu-
tions. First, our argument predicts a countable infinity
of nonsingular static solutions (with vanishing electric
field) to the EYM equations. Our argument also pre-
dicts an increasing sequence of masses for these solutions,
0 < my < mg < - --. Furthermore, these solutions all are
unstable. Indeed, if we identify the number of unstable
modes with the dimension of the tangent subspace in N
along which m decreases (and, if we take into account the
“scaling direction” discussed above) we predict that the
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nth solution should have precisely n + 1 unstable modes.
Finally, we note that our argument also could be made
by restricting consideration to spherically symmetric ini-
tial data. (The large gauge transformations of the trivial
initial data can be connected by a sequence of spheri-
cally symmetric configurations, so the relevant portion
of the spherically symmetric phase space is connected.)
Hence, the solutions predicted by our argument should
be spherically symmetric. (In view of Israel’s theorem
[44] for the Einstein-Maxwell case, the fact that the pre-
dicted solutions are static also suggests that they should
be spherically symmetric.) All of the above properties
except the prediction concerning the precise number of
unstable modes are well-known features of the Bartnik-
McKinnon solutions. It would be interesting to check this
latter prediction. In any case, the evidence in favor of
identifying the solutions predicted by our argument with
the Bartnik-McKinnon solutions seems quite strong.

Our arguments can be adapted to case (b) to predict
static black-hole solutions of the EYM equations by mak-
ing the following modifications: (1) We restrict attention
to the case where the boundary surface S is topologically
S? and ¥ has topology S% x R. (The first restriction is
necessary for stationary black holes by proposition 9.3.2
of [18].) (2) In addition to imposing a Yang-Mills gauge
condition at infinity, we also must impose a gauge condi-
tion at S in order to ensure the presence of “large gauge
transformations.” (3) Instead of working with the entire
space I'® | we work on the submanifold consisting of ini-
tial data for which S is an extremal surface with fixed
area A (and A minimizes the area of two-spheres homo-
topic to S in X.) (4) On account of the requirement that
A be fixed, the “scaling behavior” for case (a) does not
occur here, so we do not need to pass to an analogue of
the space I (@,

On the submanifold of I'® corresponding to a fixed
A, the mass function m possesses a countable infinity of
absolute minima [45], namely, the Schwarzschild solution
of mass mg = (A/16m)'/2 and all large gauge transfor-
mations of it. Our previous argument then predicts that
for each value of A, there should exist a countably infi-
nite sequence X; € I'® of extrema of m at fixed A4, with
mg < my < mg < ---. By the corollary to theorem 3.2,
each X; should correspond to a static black hole (with
vanishing electric field). Again, these solutions should be
spherically symmetric since the argument could be made
restricting consideration to the spherically symmetric ini-
tial data. In addition, these solutions should be unsta-
ble. The colored black-hole solutions [3-5] have all these
properties [46], so we identify the solutions predicted by
our argument with the colored black holes. (The Abelian,
magnetically charged Reissner-Nordstrém black holes are
not candidates for being the solutions predicted by our
arguments, since our arguments predict infinitely many
solutions, but, at fixed A, there are at most finitely many
such Reissner-Nordstrom solutions. The fact that, at
given A, the mass of the lowest magnetically charged
Reissner-Nordstrom black hole is higher than the mass
of all the colored black holes confirms that they are not
relevant to our argument.) Furthermore, our argument
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predicts that the nth colored black-hole solution should
have precisely n unstable modes. This prediction has
very recently been verified numerically by Bizon [47] up
ton =4.

Our arguments can be extended readily to analyze the
possibility of stationary, nonstatic EYM solutions. For
case (a), theorem 2.1 shows that stationary solutions
must be extrema of m at fixed @, and the arguments
given at the end of Sec. II strongly suggest that the con-
verse also holds. However, there are no known minima
of m in T'(® at any fixed Q # 0, and we see no reason
to expect any to exist. Hence, we also see no reason
to expect any new extrema of m at fixed Q which are
not local minima. Thus, we would expect the known
Bartnik-McKinnon solutions to be the only stationary,
nonsingular solutions of the EYM equations in case (a).

On the other hand, for case (b), by theorem 2.2 and
the arguments of Sec. II, we expect stationary black-
hole solutions to correspond to extrema of mass at fixed
A, @, and J. Now, for each Q and J and each
A > 47m(Q* + J?)Y/2, there are known stationary EYM
black-hole solutions, namely, the (Abelian) electrically
charged Kerr solutions (see, e.g., [19]). These solutions
presumably minimize m at fixed A, Q, and J. Thus,
for each A, Q, and J with A > 47(Q* + J2)V/2, our
arguments predict the existence of a countably infinite
family of new, non-Abelian EYM stationary black holes.
Except for staticity and spherical symmetry, this fam-
ily should share the properties described above for the
known colored black holes, namely, the masses in the
sequence should be strictly increasing, and the solutions
should be unstable, with the nth solution in the sequence
possessing precisely n unstable modes.

It is worth noting that if we choose A sufficiently large
and Q sufficiently small, there should be no difficulty in
adjusting J so that for, say, the new n = 1 solution
we have @ = 0, where Q denotes the angular velocity
of the horizon. If J # 0 when Q = 0, the stationary
Killing field t* cannot be hypersurface orthogonal. How-
ever, even if J = 0, we do not expect t* to be hypersur-
face orthogonal since Israel’s theorem [44], proven in the
Einstein-Maxwell case, suggests that the solution should
then be spherically symmetric and Bizon and Popp [34]
have proven that no non-Abelian spherically symmetric
EYM black-hole solutions exist with @ # 0. Hence, this
predicted solution would be an excellent candidate for a
stationary black hole which is nonrotating (i.e., 2 = 0)
but possesses a non-hypersurface-orthogonal stationary
Killing field. [The possible existence of such solutions in
the vacuum and Einstein-Maxwell cases was ruled out in
Sec. III (see the discussion following theorem 3.4 above).]
The existence of such a solution would not violate the
physical arguments given in [18], since this solution would
be unstable.

Finally, we note that the arguments of this section also
should be applicable to other Hamiltonian theories in-
volving an SU(2) Yang-Mills field, provided that the fol-
lowing two conditions are satisfied. (1) The theory should
not possess a scale invariance. [A scale invariance would
make our assumptions about the mass function blatantly
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implausible and the type of argument given near the be-
ginning of Sec. III would likely rule out the existence
of any stationary solutions in case (a).] (2) The theory
should admit a stable solution; i.e., our argument relies
on the existence of a local minimum of the total energy.
In particular, our arguments are not applicable to pure
Yang-Mills theory (since that theory possesses a scale in-
variance), but they should be applicable to Yang-Mills-
Higgs theory in flat spacetime. As already indicated
above, we believe that the sphaleron solution [6] corre-
sponds to the n = 1 solution of our argument. Hence, we
believe that there should exist an additional countable
infinity of stationary Yang-Mills-Higgs solutions, which,
together with the sphaleron, would comprise a family
analogous to the Bartnik-McKinnon solutions of EYM
theory. The “new sphaleron” of Klinkhamer [48] (see also
[49]-[51]), plausibly could be a member of this family.

For the convenience of the reader, we conclude this
section by listing some of the key conjectures which were
suggested by the arguments of this section.

(1) The nth Bartnik-McKinnon solution has precisely
n+1 unstable modes. The nth colored black-hole solution
has precisely n unstable modes. (As mentioned above, for
the colored black holes, this conjecture has been verified
by Bizon [47] up to n = 4.)

(2) In case (a) (see Sec. II), the Bartnik-McKinnon
solutions are the only stationary nonsingular EYM solu-
tions.

(3) In case (b), in addition to the known colored black-
hole solutions, there exist similar discrete families of new
colored black-hole solutions at each value of A, @, and
J satisfying A > 4m(Q* + J?)/2.

(4) In the Yang-Mills-Higgs theory there should ex-
ist a countably infinite family of new unstable solutions
analogous to the Bartnik-McKinnon solutions, with the
sphaleron solution comprising the n = 1 member of this
family.

Note added. After submission of this paper, Bizon
[47) numerically investigated the instability of the lowest-
lying Bartnik-McKinnon solutions and found the nth so-
lution to have n unstable modes, rather than n + 1 as
we had conjectured. The most straightforward inter-
pretation of this discrepancy is simply that the n = 1
Bartnik-McKinnon solution actually corresponds to a lo-
cal minimum of mass on the space ['(®), In that case,
the first solution predicted by our argument would be the
n = 2 Bartnik-McKinnon solution, which should have
1+ 1 = 2 unstable modes, and, similarly, the higher
n Bartnik-McKinnon solutions should have n unstable
modes.
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APPENDIX

In this appendix we give a proof of the lemma men-
tioned in Sec. III. For simplicity of notation we use ¢
instead of §¢.

Lemma: Let ¢ be a solution of

D®*Dep — pd = p

on a connected, asymptotically flat three-manifold
(X, hap), with £ >0, p>0and p = O(1/r?*€) as T — 0o
for some € > 0. Suppose further that ¢ < 0 everywhere
on ¥, and ¢ = o(l/r) as r — oo; i.e., the asymptotic
form (82) holds with ¢ = 0. Then ¢ = 0 on ¥, which, of
course, is possible only if p = 0 everywhere on X.

Proof: We note, first, that by the Hopf maximum
principle (see, e.g., [33]) ¢ cannot attain a globally maxi-
mum value at any interior point of ¥ unless ¢ is constant.
Hence, in order to prove the lemma, it suffices to show
that there exists a point z € ¥ such that ¢(z) = 0. We
shall establish this by showing that ¢ vanishes in a neigh-
borhood of infinity.

Let (r,0,¢) denote a spherical coordinate system as-
sociated with the flat metric e,p, with coordinate range
ro < r < 00, so that the coordinate system covers a
neighborhood of infinity on ¥. Our asymptotic flatness
condition (10) on hgp then implies that as 7 — oo we
have

(A1)

her =14 0(1/7), (A2)
hra, Brp = O(1), (A3)
hgo = 2 + O(r), (A4)
ho, = O(r), (A5)
hop = T2 sin? 81 + O(1/7)], (A6)
VR =r?sin6[1 + O(1/r)). (A7)

In addition the first derivative with respect to r of these
metric components falls off an additional power of r faster
than specified in Eqs. (A2)-(A6). (In fact for our argu-
ments below, much weaker asymptotic conditions on hgp
would suffice.)
We define
G(r) = —(1/r) / VRRT ¢ d6 dp, (A8)
S,

where S, denotes the two-sphere of coordinate radius r.
Since ¢ < 0 we have G(r) > 0 for all . Furthermore,
if at some r we have G(r) = 0, then ¢ vanishes on S
and, hence, by the maximum principle, ¢ vanishes on
Y. In addition, our asymptotic conditions on ¢ and the
components of hgp ensure that G(r) — 0 and G'(r) — 0
as T — 00, where the primes denote derivatives with
respect to .
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Integrating (A1) over S, we obtain an “evolution equa-
tion” for G as a function of r;

G"=F(r)+ T—IZ-H + (H/r) - (l/r)/s pVhdf do,

(49)
where
F() = ~(r) [ VEusdode, (A10)
H(r) = (1)) /s VAh™né dé do, (A11)

_thee | 50 (VRAT
= vh " or r2
- (/) + g(ﬁh“’))]. (A12)

The following bounds then follow immediately from the
definitions (A8), (A10), (Al1):

[H(r)| < nm(r)G(r), (A13)

0 < F(r) < pm(r)G(r), (A14)
where

tm(r) = Maxs, {uh™"} = O(1/r%*¢), (A15)

mm(r) = Maxg, {|n|} = O(1/r). (A16)

Combining these inequalities with (A9) we obtain the key
inequality,
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G < umG + (1/r2)mG + (H/r) — (1/r) fs oVF d8 dip

< umG + (1/r*)nmG + (H/7)". (A17)

Now choose 71 > 79. From Egs. (A15)-(A17) we find
that there exists a constant C; such that Vr > r;:

G"(r) < (C1/r?*)Gp(r1) + (H/T)', (A18)
where
Gu(r) = max G(r'). (A19)

(Since G > 0 and G — 0 as r — oo, it follows that G
attains a maximum value on any interval [r,00).) Inte-
grating (A18) from 7 to co, we obtain Vr > ry:

—G'(r) < (Co/m*)Gup(r1) — H/r

< (C3/7'1+€)GM(T‘1) (A20)

where (A13) and (A16) were used in the second inequal-
ity. Integrating (A20) from r; to co we obtain

G(r) < (Ca/r%)Gpm(r1). (A21)

It follows upon maximization of both sides of Eq. (A21)
over the interval [rq, 00) that

Gum(r1) < (Ca/r7)Gum(r1). (A22)

However, if we choose 71 sufficiently large that r; > C,i / <,
Eq. (A22) yields a contradiction unless Gp(r;) = 0.
Thus, there exists an r; € R such that Ga(r1) = 0,
which in turn implies that G(r) = 0 for all » > ;. Hence
by the maximum principle, ¢ = 0 everywhere on ¥. O
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