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The close analogy between the generation of gravitons from vacuum fluctuations of the gravitational
field and the generation of photons from vacuum fluctuations of the electromagnetic field is studied.
Gravitons produced in the cosmos and photons produced in the laboratory are governed by similar phys-
ical principles and mathematical equations. Both are described by the so-called squeezed vacuum quan-
tum states. Squeezed vacuum optical radiation has been generated experimentally by separating the
pump light from the squeezed fluctuations in an interferometric geometry. It may prove possible that
some predictions of gravitation theory can be modeled, or even tested, in the laboratory by quantum op-

tics experiments.
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I. INTRODUCTION

The phenomenon of particle creation in intense elec-
tromagnetic and gravitational fields is an important area
of current research. One of the most striking examples is
the well-known process of particle creation in the gravita-
tional field of a black hole, the process of quantum eva-
poration of black holes [1]. Another example is the gen-
eration of gravitational waves from vacuum (quantum)
fluctuations with the energy supplied by macroscopic
(classical) variations of the gravitational field of the ex-
panding Universe [2]. The highly variable gravitational
field of the early Universe coupled the annihilation opera-
tors of the quantized gravitational waves to the creation
operators, thereby leading to the generation of gravitons.
These gravitons of quantum origin (relic gravitons) are
predicted to exist in squeezed vacuum quantum states
and can, in principle, be detected [3,4].

These predictions of gravitational theory are purely as-
trophysical in nature; they cannot be subjected to labora-
tory tests. However, the equations developed for the
gravitational case are in one-to-one correspondence with
the equations of quantum optics [5,6]. Laboratory exper-
iments in the field of nonlinear quantum optics are possi-
ble, and have already demonstrated nonclassical
(squeezed) states of electromagnetic radiation [7-11].
Thus, laboratory generation and detection of squeezed
electromagnetic radiation appears analogous to cosmic
processes involving gravitational radiation. Mathemati-
cally, the theory of squeezed gravitons is very similar to
the theory of squeezed light. Therefore, it is of interest to
spell out the connection between the optics experiments
and the processes in strong gravitational fields. It is quite
possible that some predictions of gravitational theory
may eventually be modeled, or even tested, in laboratory
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conditions using quantum optics experiments.

The well-known experiments aimed at squeezing of
light with the help of degenerate parametric amplifiers,
that couple a (signal) annihilation operator @; to the
creation operators @, are of this category. They use the
first-order nonlinearity of optical media.

Other recent experiments [12] done in fibers use the
second-order nonlinearity (Kerr effect). Both these ex-
periments bear an analogy to the gravitational wave gen-
eration taking place ‘“‘naturally” in a gravitational envi-
ronment. The laser radiation generates a time-dependent
index grating that couples @, to ﬁ: and vice versa and
thus can be considered to generate photons from vacuum.
In the experiments, the pump producing the grating is
separated either by a filter (first order nonlinearity) or in a
ring interferometer geometry (second order nonlinearity).
In this way one may model the stream of photons emerg-
ing from the output as photons generated from vacuum
by a time-dependent grating.

In the context of gravity-wave research, the notion of
squeezed optical quantum states has often been raised in
a different sense, namely, as a means for improved detec-
tion of a classical gravitational wave. For instance, it was
shown [13] that the sensitivity of a laser interferometer
gravity-wave detector can be increased using squeezed
light. It was also argued [14] that any detector oscillator
can be specially “prepared” in a squeezed state and used
for gravity-wave detection during some interval of time
before the thermal noise destroys squeezing and degrades
the detector’s sensitivity.

Here, however, we shall discuss the squeezing of gravi-
tational waves themselves. In laboratory conditions, it is
difficult to achieve even a modest amount of squeezing of
light, i.e., to obtain a squeeze parameter r of the order of
unity. In contrast, in the cosmos, the squeezed quantum
states of gravitational waves are produced inevitably and
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with a much larger squeeze parameter, as the result of the
rapid expansion of the early Universe.

To make the analogy between the theories of relic
graviton production and squeezing of light more trans-
parent, we begin with a formulation of Einstein’s general
relativity in a form similar to the theory of classical elec-
tromagnetic fields. We believe that a reader, who is fa-
miliar with classical electrodynamics but may not be ac-
quainted with the notion of curved space-time which
cosmologists use, will appreciate the use of the concept of
gravitational field in flat Minkowski space-time. (More
details about this “field-theoretical” formulation of gen-
eral relativity are given in Refs. [15,4]; it is important to
emphasize that we are dealing with a different mathemat-
ical formulation of general relativity, not with a physical
alternative, Ref. [16]). This approach leads to manifestly
nonlinear field equations. In contrast with the equations
of quantum optics that are linear in vacuum and need a
nonlinear optical medium in order to couple signal waves
to a “pump” field, the gravitational field does not require
any material medium for this purpose. In the case of gra-
vidynamics the coupling is achieved automatically due to
the nonlinearity of the gravitational field itself. As is
often done, we will present the total gravitational field in
the form of an approximate sum of a large ‘“‘classical”
contribution and a small quantized perturbation. This
approach will be applied to the cosmological gravitation-
al field of the expanding Universe acting upon zero-point
quantum fluctuations of the gravitational waves. Even
though it may sound too technical, we shall call the vari-
able gravitational field of the early expanding Universe a
“pump” field. As a result of the action of this pump, the
initial vacuum state of each mode of the gravitational
waves evolves into strongly squeezed vacuum states with
very specific statistical properties.

The paper is organized as follows. In Sec. II we briefly
exhibit the “field-theoretical” approach to general rela-
tivity that is adequate for comparison of electrodynamics
with gravidynamics. In Sec. III we set up the linearized
equations for the graviton creation and annihilation
operators in the presence of a time-dependent gravita-
tional field and demonstrate, in Sec. IV, the inevitable ap-
pearance of strongly squeezed vacuum states. Section V
derives analogous equations for the coupling of the
creation and annihilation operators of the photon field in
a time dependent dielectric of a Kerr medium. Section
VI investigates the problem of pair generation by two
sheets of Kerr material. Section VII investigates the
propagation of an electromagnetic field in a Kerr medi-
um, both classically and quantum mechanically. Section
VIII describes the interferometric system that can
separate out the pump radiation, so that the “unused
port,” which in the absence of the time dependent grating
emits vacuum fluctuations, in the presence of the pump
radiates photons (squeezed vacuum states) generated by
the time dependent grating. Then the experiment is de-
scribed. The optical detection takes advantage of the
homodyne amplification that is capable of detecting even
J

L8=(—=y)' [h*, P®,,— (R +y)(P%4PP  —LP? PP, )]

a small number of photons produced from vacuum by the
time dependent grating. In Sec. IX we give a short dis-
cussion of the results.

II. FIELD-THEORETICAL APPROACH
TO GENERAL RELATIVITY

It is known that the electromagnetic fields are ex-
pressed in terms of components of a four-vector 4, the
four-vector potential. In contrast, the gravitational field
is expressed in terms of components of a symmetric
second-rank tensor 4,,, the gravitational potentials. Our
goal is to derive the field equations from the total action
S consisting of the action of the gravitational field S¢ and
the action S™ describing sources of the gravitational field
and their interaction with gravity, S=S8+S". It turns
out to be convenient to use, in addition to the gravita-
tional potentials A v another set of field variables P"’w,
which compose a third-rank tensor symmetric with
respect to its lower indices. The P%,’s are not new phys-
ical fields, but rather combinations of the first derivatives
of the h,,’s. The relationship between the gravitational
potentials h,, and the P, ’s will be established by the
action principle. In formulating the action principle, we
shall treat the ,,’s and the P?,’s as independent.

The gravitational field is assumed to exist in ordinary
Minkowski space-time with a four-dimensional interval
do:

do’=cdt>—dx>—dy>—dz* . (2.1)
This four-dimensional interval is written in Lorentzian
coordinates. In arbitrary curvilinear coordinates the
four-dimensional interval do has a more complicated
form:

d02=7/,“,dx“dx" , (2.2)
where v, is the metric tensor of Minkowski space-time
written in the curvilinear coordinates. In Lorentzian
coordinates, y,, acquires the simplest form: yg,=1,
Y11= ¥22=733= —1, the rest of v, being equal to zero.

In Lorentzian coordinates, used in (2.1), the distinction
between covariant and contravariant components of a
tensor is very simple; they may differ, at most, by a sign.
Yet, in order to make the formalism applicable to arbi-
trary curvilinear coordinates, and prepare it for the stan-
dard derivation of stress tensors, we shall make such a
distinction. We shall use the subscript symbol “;a” for
covariant differentiations and note that the operation of
covariant differentiation as well as the lowering or raising
of indices is to be performed via the metric tensor y e

The gravitational part of the total action is

— 1 4 . 87TG
St=—o—[d'x L8 «= ol (2.3)
where the gravitational Lagrangian L& has the form
(2.4)
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and y is the determinant of the matrix y ,,. The nongrav-
itational sources and fields and their interaction with the
gravitational field are described by
1
sm=—[dxL™, 2.5)
c
where L™ is supposed to contain matter variables and
gravitational field variables. Moreover, in order to arrive
at the proper universal coupling of all material fields to

gravity (Einstein’s equivalence principle) we must assume
that L™ is of the form

L™ %V —y(y* +h#)], (2.6)

where ¢, is a symbolic representation of matter fields.
The gravitational potentials A*¥ enter L™ only in sum
with y#¥,

The energy-momentum tensor ¢, of the gravitational
field itself and the energy-momentum tensor 7,, of the
nongravitational matter and fields interacting with gravi-

ty, are defined in the usual manner:

_ 1 OL¢ 2 8L™
Kt,, = T

pv o \/:_,y SY#V ’ l“’z ‘/__,V 8,},;“'

, @27

where 8/8y*" is a variational derivative. The explicit ex-
pression for «7,,, that can be derived from L€ is

Ktpv:Pa‘uﬁpﬂva‘—%va‘yappaoBPBpa

—HP,P,— 3V PoP7)+Q,, (2.8)
where P, =P%,,0,,=0,,., and
"= 7P gl 7 ik P, +y ™ Y ouh vk Bl‘)
—h™P(8%Y 0y F 8% o)
_Sra(sa“hﬁv+8avhﬂu)] . (2.9)

By varying the action S with respect to V' —y A*" and
P?,,, one obtains a set of equations of motion that can be
rearranged to read

huv;a;a+'}/uvh aB;a;B—h av;a;p_ h a,u;a;v

- ITZG(I#V‘FTMV) ., 210
— B (R REOPY (B YPE,
— 1P [(yH+RE)8Y +(y e +h )84, ]=0 . (2.11)

It is clear from (2.11) that the field variables &, and P“,,
are indeed related, and thus only the 4,,’s can be con-
sidered to be the independent set of gravitational field po-
tentials.

Equation (2.10) is a wave equation for the gravitational
potentials in Minkowski space-time, similar to the wave
equation of electromagnetic fields. The left-hand side is
linear in A, ; the right-hand side is the *“driving” energy-
momentum tensor, consisting of a matter energy momen-
tum tensor 7,,, as well as nonlinear contributions of the
gravitational field itself represented precisely in the form
of a gravitational energy-momentum tensor 7,,,,.

The above is a view of gravitational fields different

from that represented by curved space-time. We arrived
at a nonlinear wave equation. The solution of this equa-
tion yields a distribution of 4, in Minkowski space-time.
Connection with the geometrical formulation of general
relativity is made when this solution is used to obtain the
metric tensor g,, of curved space-time according to the
formula

V=g gh=V "y (yr +hHY) (2.12)

Einstein’s differential equation for the metric tensor
8, is obtained when (2.12) is substituted into (2.10) and
the matter energy momentum tensor T, is defined with
respect to g, identified as the metric tensor of curved
space-time: dsz=ga,3dx adx b,

The theory allows a freedom of choice of gauge similar
to that of classical electrodynamics. One can apply the
gauge transformations to the gravitational variables 4,
and matter variables without changing the field equa-
tions. At the expense of gauge freedom one can impose
some gauge conditions which are normally used for di-
minishing the number of variables and simplifying the
field equations. A convenient choice, similar to the often
used electrodynamical gauge condition 4% ,=0, is
h®,..=0.

III. GRAVITATIONAL FIELD
OF EXPANDING UNIVERSE

Let us apply the developed formalism to the descrip-
tion of the gravitational field of the homogeneous isotro-
pic Universe. From our new point of view this is just a
specific gravitational field 4,,(z,x,y,z) given in Min-
kowski space-time (2.1). Since we are using the Lorentzi-
an coordinates, all covariant derivatives ;a in (2.10) and
(2.11) reduce to ordinary derivatives ,a.

Let us take the nonvanishing gravitational potentials in
the form

ho=a*(t)—1, h=hy=hy=1—alt), 3.1)
where a(t) is, as yet, an unspecified function of time.
This specific form of the potentials is needed, if one is to
obtain the well-known Friedmann solutions of the Ein-
stein equations for a spatially flat homogeneous isotropic
expanding Universe via this new field theoretical ap-
proach. Note that a(z)=1 corresponds to the absence of
all gravitational field potentials.

One can calculate the gravitational energy-momentum
tensor 7,,, (2.8), and find that the nonvanishing com-
ponents of kz,, are

3d, , .2
too=—5-(a"—1)—3a",
*Foo Za( )34
Kt =Kty =Kt (3.2)
=—2(3a3~a’+a—3)—a%3a—1),
2a

where the overdot(s) indicates the time derivative (for
simplicity we choose the units for which the velocity of
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light c=1).
The nongravitational sources are assumed to be those
of a perfect fluid with the Lagrangian

Lm=1V—gle+3p—(e+p)g,utu"], (3.3)
where €, p, and u* are variables characterizing the
matter, and g,, is defined by (2.12). One can find the
nonvanishing components of the energy-momentum ten-

SOT T,,:

T00=6+'i‘(a2—1)(€—p) ’
(3.4)
7'11:7'222"'33=P_%(az—l)(e—p) :

By substituting expressions (3.1), (3.2), and (3.4) into the
field equations (2.10), one can derive equations governing
the function a(¢) and, hence, the gravitational field (3.1):
2
_ 87G c
3

d 417G
—_——— +3 ,
p, 3 (e+3p)

L3 (3.5)

[In “geometrical” language, these are, of course, the Ein-
stein equations for a spatially flat cosmological model:
ds’=dt?*—a*(t)(dx*+dy?+dz?).] By specifying the re-
lationship between € and p (“the equation of state’’) one
can solve these equations and find a specific function a(?).

IV. SQUEEZED QUANTUM STATES
OF RELIC GRAVITONS

The gravitational field (3.1) is the leading term of a
more complicated and realistic cosmological gravitation-
al field which also includes the gravity-wave perturba-
tions. Let us write the total field 4, in the form

—1,(0) (1)
hyy=hy +h, ) (1), @4.1)

where (3 is given by (3.1). The three-dimensional vector

r expresses the coordinates of a point in our Minkowski
space-time. By choice of gauge, one may set h''** =0.

The gravitational wave perturbations which we are
about to study do not couple to perturbations of € and p.
For this reason we set the perturbations of € and p equal
to zero and proceed solely with the perturbations ).
Using an appropriate gauge, one may impose the addi-
tional constraints kg, =0, k(. y**=0, so that one is left
with only two independent polarization components
(designated by s =1,2) of k). For a wave with the wave
vector n one can write down the nonzero components of
the field:

hi(j”(t,x,y,z)=[u,f(t)ei“"+u,fT(t)e""“" D
,j=1,2,3, (4.2)

where the constant polarization tensors p;; satisfy the
conditions p3y*=0, p5n*=0 and the dagger indicates
the Hermitian conjugate. In this way A’ is a Hermitian
operator.

Now one substitutes (4.1) into the field equations (2.10)
and linearizes them with respect to A.. It is clear that
the left-hand side of (2.10) is simply the usual d’Alembert
differential operator applied to 4!’. The right-hand side

of (2.10) contains products of 4 and k) since the non-
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linearities are collected on this side. These nonlinear
terms govern the interaction of the (linearized) waves
with the external gravitational field (3.1).

For a given perturbation with the wave vector n and
for each of the two polarization components, the field
equations reduce to a single equation for the time-
dependent function u(t) (indices n and s are omitted
henceforth for simplicity):

2

22 ..

n-(a : 1) + 4.
a a

a
a

i+nu= u——Z—u , 4.3)

where n2=(n')>+(n?)*+(n3)%. If there is no pump field
(3.1), i.e., a(t)=1, the right-hand side of (4.3) vanishes.
The gravitational potentials are dimensionless, and so is
the pump parameter a(z). Therefore, the coupling to the
gravitational wave perturbations must involve derivatives
of a with respect to time without involving any dimen-
sional coupling constants. This is in contrast with elec-
trodynamics in which coupling is introduced by a non-
linear medium, and the coupling involves medium param-
eters.

It is convenient to introduce a new time coordinate 7
related to ¢ by dp=a(t)”!dt, and to denote the 7 time
derivative by a prime. Equation (4.3) becomes especially
simple [2]:

”

u'+ [n2—2— lu=0 4.4)

which reduces the problem to a problem of a parametri-
cally excited oscillator.! Associated with the equation of
motion (4.4) is the Hamiltonian (3]

H=nA'A+o(m A" +o*m 4?, (4.5)

where A is the gravitational wave complex amplitude:
172

,_a
u ——u
a

A

A= !

n + = 4.6
5 u " (4.6)

and o(7) is the coupling function, o(n)=ia’'/2a. The
coupling is provided by the nonlinearity of the gravita-
tional field equations and occurs in vacuum. Note that H
belongs to the class of Hamiltonians that characterize a
number of physical processes in quantum optics. We
needed a nonstandard derivation of the basic equation
(4.4) in order to show explicitly how a varying cosmologi-
cal gravitational field plays the role of a “pump” field
that couples to the gravitational wave excitations. As a
consequence, the common language of cosmologists
(“gravitational wavelength crosses the Hubble radius”)
can be replaced with a language more understandable to
experimenters in optics (“the frequency of the pump is of
the order of twice the frequency of the wave”). The
Hamiltonian (4.5) is shared by both the cosmological phe-

IElectromagnetic waves do not couple to the gravitational field
pump a(t) in the same way as gravitational waves. In
Maxwell’s equations for the same problem, the variable frequen-
cy term a’’' /a does not appear and they reduce to u”' +n2u =0.



1444 L. GRISHCHUK, H. A. HAUS, AND K. BERGMAN 46

nomena and quantum optics and thus connects the exper-
iments with squeezed light to processes occurring in the
cosmos (see Sec. IX).

Now we will analyze (4.4) in more detail. In some in-
teresting and realistic cosmological situations, e.g., the
inflationary Universe, the function a’’ /a approaches zero
asymptotically for n— — «© and 7— + . In the asymp-
totic regions 7— — o and 17— + o0, solutions to the clas-
sical Eq. (4.4) are very simple: u(n)~e®"". The general
complex solution to (4.4) can be written in the form

u(n)=a&(n)+b'e*(n), @.7)

where £(7) is a normalized basis function and £*(7) is its
complex conjugate. The same general solution can be
decomposed into other basis functions x(7) and y*(n):

u(n)=cx(m)+diy*(y) . (4.8)

One can choose the basis functions in such a way that

E(n)— \/;_n e~ for n— — oo (4.92)
and
1 —inn
e in + oo . :
x(n)— T e for n— + o0 (4.9b)

Since (4.7) and (4.8) describe the same solution, their
coeflicients are related:

a=vc+wdT, bT=w*c+v*d*, (4.10)
where
v]2—|w|®>=1. (4.11)

For quantized fields, the coefficients a,bT,c,d T have the
meaning of creation and annihilation operators and the
relations (4.10) are called Bogoliubov transformations.

The complex numbers v,w can be parametrized by the
three real numbers r, 6, and @(r = 0):

—e/t029) (4.12)

v=e ‘fcoshr, w= sinhr ,
r, 8, and @ are the usual squeeze parameters (see, for in-
stance, Refs. [17,5,18]). The coordinate vector r should
not be confused with the squeeze parameter r, because
the former always appears boldface. It can be shown
(see, for example, Ref. [3]) that the transformation (4.10)
is always associated with the squeeze operators so that
the notion of squeezed quantum states arises inevitably in
processes of this kind. One deals with two-mode or one-
mode squeezed states depending on the choice of modes.

The modes in (4.2) are traveling waves in the asymptot-
ic limit (4.9). Within the interval of coupling,
— o <7< + oo, the pump field couples this set of waves.
The pump field also couples creation operators (with
dagger) to annihilation operators (without dagger). In
general [see (4.10)] one finds that the evolved operators
¢,d are linear combinations of the initial creation and an-
nihilation operators of both forward and backward
waves.

If one considers classical waves, one can show [2] that
a traveling wave will be always amplified and a backward

wave will be generated. The amplitude 4 of the forward
wave and the amplitude B of the backward wave obey the
relation |A4)>—|B|*=1. Standing waves evolve into
standing waves with an amplification or decay factor de-
pending upon their initial phase. After averaging over in-
itial phase, one always obtains amplification. Quantum
mechanically, one deals with the process of particle pair
creation. The mean number of particles {N ), equal to
zero initially, goes to { N ) =sinh?r >>1 finally.

The time-dependent parameters r(7),0(7),@(n) obey
the differential equations

’

r’=—g—0032¢> ) (4.13)
a

6'=n— ga—sin2<p tanhr , (4.14)

¢'=—n+ Ea—sin2(p coth2r , (4.15)

that link them to the pump a (7). These equations allow
one to find definite values of the squeeze parameters for a
given cosmological model, i.e., for a given pump field
a(t).

It can be shown [3] that in the case of inflationary
cosmological models, the squeeze parameter r is very
large, it ranges from r =1 to r =120 for relic gravitation-
al waves of different frequencies. In the limit of large 7,
the Gaussian distribution for the phase ¢ is very narrow,
like a § function. It is concentrated near the values

o=@y t+ml ,

where @ is a constant, the same for all unit vectors n/n,
and /=0,=%, .. ..

The negligibly small variance of the phase distribution
leads to an important conclusion: the amplification of
zero-point quantum fluctuations results in the production
of standing waves. Indeed, let us consider a given n. The
terms, contributing to the total resulting wave field
h(m,x,y,2), can be written in the general form [4]

(4.16)

h,= A;sin(—nn+¢,)cosn-r+ A,sin(—nn+¢,)sinn-r .
(4.17)

The amplitudes 4, and A4, form a broad Gaussian distri-
bution and are, in general, different. (The rms values of
A, and A4, are proportional to sinhr.) However, the
phases ¢, and ¢, form a very narrow Gaussian distribu-
tion and are essentially fixed and equal, or differ by t.
Therefore, expression (4.17) can be written as a product
of a function of time and a function of spatial coordi-
nates:

h,=Zxsin(—nmn+@y)( A cosn'rE 4,sinn'r) . (4.18)

Expression (4.18) describes a standing wave. A charac-
teristic feature of a standing wave pattern is that every
field component A, vanishes over all space at every half
period. The randomness of the wave field is displayed in
its spatial functions 4,cosn-r* A4,sinn-r. The total field
h(m,r) is obtained by summing over all n-mode contribu-
tions (4.18). This is why we say that the relic gravitation-
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al waves are now present in the cosmos as a stochastic en-
semble of standing waves.

V. AN ELECTROMAGNETIC MODEL

In the preceding sections we developed the equations
for the parametric coupling of gravitational waves, start-
ing from the basic nonlinearity of the equations of gen-
eral relativity. We shall now develop an analogous equa-
tion for the electromagnetic field, starting with a model
that is in one-to-one correspondence with the gravitation-
al model of a uniform expanding universe. Consider an
infinite space containing a dielectric medium that varies
in time as

e(t)={e)+Ae(t) . (5.1)

For convenience one may assume at the outset that the
variation of the dielectric constant is independently con-
trolled by, e.g., Maxwell demons who modulate the
“spring constant” of the springs tying negative charges to
positive charges. The electromagnetic field in the medi-
um obeys the equations

JdH
XE=—uy— 5.2
and
VXH=E§E‘ (5.3)
ot
which can be combined into
VX(VXE)=V(V-E)—V’E
__ a3
= .ant fat ’ (5.4)

If the field is purely transverse, its divergence vanishes
(which can be adopted as a gauge condition) and one ob-
tains the wave equation

0

9 | 8E
at

VE=
E=moy (o

(5.5

We decompose the field into the modes with spatial
dependence cos(k-r)and sin(k-r) where

(k') + (k) +(k*)P=k? (5.6)
and substitute Eq. (5.1) for € into (5.5).
The wave equation reduces to
0 |_e OE 2p —
o | ey ar +(kc)’E=0 (5.7)

with ¢?=1/uy{€). If we now introduce the new variable
€ OE

“=Te o 58
we obtain, after taking the second time derivative,
i+ (ke €y =0 . (5.9)

e(t)

This equation is analogous to the equation for gravitons,
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except that now it is not even a linearized approximation
of the equation, but a description of the evolution of the
total field. Of course, the field can be quantized and then
(5.9) describes a generation of photons from vacuum fluc-
tuations by parametric pumping of the dielectric con-
stant. In agreement with the cosmological model, the
field generated from vacuum forms independent standing
waves.

VI. RADIATION FROM A NONLINEAR SHEET

We shall now address a more realistic model in which
the modulation of the dielectric is not by Maxwell
demons, but by virtue of the fact that the dielectric is
nonlinear. We shall concentrate on the production of
waves by a thin nonlinear dielectric sheet placed at
z=const. The sheet exhibits the Kerr effect

Ae=¢€xx'VE? (6.1)
over a distance Az’, driven by an electric field E(z,1):
E(z,t)=Ee '+ E*e'®, (6.2)

where E is the complex amplitude. We consider again
the wave equation (5.5). One can rearrange it so that the
dielectric modulation appears on the right-hand side as a
source term:
2 2
S o )
c” ot oz c? ot

Ae OFE

(e) ot (6.3)

An incident field of the form (6.2) induces polarization
currents in the dielectric that radiate to the left and the
right. If the sheet of thickness Az’ is differential, and the
polarization current density is finite, the scattered field E;
is small and its reaction on the sheet can be ignored. The
source term on the right-hand side of (6.3) in the range
z',z'+ Az’ evaluates to

1 0 | Ae OE
c2 ot | (e) ar
o’ € (3) 3 —3iwt 2 —i
== 27X [3E3 '+ E2E*e " '¥'tc.c.] .

(6.4)

One treats the sheet as a delta function discontinuity
that causes a jump of E, /dz. The waves that travel off
to the left and right also obey the wave equation. JE, /dz
is equal to —ikE; on the left, ikE_ on the right. Connect-
ing the scattered fields on the two sides by integrating
(6.3), one finds

o €o

ES=i2_CC)_X(3)AZI[3_E_3e~—3iml+EZE*e—iwl]+c.c.

(6.5)

The scattered field consists of a component at the fre-
quency o, and one at 3w. If the sheet wave were replaced
by one “pumped” by Maxwell demons at 2w, one would
have obtained essentially the same result. The localized
pump now produces pairs of traveling waves, not stand-
ing waves.
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FIG. 1. Two Kerr sheets, spaced a distance d apart.

If we have two sheets of dielectric, the second sheet
producing an induced current delayed by the phase angle
@, then cancellation of the wave at frequency o traveling
to the left can be achieved (see Fig. 1), if the sheet spacing
d is adjusted to be equal to

¢—kd=0, @pt+kd=m. (6.6)

Similarly, the backward traveling wave at frequency zero
can be canceled. Thus, properly spaced sheets may gen-
erate a wave traveling in one direction. This is the case
realized in the experiment with the moving index grating
(see below). In other words, the violation of the proper-
ties of homogeneity and isotropy, which were characteris-
tic for the cosmological problem, make it possible to gen-
erate traveling waves in the electromagnetic case.

VII. TRAVELING WAVE EXCITATION

If the Kerr effect is small, as is usually the case, it pro-
duces a small change per wavelength. In evaluating the
source term, one may use the form of the field E(z,?)
that is proportional to exp[ —i(wt —kz)] plus its complex
conjugate

E(Z,t ):E(Z) —ilwt —kz) +E (z)e

i(wt—kz) (7.1)
modified by a function E(z) that is slowly varying with
distance. Furthermore, all Kerr media are dispersive, so
that the wave at 3w with propagation constant k(3w)
drops quickly out of synchronism with the source that
has the spatial dependence of exp[3ik(w)z]. Hence one
may ignore the excitation of the third harmonic and only
retain the part of the source that drives the fundamental.
This phenomenon is known in nonlinear optics as “‘phase
matching” or the lack thereof.

One may make the “slowly varying envelope approxi-
mation” by setting

a2

dz?

oE

2ka —Kk2E |e 1@k 4 ¢ ¢, (7.2)

When this approximation is entered into (6.3) we find

The field can be quantized by introducing the operator
variable U with ex?ectatlon value proportional to E so
normalized that U 'U is the photon flux. The following
commutation relation is obeyed:

(O(z,0),0%z",1)]=6(z—2") . (7.4)
The interaction Hamiltonian associated with this third
order nonlinearity is

A

TTA
Uy

H'= (7.5)

LS5
2
where the coupling parameter x [6] is proportional to
x'¥. The above Hamiltonian leads to the equation of
motion

a £ __ . AT AN

a—U—ucU uUuvu , (7.6)
the meaning of «{ U U) bemg the Kerr phase shift per

unit length. Because U ' U is an invariant of (7.6), the full
nonlinear operator equation can be integrated to give

U(z,1)=ei*e0 000008 (0 1) . (7.7)
One can now introduce a linearization by setting
Uz,t)=Uy+ A(z,1), (7.8)

where the operator properties of U are now carried by A
which obeys the same commutation relations as 0. After
elimination of nonresonant terms, the Hamiltonian
governing the evolution of 4 becomes
H'=k[2|UyP AT A+ 11U A%+ 104 ™) (7.9)
which compares closely with (4.5), the Hamiltonian de-
rived from a linearized version of the gravitational field

equations. Ignoring second-order terms in A4, one may
linearize the solution obtaining

Alz,n)=vA(0,0)+wA (0,1, (7.10)
where v and w are given by (4.12) with

6= —arctan® ,

T
— 0,

r=In[®+V1+d?],

and @ is defined as the pump induced phase shift within
the distance z:

b=kl A,z

VIII. THE SEPARATION OF THE PUMP RADIATION

The generation of photons from zero-point fluctua-
tions, the interpretation of the solution to (7.6) and (7.8),
can also be viewed as a diversion of photons of the laser
pump in a nonlinear optical medium. In experiments in
which the pump is not separated from this radiation, this
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FIG. 2. The progress of coherent state inputs through
squeezer to balanced detector.

interpretation is the more natural one. However, it is
possible to separate the pump from this radiation in a
Mach-Zehnder configuration as shown in Fig. 2 (after
Ref. [19]). The pump radiation emerges in one output
port of the interferometer, the photons generated by the
zero-point fluctuations interacting with the index grating
appear in the other output port (see Fig. 2). Since the ra-
diation emerging from the port (squeezed vacuum) is fully
described by (7.6) and (7.8) we may interpret the experi-
ment as generating radiation from zero-point fluctuations
interacting with a moving index grating. (This is an
effect analogous to the particle production by moving
boundaries, reflectors, mirrors, etc. A clear physical pic-
ture of the effects of this kind is given in Unruh’s paper
[20].)

The actual experimental arrangement is shown in Fig.
3. If pulses are used, the balanced nonlinear Mach-
Zehnder interferometer can be replaced by a fiber ring
with which it becomes generically equivalent. The two
beam splitters of the Mach-Zehnder are replaced by one
50/50 fiber coupler which is entered by the pulse and ex-
ited after the two portions of the pulse have traveled
through the fiber ring. If the pulses are much shorter

-
P

Isolator
A2

Local
function Oscillator |
generator

1447

%——— i

FIG. 4. The squeezed vacuum and the local oscillator input
to balanced detector.

than the fiber length (30 mm versus 50 m) one may ignore
the brief interaction of the pulses when they meet half-
way around the loop. The remaining components used in
the setup have been discussed in Ref. [12].

The simplest way to confirm the generation of squeezed
vacuum radiation would be to place a detector at the
“vacuum port” of the fiber ring interferometer. This is
not a practical solution, however, because it is impossible
to balance the fiber coupler so perfectly that no “pump”
photons would exit through the vacuum port. These
pump photons would be mistaken for squeezed vacuum
photons which may even be swamped out by the pump
photons. There is a better way, however, which utilizes
the fact that the squeezed vacuum radiation has a very
definite phase relation with respect to laser photons that
generated the grating. This is done in the experiment by
homodyning the squeezed vacuum radiation with the
pump radiation “emerging” from the ring after one
roundtrip. We show in Fig. 4 how the local oscillator
pump and the vacuum mix in the homodyne detection. If
the pump by itself is detected by the balanced detector
(with the vacuum port blocked) the balanced detector
output is pure shot noise. This follows from the theory of
Yuen and Shapiro [21] which shows that in a homodyne
detection with a balanced receiver the shot noise must be

Variable
PM Coupler

50 meters
PM Fiber

Squeezed
Signal

time domain
filter: 49-51 KHz

FIG. 3. Schematic of experimental setup.
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FIG. 5. Time domain observation of noise reduction in the
difference current below the shot noise level; (a) shot noise level,
(b) squeezing measurement.

interpreted as caused by the zero-point fluctuations enter-
ing through the signal port (the vacuum port in Fig. 4).
When the squeezed vacuum radiation impinges upon the
vacuum port of the balanced detector, the detector shows
less than shot noise when the relative phases of the two
fields are properly adjusted. If the phase is modulated
faster than the drift, the difference current exhibits below
shot noise and above shot noise behavior as a function of
time. This is what was observed experimentally. Figure
5 shows a time domain capture of the difference current
shot noise [part (a)], taken with the squeezed vacuum arm
blocked. In Fig. 5(b) we show the difference current noise
with the squeezed vacuum port unblocked. At the
correct relative phase between the local oscillator and
squeezed vacuum signal, the noise is periodically reduced
below the shot noise level. The data were taken with a
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2-kHz filter centered about 40 kHz. With more precise
power spectrum measurements, noise suppression of 5 dB
below the shot noise level was confirmed at the highest
pump peak power level. One can see that the greater
grating strengths give larger reduction below, and larger
increases above, the shot noise level. This is as predicted
by theory.

IX. DISCUSSION

We have demonstrated the analogy of the linearized
equations for light propagation in fibers with the linear-
ized equations for gravitons in the presence of an external
gravitational field. In the case of gravitons, we have tak-
en into account the nonlinear terms of the fundamental
gravitational equations, which describe the interaction of
the pump gravitational field with gravitational waves, i.e.,
the terms of order 42", but we neglected the non-
linearities of the gravitational waves themselves, i.e., the
terms of order 2'VhV. A possible way of taking these
latter nonlinearities into account would be to let them
play the role of correcting terms in the equations govern-
ing the pump field function a(¢), in a similar fashion to
the approach suggested in Ref. [22].

We hope that the quantum optics experiments can be
of some importance for a better understanding of some
subtle predictions of the quantum field theory in presence
of gravitational fields. It would be of interest to find and
study an experimental optical analog to the spatial auto-
correlation functions of relic gravitational waves (and pri-
mordial density perturbations). These correlation func-
tions should have very specific statistical properties and
play a significant role in the current cosmological
research [23]. It is hard to say, at present, how useful the
quantum optics laboratory experiments may be for get-
ting insight into the nature of similar cosmological pro-
cesses. We hope that this paper, which established the
analogy, will stimulate optics experiments that are
designed to mimic cosmological processes.
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