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Trapped surfaces in nonspherical initial data sets
and the hoop conjecture
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The existence of outer trapped surfaces in conformally Rat, axisymmetric, momentarily static
initial data sets for Einstein's equations is investigated. It is shown that none of the level surfaces
of the conformal factor can be outer trapped, whenever the minimum value of the circumferences
(or of the square roots of the areas) of all the surfaces surrounding the source region is greater
than a constant times the Arnowitt-Deser-Misner mass. This result is along the lines of the hoop
conjecture. It also provides evidence in favor of the conclusion of Shapiro and Teukolsky, drawn
&om recent numerical relativity calculations, that the gravitational field on a spacelike hypersurface
can become arbitrarily singular without the appearance of an apparent horizon.

PACS number(s): 04.20.Cv, 02.40.+m, 97.10.Nf, and 97.60.Lf

I. INTRODUCTION AND SUMMARY

The concept of a closed trapped surface (CTS) has
been a crucial tool in furthering our understanding of
gravitational collapse. Thanks to the celebrated singu-
larity theorems of Hawking and Penrose [1]we know that
if locally measured energy densities are positive, then the
appearance of a CTS signifies that a point of no return
has been passed: classical general relativity dictates that
a singularity must form, independently of the equation of
state of the collapsing matter If one.assumes that cosmic
censorship is true, then the existence of a CTS also im-

plies that an event horizon is present [2]. Even in the ab-
sence of this assumption, Israel [3) has established a grav
itational confinement theorem which roughly states that
"ifa closed trapped surface forms, it can be extended into
a spacelike three-cylinder on which the future directed
light cones are always inward pointing. " This suggests
that the singularity which is formed is non-naked.

Thus there is considerable motivation for finding neces-
sary and sufficient conditions for the formation of CTS's.
Such conditions would justify and make precise the popu-
lar belief that if enough matter is compacted into a small
enough region then a black hole must be formed. Many
efforts have been made in this direction [4—7]. Simple di-
mensional considerations tell us that a suitable sufficient
condition is that m l, where m is a typical mass scale
and / is a typical length scale of the collapsing configu-
ration. (We set Newton's gravitational constant and the
speed of light to unity. ) Attempts to make this condition
more precise must face up to the following problem: in
extreme, strong field situations, the masses and lengths
that are measured by internal and by external observers
may difFer by large factors. Speci6cally, for an isolated
collapsing body the Arnowitt-Deser-Misner (ADM) mass
[8] may be small compared to the total proper mass [9],
and internally measured radii may be large compared to
surface measures of size [10]. So which mass and length
are appropriate for a criterion of the type m/I. & 1'?

For spherically symmetric spacetimes, which are rel-
atively well understood, these questions have been re-
solved [11]. Let m„denote the total proper mass inside
a spherical surface S, and m~ the Hawking mass of S,
which coincides with the ADM mass when the exterior
to S is vacuum. Let r„denote the proper radius of the
sphere and rs the Schwarzschild radius, so that 4zrsz. is
the area. Then sufBcient conditions for the existence of
CTS's are [12] (i) mp/r„& 1 and (ii) mar/rs & z, while
necessary conditions for S to be outer trapped are (i)
m„/r„& i2, (ii) m„/rs & 1, and (iii) mrs/rs & zi.

Strongly aspherical spacetimes are less well under-
stood. For criteria involving internally measurable quan-
tities, Schoen and Yau have proved a very general suf-
ficient condition for the existence of CTC's of the form
(minimum density) x (radius squared) & const [6]. In
terms of externally measurable quantities, there is some
evidence in favor of Thorne's (1972) hoop conjecture
(HC): Black holes uiith horizons form iohen and only,
vihen a mass M gets compacted into a region tuhose cir-
cumference in every direction is C & 4vrM [13—15].

Recent numerical relativity calculations of gravita-
tional collapse by Shapiro and Teukolsky [16) provide
strong evidence in favor of the HC. For collapsing pro-
late and oblate spheroids, apparent horizons (marginally
outer trapped surfaces) appear in a particular time slice
as soon as the condition C~;„&4+m~ is satisfied. Here
m~ is the ADM mass and C~;„ is the minimum of the
circumferences of axisymmetric surfaces surrounding the
spheroid. The circumference of an axisymmetric surface
S is defined as

C(S) = max(I „L„),
where L, is the maximum of the lengths of closed az-
imuthal curves, and L„ is twice the distance from the
north pole to the south pole. For suKciently elon-
gated prolate spheroids which collapse down to a spin-
dle, C~;„= I„does not change appreciably during the
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collapse and so the HC predicts that no trapped surfaces
should be formed. This is precisely what Shapiro and
Teukolsky find, and they cite this and an apparent sin-
gularity at the spindle's end as evidence that cosmic cen-
sorship is violated. Analytic models by Barrabes, Israel
and I etelier [18] of thin shells collapsing with the speed
of light show qualitatively similar features to these nu-
merically generated spacetimes and reinforce these con-
clusions.

The purpose of this paper is to investigate the occur-
rence of outer trapped surfaces in axisymmetric initial
data sets, and to present a proof of the 'only when' part
of the HC, interpreted in the sense described above, un-
der some restrictive limitations and assumptions. Our
approach is to try to find constraints that must be satis-
fied by quantities of the form m(S)/r(S), when the sur-
face S is, or is not, trapped. Here m(S) is a measure of
the mass inside S, and r(S) is a measure of the size of S.

This work was in part inspired by a recent paper of
Malec [19], where, using similar assumptions and a sim-
ilar approach, he finds conditions for the existence of
closed, outer-trapped surfaces in momentarily static, con-
formally flat initial data sets. Malec's conditions are ex-
pressed in terms of the internal quantities r„(proper ra-
dius) and rn„(proper mass). In this paper, we focus
instead on the following external quantities: the circum-
ferential radius of a surface S,

1r, (S) = —= —max(L„L„),2' 7r
(1.2)

the Schwarzschild radius rs (S) defined so that 4irr2s is the
area of S (also considered by Malec), and the asymptotic
ADM mass m~.

We restrict attention to asymptotically Bat, axisym-
metric initial value hypersurfaces, that are conformally
flat and momentarily static outside a compact source re-
gion in which the matter density is nonvanishing. We
need not assume anything about the interior of this
source region. With these assumptions we can write the
three-metric of the hypersurface in the external region
in the form h~g = C'4h g, where the metric h~s is flat,
and C is a conformal factor. We also restrict attention to
surfaces S which lie outside of and surround the source
region.

The first of our two main conclusions is as follows.
Theorem I. Let S be a level surface of the conformal

factor C' in the external region, and be convex with respect
to h~b Then

form m„/r„& const is established in Ref. [19], with
roughly the same physical interpretation.

To motivate our second result, we briefly review the
general behavior of our chosen type of initial data set.
Because of time symmetry, there can be no trapped
surfaces present, only outer trapped ones. If these are
present, then in the spherically symmetric case the ratio
m~/r, = m~/rs varies with radius as shown in Fig. 1.
We see that deep inside the trapped region the ratio can
be arbitrarily small. This behavior persists in strongly
aspherical initial data sets. In Sec. II B we show that if
S is a convex, level surface of the conformal factor, then

= fi(@is)fz(S) (1 4)

0.6

0.4

0.2

where the function fz is bounded above and fi(x) =
4(x —1)/xz. Now if the source is sufficiently compact
that just outside the source the conformal factor satisfies
C )) 1, then we see from this equation that that the ratio
m~/r, will be && 1 there. The ratio will also be && 1,
of course, at large distances from the source. Only in
some intermediate region, where C' 2, will it become of
order unity. See Ref. [20] and also Appendix C for some
examples.

Because of this behavior we cannot hope to establish a
necessary condition of the form m /r, (S) & const for a
surface S to be outer trapped. (This is in contrast with
the situation in Ref. [19] where Malec does find such a
condition for the ratio m~/r„. ) However, a necessary con-
dition which does work is that if S is outer trapped, then
there must exist some surface S' outside S for which the
ratio m~/r, (S') is of order unity. This is essentially the
interpretation of the HC for which Shapiro and Teukol-

sky find strong evidence [16], and which we shall make
precise in our second theorem.

7r21+—= 0.73.
r (S) 8 4

An examination of various examples (see Appendix C) in-
dicates that the least possible upper bound for the quan-
tity m~/r, is probably 1/2. Also in Appendix C we give
an example of an initial data set which shows that no
analogous upper bound applies to the quantity m /rs.

The physical interpretation of Theorem 1 is that if a
body has passed a certain critical degree of compression
(as measured by m~/r, ), then it cannot be momentarily
static; i.e., it must be collapsing. A similar result of the

'0

FIG. 1. The ratio m /r as a function of some radial
coordinate t outside the source region {shaded), in a typi-
cal momentarily static, conformally flat initial data set. The
turnaround seems to always occur when there are outer
trapped surfaces present, and these are then found in the
region between points A and 8. For some other data sets, as
one decreases (, the matter surface is reached before the ratio
comes to a local maximum.
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(1.5)

and

01—1

rs(S') (1 6)

The above results are derived in Sec. II. Some tech-
nical details are relegated to Appendices A and B. In
Appendix C we give an analysis of a class of initial data
sets whose sources are ellipsoidal thin shells of matter, in
order to motivate and illustrate the general results. Our
notation and conventions follow those of Ref. [21].

II. AXISYMMETRIC, CONFORMALLY FLAT,
MOMENTARILY STATIC INITIAL DATA SETS

A. Governing equations

Our second theorem depends on a property [Eq. (2.38)
below] of the foliation of the external region by level sur-
faces of the conformal factor. This property holds for
a large class of foliations, and we conjecture that it is
always satis6ed.

Theorem g. Suppose that all the level surfaces of C in
the external, source free region are convex neith respect to
h~b and satisf'y Eq. (2.38), and that some level surface
in the external region is outer trapped The. n there exists
another level surface S' such that

ward directed, null geodesic congruences normal to S are

and

8;„= D—n +(h, b
—n, nb)K'

H,„t ——D,n +(h,b
—n nb)K b.

(2.5)

(2.6)

In terms of the conformally transformed metric h b and
normal n (normalized by h bn nb = 1), we get

H,„g,;„——+C D,n +4n'D in@ —C sK,bn'n,

(2.7)

where the upper sign refers to the outwards expansion.
The surface S will be trapped if 8;„(0 and 8,„t ( 0
everywhere, and outer trapped if H~„q ( 0. The property
of being outer trapped is sufficient for the singularity
theorems to hold [23], and to guarantee that an apparent
horizon is present.

We now specialize to the following type of initial data
set. Divide Z into a compact interior region Z; and an
exterior region Z, which has the topology of Euclidean
three-space with a ball removed. Suppose that all the
sources are contained in Z, , so that pM = j' = 0 in Z„
and that all the level surfaces of the coformal factor O

in E, have spherical topology [24]. Suppose also that
the exterior region is axisymmetric, conformally fiat and
momentarily static, then K,b = 0 and h, b is fiat in Z,
[25]. The metric h b is given in cylindrical coordinates

~ lR = tr(K ) —(trK) +16npM (2.1)

In this section we write down the initial value equa-
tions and define the various measures of mass and radius
that we use. An initial data set for Einstein's equations
consists of a three-manifold Z with a three-metric h b,
extrinsic curvature tensor K~b, matter density pM, and
momentum density j'. These must satisfy the initial
value equations [21]

ds = C (p, z)(dp +dz + p dp ), (2.8)

DD C=O. (2.9)

The measures of mass and of size that we will use are
as follows. The ADM mass of Z is given by [8]

where from Eq. (2.3) the conformal factor C satisfies
Laplace's equation

and

D~K'b —Dbtr K = 8 (2.2)

m = —— nDC dS,
S

(2.10)

where &s&R is the Ricci scalar and D' the covariant
derivative operator associated with the metric h, b. If
we specialize to maximal slices (TrK = K ' = 0 ), then
these equations can be simplified by making a confor-
mal transformation [22] to new variables h~b = 4' h~b,
K~b = @~Kgb. This gives

D D —-& &R I = 4 tr(K—)——2vrpMO (2.3)8 8 )

and

where S is any surface enclosing the source region Z;.
The Schwarzschild radius of a surface S is defined by

4vrrs ——A(S) = C' d S,
S

(2.11)

1r, = C/2' = —max(L„L„),2' (2.12)

where g(S) is the area of S. Let D be the curve where
8 intersects the half plane y = 0. The circumferential
radius is

~ab 8 @10 b (2.4) where the length of the longest closed azimuthal curve
on Sis

Here D is the derivative operator associated with the
unphysical metric h~b.

Consider now closed two-surfaces S of spherical topol-
ogy in the slice Z. If n~ is the unit outward normal to
S, the expansions of the future directed, inward and out-

L, = sup 27rp(x)4(x), (2.13)

and twice the distance from the north pole to the south
pole is
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(2.14) = fi(A)f~(S) (2.23)

Note that it follows from these definitions that r&~

z fz p@ dl & sup~~ii p(z)O(x) 2 fDC dl, so that

where fi(A) = 4(A —1)/Az which is bounded above by
I for A ) 1, and

rs & (~/2)r, (2.15) (2.24)

for all surfaces S.
We also introduce some definitions of the "radius" of S

with respect to the unphysical fiat geometry determined
by the metric h y. These measures of radius will be useful
later in the proof of Theorems 1 and 2, and their various
properties that we shall need are derived in Appendix A.
The first measure is the "fiat" Schwarzschild radius P~
defined by

rp 1 2

( )
& —/1+x /4.

Thus we finally obtain

m /r, &n,

(2.25)

(2.26)

Now in Ref. [14], Sec. III C it is shown that, when S is
convex, then

A(S)
4m

(2.i6) where n = x(1+or~/4)&/8 —0.73. This completes the
proof.

where A(S) is the area computed in the fiat geom-
etry. This is to be distinguished from the physical
Schwarzschild radius rs introduced in Eq. (2.11). The
capacity of S is [27]

ro = — n'Dag d S
4m'

(2.17)

=1 2r, = — pd S,8' s
(2.i8)

where p = D n is twice the mean curvature of S, and

1 2r, = — (rs/g„) d S,
4& s

(2.19)

where Q is the unique function satisfying D D Q = 0
outside S, Q = —1 on S, and Q ~ 0 at infinity. Finally
we define the quantities

C. Outer trapped surfaces

In this section, we carry through the proof of Theorem
2, in stages. First of all, in Lemma 1, we show that
if S is an averaged trapped surface, then m~/rs(S) +
1/O~s. A similar lower bound is found in Lemma 2 for the
ratio m~/r, (S). Then in Lemma 3, we show that with
certain assumptions the conformal factor C cannot be
large on the outermost averaged trapped surface. Finally
we combine these three lemmas with Eq. (2.38) to arrive
at the theorem.

Suppose that S is an arbitrary surface in Z, which
encloses the source. Let @m;„and C'~,„be the minimum
and maximum values of the conformal factor 4 on S. By
combining Eqs. (2.7) and (2.10) one gets

where rs is the Gauss curvature of S and Q„= n D~g.
It is known [27] that

ni = — pC d S —— eo„gC d S.=1 2- 1 3 2-
8& s 8x s

(2.27)

Pg &r,
and that

(2.20)

rp &T~,

for all convex surfaces S.
(2.2i)

B. Compact bodies cannot be static

We now turn to a proof of Theorem 1. Suppose that
S is a level surface of 4, so that 4 = A on S, where
A is a constant. Suppose also (in accordance with the
statement of Theorem 1) that S is convex with respect
to the Bat three-geometry. Then

r, = A max [p, L(D)/vr), (2.22)

where p = max~eD p(2:) and L(D) is the length of the
curve D. Also from Eqs. (2.9), (2.10), and (2.17) we
have that m~ = 2(A —1)ro(S). This implies from the
positive energy theorems that A & 1. Combining these
yields that

m oo &
C'min

i s(S)
(2.28)

A similar result holds for the circumferential radius r, .
If we assume that S is a convex, axisymmetric, averaged
trapped surface, then Eqs. (2.12)—(2.14) similarly yield
that

ni O;„fL(D)r, max ~Pmr, C2,
(2.29)

We will call S an averaged trapped surface if the last
term on the right hand side above is positive. Note that
this differs from the conventional definition of averaged
trapped [4] in that the weighting factor is chosen to be
Cs instead of C4. Now if S is convex with respect to
h b so that the mean curvature 2p is positive, and if
also S is averaged trapped, then from Eqs. (2.27) and
(2.18) it follows that rn~ & 4~;„r,. Combining this
with Eqs. (2.20), (2.11), and (2.16) proves the following.

Lemma 1. Iet S be a closed surface enclosing the

source region Z, urhich is convex ivith respect to h q. If
S is averaged trapped then
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We claim that r, & L(D)/4. To see this, suppose that
the surface is defined by the equation p = R(z), for zo &
z ( zi. Then from Eq. {2.18),

(2.30)

Now both sides of Eq. (2.33) can be considered as func-
tions of the parameter ro, which increases monotoni-
cally as one moves outward through the foliation of level
surfaces (see Appendix A). If r,»r =—re(Souter) and
(8 ur, )—:f 4 8 „r, d S, then the equation can be written

where p = 1/(Rv) —R"/vs, v = 1+R', and primes
denote difFerentiation with respect to z. Now integrating
by parts and using the inequality

1 + R'arctanR' & y 1 + R'i

mQo + C mm

r.(S)
- 4 O2.„ (2.31)

As the next step in our proof of Theorem 2, suppose
that there is some outer-trapped, level surface S in the
external region Ze. Then in particular there will be aver-
aged trapped, level surfaces. For these surfaces, the lower
bounds derived in Lemmas 1 and 2 will get better as C

gets smaller. The optimum lower bound will occur at the
outermost, level, averaged trapped surface, for which the
average value of 8,„& vanishes. Such a surface will exist
because Z is asymptotically fiat. We now show that the
value of the conformal factor C on this particular surface
(call it Sour,„)is bounded above.

Lemma 8. Let 4,«„ be the value of 4 on the outer
most, averaged trapped, level surface So„t„. Then

rg
1/@outer & 1—

2ro
(2.32)

Here r, and ro are the radius functions introduced in
Sec. II A, and are evaluated at So„r,„.

To derive this bound, suppose that S is a level surface
of C. Then combining Eqs. (2.18), (2.27), and {A24)
yields that

1 e 8outd 8= +1 1 1
8mtn r (S) s

" rn 2ro(S) r, (S)
(2.33)

This provides us with a necessary and sufBcient condition
for S to be averaged trapped, namely, that the right-
hand side above be negative. (For spherical spacetimes
ro = r, and we recover the well known condition m & 2r. )
Evaluating Eq. (2.33) at So„i,„and using Eq. (A24), one
finds that

proves the claim.
From Eq. (2.29) it is clear that we also need to find a

lower bound for the quantity r, /p . Using the fact that
L (D) & 2p~ (which is apparent from a diagram), we see
that r, /p~ & 1/2. In fact in Appendix A we show that
this can be improved to r, /p & n/4. Inserting these
results into Eq. (2.29) gives the following lemma.

Lemma 8. Let S be a closed, axisymmetric surface en
closing the source region 2;, which is convex mth respect
to h s. If S is averaged trapped then

f(re) (8 „&) (r&) = g(r&)

where f is a positive function. Since S«i,„ is the
outermost averaged trapped surface, we must have

(8oui;) (rcrif) = 0 aild l9re (8our) (rcrit) o T»»mp»es
that g'(r»&) & 0, or

—1 18r,+-
2r r» Bra

(2.35)

Using Eqs. (2.34), (A24) and (225) we can write this as

(2.36)

which establishes Lemma 3.
Now from Eq. (2.32) it is clear that we would like to

show that r, & ro always. Unfortunately we have not
been able to prove this. However we have evaluated the
ratio r, /re for prolate and oblate ellipsoids, and for level
surfaces of the function

m m i+i
C = 1+—+n — Pi(cos8)

2r 2r
(2.37)

III. CONCLUSION
In this paper we have have found conditions for outer

trappixl surfaces not to be present in an initial data set.
This work supports the conclusion of Shapiro and Teukol-
sky that the matter and gravitational field configurations
on a particular time slice can become arbitrarily singular
without the appearance of an apparent horizon. How-
ever, it is not clear that this tells one anything about
cosmic censorship, as Wald has shown that there are non-
spherically symmetric foliations of standard black-hole
spacetimes with no apparent horizons on any of the time
slices [30]. It would be useful to find out just when can a
spacelike hypersurface fail to register the presence of an
event horizon by an apparent horizon.
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APPENDIX A: MEASURES OF RADIUS
IN FLAT SPACE

Several different definitions of radius are possible for
a surface in fiat, three-dimensional space. In Sec. IIA
we defined for a closed surface S the capacity rs(S)
[Eq. (2.17)], the Schwarzschild radius rs(S) [Eq. (2.16)],
the quantity r, (S) [Eq. (2.18)], and the quantity r, (S)
[Eq. (2.19)]. The properties of these measures and the
relationships between them form a crucial underpinning
to our analysis of trapped surfaces. In this appendix we
derive some of the properties which are quoted and used
in the body of the paper.

It turns out that, in the derivation of these properties,
it is useful not to consider a single closed surface S, but
instead a foliation of surfaces. Accordingly, let SD be a
two-surface with the topology of a sphere, and fix a foli-
ation by similar surfaces of the region outside So. Then
we can find coordinates o, x~ (A = 1,2) such that (i) the
line element of the fiat three-geometry takes the form

ds' —e'F(~ *"'do'+ h, (o xA)dx~dxc (Al)

1 F '
KA'B = —e hAB

2 ( 2)

where the dot denotes difFerentiation with respect to cr

Its trace (twice the mean curvature of S) is

2
(A3)

which appears in the definition of the radius function
r, (S). The Gauss curvature is the product of the eigen-
values of Kgg with respect to h~~, which is

Kg ——— (trK) —trK

8
Now we make use of the fact that the three-geometry
is Bat. The Riemann tensor computed from the metric
(Al) has components

and (ii) the surfaces of the foliation are the surfaces of
constant o., such that o increases monotonically as one
moves outwards towards infinity. The extrinsic curvature
tensor of a typical surface S is given by

Here V~ denotes the covariant derivative associated with
the two-metric hAB, the two-dimensional Riemann tensor
of S is ( )BABcD, and hAB, hA~, and I" are regarded as
tensor fields on S . By equating these Riemann tensor
components to zero, we obtain necessary and sufficient
conditions for the functions I" and hAB to describe fo-
liations of Hat space. Since in two dimensions there is
only one independent component of the Riemann tensor,
these conditions are

and

(')a = 2~g,

hg hc g + 2Fhg g —2hpg = 4e V/Vge

(A8)

(A9)

0 fd S= (8 f+f8 lngdeth~~)d S
S S

= $ P4f + pfe) e)'+ (All)

The second equality here follows from Eq. (A3). In these
equations and throughout this appendix, the symbol dzS
means the surface area element with respect to the flat
background geometry, which was denoted d S in the
body of the paper.

The radius functions rg, r„and ro are defined in

Eqs. (2.16), (2.18), and (2.17). Evaluated on the sur-
faces S these produce functions rg(o), r„(a) etc. Using
the formula (All) we can find how these functions vary
through the foliation. We find that

and

-2 1
~"s =

Be = —$(ji+,e.eei ) d S.

(A12)

(A13)

Now using Eqs. (A3), (A4), and (AQ) after some manip-
ulation we obtain

j + eFp' = 2eF) g
—V'eF,

which when inserted in Eq. (A13) gives [26]

(A14)

t9~p~ = — e Kg d S.P 2

4x
(A15)

V~~e ha]c = o. (A10)

Next we derive a useful formula for the rate of change
with respect to o of the integral of any function over the
surface S . Using the fact that the area element of the
surface is

d S = gdeth~~dx dx,
we get

h„hCB + 2I' hAB —2hAB

—e V'A V'BeF

P —F'
+crABC = e 7tCe ~BjA~

+ABcD = +ABcD e ~A[eh'DIB
(2) —2F

2

(A5)

(A7)

1
r (o)= e ~ ~()dS4' (A16)

To calculate 0 ro is a little more complicated. Let

Q( 1(cr, x ) be that harmonic function which takes the
value —1 on S and which vanishes at infinity. Then,
from Eq. (2.17),
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since e 8 = 8„ is the unit outward normal derivative.
Now using Eq. (All) gives

and from Eq. (2.10) and the boundary condition at in-
finity it follows that

1
r'p(0') =

4 [ 8~8~/(7. ) + 87'8~@(7.)
C(o) =1+

2rp a. (A24)

+e p 8„g( )]d S (A17)

From the equation D D @ = 0 and using the metric (Al)
we find that

8 (e ~j) = —jp —V'~(e~V"y). (A18)

When this expression for 8 8„g( ) is inserted above, the
second term is a total derivative which vanishes when
integrated, and the first term cancels with the last term
in Eq. (A17), so we get

r', (a) = — 8,8„$(,) d S (A19)

To evaluate this we find an approximate expression for

Q(,). Let r = crp + s, and suppose that Q~ ) = @(,) +
sf + O(s2). Then by demanding that Q(,)

= —1+O(sz)
on S, we find that the function f is determined by the
requirements f(op, x+) = —g(op, x+), D~D,f = 0, and

f -+ 0 at infinity. Also it follows that

8 Q( )(cr, z ),=, = f(cr, x ), (A20)

and so from Eq. (A19), r'p = $ 8„f dzS/4n. . Now by using
Green's theorem j@8„f= g f8„$ we finally get

I
r'p(o) = — e @( ) d S,«s. (A21)

where @(~) =—8~$(,)(o', z ), ~.A

The rate of change Eqs. (A12), (A15), and (A21), to-
gether with the freedom to choose a particular foliation
of surfaces S starting from a given surface Sp, comprise
powerful tools for deriving properties of the radius func-
tions. By using these equations specialized to the folia-
tion in which F = 0, Szego [27] shows that r, & r, and
rp & r, always. It might be possible, using these tools,
to prove the conjecture in Sec. IIC [Eq. (2.38) above],
although we have not been able to do so.

The results we need for this paper can be obtained by
choosing the foliation to be the set of level surfaces of
a harmonic function. In the notation introduced above,
let Sp be a given initial surface corresponding to cr = o'p,
put y = @(,), and choose the foliation to be the level
surfaces of )(. It follows that y = )((o), i.e. , that y is
independent of the coordinates x+, and also that

which is one of the results used in Sec. II C.
Next, if we combine Eqs. {A15), (2.19), and (A23) we

find that r', = r'pr, /rp. Hence if we consider r, as a
function of rp instead of o [rp increases monotonically
with a, cf. Eq. (A21)], then we get

8rg

8rp (A25)

This is the quantity that we conjecture to be always less
than 1, and that we use in the derivation of Lemma 3.

The final result concerns a convex axisymmetric sur-
face S, defined by an equation of the form p = R(z) for
zp & z & zi. Here (z, p, y) are standard cylindrical coor-
dinates, and R(zp) = R{zi) = 0. In Sec. IIC we claimed
that r„(S) ) (x/4)p~ always, where p~ —= max, R(z).
This can be derived by means of the following trick. We
can find a surface S' inside S which is a pancake shaped
ellipsoid of revolution, of the form

r.(S) ) r.(S'). (A26)

But a straightforward calculation gives that, in the limit
where z~ ~ 0, r, (S') = mp~/4 [cf Eq. (.B15) below].
This proves the claim.

APPEN'DIX Bo THE CON JECTURE 7 e ( To

In this Appendix we calculate the ratio r, /rp for sev-
eral classes of surfaces using the formalism described in
Appendix A. Consider firstly prolate ellipsoids. The ap-
propriate form of the metric (Al) describing fiat space
18

ds = a (sinh u+ sin v)(du +dv )
+a sinh usin vdp (Bl)

where the u = constant surfaces surfaces are prolate el-
lipsoids of eccentricity | = sech u. If we define

(z —z) p+~=~
Zm Pm

where z is such that R(z) = p~, and we choose z to be
small enough so that S' fits inside S. Now clearly we can
find a foliation of convex surfaces interpolating between
S' and S. Hence by Eq. (A15) we see that

0( ) = —X/X(r). (A22) )( = —ln tanh(u/2) (B2)
Now using Eqs. (2.17), (A21), {A22), and the fact that
8„@( )

= —e +y/y(r), we get
and b, = sinh u+ sin v, we find from Eqs. (A3) and
(A4) that

r' (o.)p= — rp(o.).x(~)
g(a)

(A23) 2sinh u+1 —cos v
ass tanh u

(B3)

This means that y must be of the form y(o) = A+
/Br (op.) for some constants A and B. The conformal

factor 4 of this paper clearly must also be of this form,

and

cosh B
a'A4 ' (B4)
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Also since y is harmonic, Q„= —e y/g, and it follows
that

r, = ay cosh usinhu; (B16)

Q„= [ayA sinhu] (B5)
see the upper curve in Fig. 2.

Finally consider level surfaces of the function

Using the definitions of the radius functions, we calculate
that

m m l+1
C = 1+—+a — Pj cos8,

2r 2r

rp ——a y,

1r, = -acoshu [1+ysinhutanhu],

(B6)

(B7)

where a (( 1, Pt is the jtth Legendre polynomial, and
(r, 8, y) are standard spherical polar coordinates. A
straightforward calculation shows that, for the surface
C =A,

and (B18)

r, = ay coshusinh u. (B8)

ds = a (sinh u+ sin v)(du +dv )
+a cosh u cos v d&p, (B9)

The ratio r, /ro is plotted as a function of the eccentricity
s = sechu in Fig. 2 (lower curve); it is always smaller than
unity.

For oblate ellipsoids the discussion is exactly analogous
so we merely list the equations:

where cl = (A —1) '2t2(2t —1)/(2l + 1). The ratio de-
creases away from unity as n is increased for all values of
t.

We remark that our conjecture r, & ro is similar to
a conjecture of Malec [Eq. (16) of Ref. [19]], which in
our notation reads r, ro & r2. By Eq. (2.21), this would
be a consequence of r, & ro Also. it is known that the
corresponding pointwise inequality zg (@„is not always
true.

y = 2 arctane ", (B10) APPENDIX C: THIN ELLIPSOIDAL SHELLS

0
5

2sinh u+1+sin v

ass coth u

sinh u
a2+4

@„=[ayA coshu]

rp ——a y,

1r, = -a sinh u [1 + y cosh u coth u],

0.8—

0.6—

0.4—

(B12)

(B13)

(B14)

(B15)

In this appendix we examine a class of initial data sets
which contain momentarily static, ellipsoidal, thin shells
of matter. The distribution of surface matter density
that we assume is nonuniform, but is chosen to make the
calculations simple. We analytically determine when and
where outer trapped and averaged outer trapped level
surfaces occur in these data sets, and calculate the ratios
m~/r, and m~/rq The co. nclusions are that (i) the
qualitative behavior of the ratio m~/r, is in accordance
with Fig. 1, and (ii) whenever outer trapped level surfaces
occur, the quantity O~~„:—maxim~/r, (S) is larger
than some critical value 0,. For prolate initial data sets
0, = 0.4889, and for oblate ones 0, = 0.4799.

A closely related class of initial data sets was exam-
ined by Nakamura, Shapiro and Teukolsky in Ref. [15],
where they numerically calculated 0,„for various mat-
ter configurations, and related its value to the presence
of apparent horizons. Here we obtain similar results by
analytic methods.

To describe the results in more detail we now discuss
the parameters used to describe the shell. A shell will be
determined by (i) the semimajor axis n of the ellipse that
generates the ellipsoid by a rotation, (ii) the eccentricity
z of this ellipse, and (iii) the proper mass m„of the shell.
This is defined as

0 4 6
— ln (1—e)

10

mp —— PMd V= PMC' d V. (Cl)

FIG. 2. The ratio r, /ro plotted as a function of eccen-
tricity s for prolate (lower curve) and oblate (upper curve)
ellipsoids. Notice that it decreases away from unity as the
surfaces become less spherical.

Now sometimes two diferent shells will give rise to the
same external three-geometry [28]. This will be the case if
the values for each shell of the following two combinations
of the above parameters are the same:
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m„y(s)m- ™l2AG (C2)

and
- —1

20!E'
1 = —y(s)

mp

1.5

Here y = ln [(1+e)/(I —s)] /2 in the prolate case, and

dimensionless parameter I'~ is essentially the ratio of the
asymptotic mass of the shell cubed to its qu rupole mo-
ment, and m~ is the asymptotic mass [29].

We also introduce a dimensionless radial coordinate u
(see below) with the properties that (i) the shell is t e
surface u = uo, with s = sech us, (ii) the level surfaces
of the conformal factor C' and of u coincide, an (iii) u
increases monotonically as one goes outwards from the
h 11 t ds infinity. The parameters I', m, an uo

escribeturn out to be a more convenient set to use to desc
'

any of these data sets may be specified by giving values
of u and I', since it does not matter at which uo ( u
the shell is located, and without loss of generality we can

= 1.
The results we obtain [Eqs. (C6), (C ), ( ),

(C14) below] are summarized graphically in Figs. 3 an
4, which are diagrams of this parameter space oe of level

f . The show where outer trapped and average
1'atiosouter trapped level surfaces occur, and where the ra ios

ratios as a function of u along the line AB in ig.
are shown in ig.h

' F' 5 We see that at shells such as that
corresponding to the point Pin Fig'. 3 the ratio m~/rg

0.5

00 0.5 1.5

FIG. 4. A similar diagram for oblate initial data sets.

can be arbitrarily large, even though there are no trapped
level surfaces or averaged trapped level surfaces anyw ere
outside these shells. This shows that area is not as useful
a measure of size as circumference, at least for prolate
geometries. Notice that the behavior of m /rs is quite
different in the oblate case.

Also we see that if one imagines traveling inwards from
in nity in an initial data set, one encounters first the level
surface of minimum circumference, then the one o min-
imum area, then the outermost, outer averaged trapped

level surface. These all coincide in the limit I' -+ oo,
i.e. , in the limit of spherical symmetry. In the prolate
case, the plot suggests (but does not prove) that there
is an antitrapped region at small u values containing no
averaged outer trapped surfaces, such as is found inside
the inner horizon of a Reissner-Nordstrom black ho e.

It is also apparent that outer trapped level sur aces
are present if and only if I' is greater than some critica

1.5

0.8 -' I I I
(

I I I I
i

I I I I

0.6—
m/r,

0.5

'0 0.5 1.5

FIG. 3. The behavior of prolate initial data sets. Each
point (uo, 1/I') in this diagram corresponds to s shell, snd
all the points ~u, y' g wi, ly'I'j' 'th u & u0 correspond to the level
surfaces in the three-geometry outside the shell. (The value
of uo csn be anything one wishes snd thus is not shown ex-

'
1 here. ~ The hatched region contains outer trapped sur-

faces, and the region shaded by lines contains averag o

level surfaces of minimum circumference an d of extremal area
occur.

0 I i i & i I & i & i I

1 2 3
U

FIG. 5. The shape of the functions m /r, (u, I') snd
m /rz(u, I ) csn be visualized easily be combining this figure

' h F' 3 This lot shows how these quantities vary with
u in the prolate case when I' = 1.25, i.e., along t e lne
above.
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value I'„where I', = 1.876 (prolate case), or I', = 1.819
(oblate case). The quantity max m~/r, {u) can be cal-
culated numerically and increases monotonically with I',
asymptoting to the value of 1/2. Therefore outer trapped
level surfaces are present only when max„m~/r, (u) is
large enough, in accordance with Theorem 2.

We now turn to a derivation of these results. The
starting point is the line element (2.8), where the base
metric h b is described in coordinates (u, v, p) according
to Eq. (Bl) [Eq. (BQ) in the oblate case]. The conformal
factor we use is

Using Eqs. (B2), (B3), (B5), etc. we find that

2sech u + ln[tanh u/2] prolate case,
FT u —2 arctane " oblate case.

(C9)

Next we find where the surfaces of extrernal area occur.
Now the physical Schwarzschild radius rg is related to the
fiat space Schwarzschild radius r, by rs = Csr, A.lso
from the metrics (Bl) and (B9), it follows that

1+ I'X(u), u & up,
1 + ZX(tip), B & tip,

(C4) -2 12 2r &
——-a sinh u [1 + cosh u coth u arcsin(sech u)]2

where X is the harmonic function defined in Eq. {B2)
[Eq. (B10)]. From the I ichnerowicz equation (2.3) it
is apparent that this describes a thin shell of matter,
with surface density proportional to e s+ = I/h2. Us-
ing Eqs. (A24), (C4), (B6), and (B14), we find that
m = 21 a. But from Eqs. (Cl) and (2.10) we obtain

m
C(up)

' (C5)

Equations (C2) and (C3) can be derived from this, using
also that n = e'(up)sa cosh up and s = sech up.

Consider now a level surface S„which is in the external
region, so that u & up. From Eqs. (2.33) and (A24)
we see that it will be averaged trapped iff 1/C]s & 1—
r, /(2rp). By Eq. (C4) this occurs if and only if 1/I' &

FAT (u), where

in the prolate case, and

(C10)

-2 12
r& ———a cosh u [1 + sinh u tanh u arcsinh(csch u)]

2

(C11)

in the oblate case. If S„ is a surface of extremal area,
then rs= 0', i.e. , 2Crs + Crs = 0. From Eq. (C4), this
is equivalent to 1/I' = Fs(u), where

Fs X Xrs/Ts ~ (C12)

A similar method can be used to find the surfaces of
minimum circumference. If we define the quantity P, =
I r„ then we find that

FAT(u) = X(u)(2rp /r. —1). (C6)
—coshuE(sech u) prolate case
a cosh u oblate case. (C13)

This function was evaluated using the expressions for X,
rp and r, in Appendix B to produce the plots in Figs. 3
and 4. It is similarly straightforward to find when will the
surface S„be pointwise outer trapped. From Eq. (2.7)
wit;h It,b = 0, we find that

& max1 — max (C7)

which from Eq. (C4) is equivalent to 1/I' & FT (u), where

FT (u) = X(u) min " —1
44n

S p
(C8)

44 H,„t ——p+ —B„C.
C

But if A—:C'[s and Q = g(„& in the notation of Appendix

A, then 4 = 1+ (1 —A)Q, and so A 8 „t ——p —4(1—
1/A)g„. Hence S„will be outer trapped if and only if

Then the function

Fc = -X —Xr,/r (C14)

satisfies Fc (u) = 1/I' when r', (u) = 0. These equations
determine the functions Fg and Fs which are plotted in
Figs. 3 and 4.

Finally the ratio 0 = m~/r, is given by

(C15)

Evaluating this along the curves Fc; in Figs. 3 and 4
produces in each case a function of I', 0 „(I'), which
turns out to be monotonically increasing. Evaluated at
the critical value 1, below which there are no trapped
level surfaces yields the value 0 „(I',) = 0.4889 in the
prolate case, and 0 „(I',) = 0.4799 in the oblate case.
Outer trapped level surfaces will be present only when
0 „ is greater than these critical values.
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