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Stability analysis of a nonscalar curvature singularity
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The behavior of test scalar waves on a dust-filled type-V locally rotationally symmetric spacetime is

used to probe the nonscalar curvature singularity present and its associated Cauchy horizon. It is ar-

gued that the divergence of the stress-energy scalars for most wave modes makes the nonscalar curvature

singularity unstable in general. However, a special subset of modes does not lead to divergence of the

stress-energy scalars at the nonscalar singularity. These modes would leave the nonscalar curvature

singularity unchanged. Furthermore, examination of the stress-energy tensor in a parallel-propagated

orthonormal frame and stress-energy scalars show that the Cauchy horizon is left unchanged.

PACS number(s): 04.20.Cv

I. INTRODUCTION

In this paper we investigate the stability of nonscalar
curvature singularities and Cauchy horizons in a class of
Bianchi type-V spacetimes, which are dust filled and lo-
cally rotationally symmetric. Our technique is to extend
to these spacetimes a conjecture we have previously ap-
plied only to spacetimes containing quasiregular singular-
ities [I—5].

A great deal of work has been done to understand the
nature of singularities in classical general relativity [6].
In this paper we use a classification scheme based on that
devised by Ellis and Schmidt [7], who classified singulari-
ties in maximal spacetimes into three basic types:
quasiregular, nonscalar curvature, and scalar curvature.
The mildest singularity is quasiregular, and the strongest
is scalar curvature. At a scalar curvature singularity,
physical quantities such as energy density and tidal forces
diverge for some observers who approach the singularity.
For a quasiregular singularity, no observers see physical
quantities diverge, even though their world lines end at
the singularity in a finite proper time. Here we are in-

terested in nonscalar curvature singularities, at which
some observers feel infinite tidal forces, even though for
no observers do physical scalars diverge.

The classification scheme can be expressed mathemati-
cally. Start with a maximal spacetime with incomplete
geodesics. In the scheme a singular point q is a C (or
C" ) quasiregular singularity (k &0) if all components
and appropriate derivatives of the Riemann tensor
R,b,d, , . . . , evaluated in an orthonormal (ON) frame

l 2 k

parallel propagated (PP) along an incomplete geodesic
ending at q are Co (or C ). In other words, the
Riemann-tensor components and derivatives tend to
finite limits (or are bounded) in every PPON frame. On
the other hand, a singular point q is a C" (or C" ) curva-
ture singularity if some components or derivatives are not
bounded in this way. If all scalars in g,b, the antisym-

metric tensor q,b,d and R,b,d. . . nevertheless tend toQ C, 8 ~
' 8k~

a finite limit (or are bounded), the singularity is nonsca-
lar, but if any scalar is unbounded, the point q is a scalar
curvature singularity.

In this paper we study dust-filled Bianchi type-V local-
ly rotationally symmetric (LRS) spacetirnes. Shepley [8]
has shown that these spacetimes have an unusual singu-
larity. King [9] has shown that the singularity is a non-
scalar curvature singularity; in fact, he called it an "inter-
mediate singularity, " using an earlier classification
scheme. In addition to this singularity, the spacetimes
possess a Cauchy horizon associated with the nonscalar
curvature singularity and, also, a scalar curvature singu-
larity.

%e have previously studied the stability of quasiregu-
lar singularities in Taub-Newman-Unti- Tamburino-
(Taub-NUT-) type cosmologies [I—3] and colliding
plane-wave spacetimes [4,5] using test scalar and elec-
tromagnetic waves. %e conjectured that if one intro-
duces a test field whose stress-energy tensor evaluated in

a PPON frame mimics the behavior of the Riemann-
tensor components which indicate a particular type of
singularity (quasiregular, nonscalar curvature, or scalar
curvature), then a complete nonlinear back-reaction cal-
culation would show that this type of singularity actually
occurs. For example, if a scalar quality such as T„T"
constructed from a test field's stress-energy tensor
diverges as a quasiregular singularity is approached, the
conjecture is that a scalar curvature singularity will actu-
ally develop if the field is allowed to influence the
geometry. Evidence for this conjecture was presented
from a few known exact solutions [2,4]. The evidence
also showed that most test-field wave modes do in fact
mimic scalar curvature singularities, but that very special
wave modes can mimic nonscalar or quasiregular singu-
larities. Therefore, if general fields are added to Taub-
NUT-type cosmologies or colliding plane-wave space-
times, one expects that their quasiregular singularities
wi11 be converted into scalar curvature singularities.
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In this paper we extend our conjecture to include the
nonscalar curvature singularity and Cauchy horizon in
dust-filled type-V LRS spacetimes by examining the be-
havior of a test massless minimally coupled scalar field.
In 1975, King [9] showed that such a field generally
diverges at the nonscalar curvature singularity, but that
it converges at the Cauchy horizon. He therefore con-
cluded that the nonscalar curvature singularity is likely
to be unstable, but that the Cauchy horizon is likely to be
stable. However, it has been shown that in the Reissner-
Nordstrom (RN) solution of a charged black hole, the
divergence or nondivergence of the field itself is an unreli-
able guide to the stability of a Cauchy horizon [10,11].
The Cauchy horizon in this spacetime is the inner hor-
izon of the black hole. Scalar fields arising from finite ini-
tial data converge at this horizon, but some of the field's
derivatives, and consequently the stress-energy of the
field, do not converge. The inner horizon of the RN
spacetime is therefore likely to be unstable, even though
the field itself does not diverge there.

Because of the unreliability of the field test alone, we
need to investigate the behavior of the stress-energy ten-
sor. Also, an extension of our previous test of singulari-
ties to this spacetime will not only indicate stability or in-

stability, but the type of singularity into which the nons-
calar curvature singularities or the Cauchy horizon will
be converted. Therefore we conjecture that if a stress-
energy scalar diverges at the nonscalar curvature singu-
larity and/or Cauchy horizon, then the nonscalar curva-
ture singularity and/or Cauchy horizon will be turned
into a scalar curvature singularity. However, if the sca-
lars are finite at the Cauchy horizon, we must test wheth-
er it is turned into a nonscalar curvature singularity by
calculating T[„„]in a PPON frame. If T~„„~ diverges, a
nonscalar curvature singularity results. There is no way
to convert the singularity and/or Cauchy horizon into a
quasiregular singularity, since such singularities are topo-
logical in nature.

p=po/X Z, (4a}

1 . XZ= —X+-
Ptl a

(4b)

X m + poam

3X
(4c)

u+ '
u + ' (x +y )=0, (sa)

~ ~ + i ~ 2+ i
(

~ 2+ ~ 2} 0 (5b)

x =ci/Q,

y =c2/Q

where u =du /ds, etc. In the special case c, =0=cd,

(5c)

(5d)

where p is the matter density, and po and m are con-
stants.

X(t)=2ma(XO+X&t+X&t2+ )

and

Z(t) =1+Z,t+Z, t'+

Eqs. (4) show that Xo is the solution of Xo(XO —1)
=pa/24m, so that XD&1; also, Z, = —2(XO —

—,')/a,
so that Z, & —

—,'a.
A Penrose diagram of the spacetime is given in Fig. 1.

The surface t =0 corresponds to a nonscalar curvature
singularity and its associated Cauchy horizon. The non-
scalar curvature singularity occurs as u~ao, z —+00,
with v bounded, and the Cauchy horizon occurs when
u ~ oo, with u and z bounded [9]. Matter flows from this
spatially homogeneous region across the Cauchy horizon
into a stationary inhomogeneous region.

The geodesic equations in (u, v, x,y ) coordinates are

II. DESCRIPTION OF SPACETIME

Following King [9], we consider dust-filled type-V LRS
spacetimes. Using a coordinate system intrinsically
defined by matter, the metric is

ds = (dt+a dz) —+a Z dz +X e '(dx +dy ),

[p+(p'+46 )' '],1

2h

v = [ p+(p2+4g)1/2]1

2A

(6a)

(6b)

where both X=X(t) and Z=Z(t} are positive functions
and a is a positive constant. Sometimes it is convenient
to switch into double-null coordinates u and v:

ds = —4du du+Q(dx +dy ), (2)

where A=Z —1 and Q=X e '. The null coordinates
are defined by

u =az+, , v = —az+
dt' dt

Z(t')+1 ' Z(t') —1

The field equations and their solution are given by
Farnsworth [12]. In the (t,x,y, z) metric of Eq. (1), the
content of the equations is completely suminarized by [9]

FIG. 1. Penrose diagram of an x=const, y=const two-
surface of the type-V LRS spacetime. The Cauchy horizon
(CH), nonscalar curvature singularity (NSCS), and scalar curva-
ture singularity (SCS) are shown.
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where /3 is a constant and where the upper sign corre-
sponds to geodesics that approach the nonscalar curva-
ture singularity and the lower sign corresponds to geo-
desics that approach the Cauchy horizon. On the latter
geodesics, observers experience no divergence of tidal
forces when they are in the neighborhood of the nonsca-
lar curvature singularity [9].

III. SCALAR %'AVES

Eq. (10) takes on the self-adjoint form

q/ „„+A(u, v)4=0,

where

g ( )
—

Q
—1/2(Q1/2)

In terms of X and Z,

(12}

(13)

The massless scalar-wave equation
EEe '
4X

Z +1
'2 Z

becomes

—4'., +
Q

Q.4,.+Q,.+Q, .O,.
2X XZ X
a aZ a

(14)

(P „„+P )=0, (8)

in (u, v, x,y) coordinates. Following King [9], we specify
6nite initial Cauchy data on a spacelike hypersurface
which coincides with a t=const surface for z, z ~z2,
but crosses the horizon U = ao, as shown in Fig. 2. The
development of this Cauchy surface contains both part of
the nonscalar curvature singularity and part of the Cau-
chy horizon.

Solutions of the wave equation take the form

where overdots represent derivatives with respect to time.
Equations (10), (13), and (14) differ somewhat from the
comparable results reported by King [9]. As t~0, that
is, as one approaches either the Cauchy horizon (v ~ ~ )

or the nonscalar curvature singularity (u ~ ~ ),

/I(u, v)~(B,e " '+B2)e (15)

where B& and Bz are constants independent of u and U.

In these asymptotic limits, the wave equation (12) be-
comes separable, with %(u, v)=U(u)V(v). Let k be the
separation constant and define a =2/a —~Z, ~. Then

P= g Pb, (u, v) sin(bx+xp) sin(cy+yp)
b, c

+ g 1t1t, (u, v) sinh(bx+xp) sinh(cy+yp), (9)
%k(u, v)= exp

kB,
e ex@

kB 2 I Z 1 I
u

Iz I

b, c

where xo and yo are constants; only the circular functions
need be considered if P is initially bounded. Substitution
of this form into the wave equation yields if a&0, and

—Iz)IU

kiZ, i

(16a)

—P „,+ (Q „P,+Q „P„)— =0, (10)

where p is either pb, or 1t1I„and E is either (b +c2) for

PI„or (b +c ) for P&, . W—ith the substitution

e'
Q

—1/2 q/ ql
X

kB2 —Iz, I.
'P (u, v)= exp kB u — ek 1

—Iz, Iu

kfZ, i

(16b)

if a=O. Mode solutions of Eq. (7) then become, asymp-
totically,

/kb, (u, v) = Ckb, e" 'qlk(u, v) sin(bx+xp }

X sin( cy +y p ) .

At the Cauchy horizon (v~ ~), pt, 1„converges. At the
nonscalar curvature singularity (u ~ ~ ), /kb, converges
if both e )0 and kB, & 0, or if both a =0 and
(1/a +kB1) ~ 0; otherwise, p&b, diverges. The field

therefore converges at the Cauchy horizon and diverges
in general at the nonscalar curvature singularity, in
agreement with the results of King [9].

FIG. 2. Initial Cauchy surface. AC, BC forms the boundary
of the Cauchy development of the surface AB. Nonzero initial
data are restricted to a finite range of z, with z& z ~ z2.

IV. STRESS-ENERGY CALCULATIG&S

For a minimally coupled scalar field

T„=PI $ ~ ,'g„„S— (18)
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where

S=g P ((' p .

It is straightforward to show that the scalars
T—= T p= —Sand T„T"=S,where

g —g e
—2u/a (21b)

Thus the divergence or finiteness of the scalars depends
solely on the behavior of S.

Asymptotically, the quantities b, and Q become

6=60e (21a)

—
(t',„4,.——(0,.+(t},, }

4 1
(20) where hp and Qp are constants. The quantity Sk&, de-

rived from the mode Pk&, then becomes

Sk&, =Ckz, [(Dkf~(u) sin (bx+xp) sin (cy+yp)

+Dkg (u)[b cos (bx+xp) sin (cy+yp)+c sin (bx+xp) cos (cy+yp)]J exp e2 2 2 2 2 2 2 —Iz, IU

(22)

Here

2 'o Zdt'
p 2IZ~I f (23a)

and

1 2 'o dt'Di exp
X~(0} a p Z+ 1

(23b)

are constants, with t0 arbitrary and c «1. Also,

f (u)= '

1 Iz, IQ 2„/& 2Q 1 &p 2 —Iz, IQ—e ' +kB e " '+kBz exp + e "— e

1 2u/a 2k82 —Iz, l~

a ' ' a ' lzl+kg e 2u la+ kg exp +2k+ 9 e

(aAO),

(a=O),
(24)

and

4u
exp +

a

2kB, au 2kB2 —Iz) Iu
( o),

1

g (u)= '

4Q 2k82 —Iz Iu
exp +2kB, u — e ' (a=O) .

(2&)

At the nonscalar curvature singularity (u ~ Dp), if a=0
the quantity S&&, remains bounded if (4/a+2kB, ) ~0,
but diverges if (4/a+2kB&)) 0, unless 1/a+kB, =0
and b =c =0. If a & 0, Sk&, remains bounded if kB, &0,
but diverges if k8, &0. If a&0, Sk&, always diverges.
Thus the scalars generally diverge, and according to our
conjecture, the nonscalar curvature singularity is
transformed in general into a scalar curvature singularity.
Only special wave modes leave the singularity un-
changed.

At the Cauchy horizon (v ~~), all Sk&, remain bound-
ed, and so, by our conjecture, the horizon is not convert-
ed into a scalar curvature singularity. We still need to
test, however, whether the horizon turns into a nonscalar
curvature singularity. In order to do this, we need to cal-
culate the stress energy in a PPON frame. It is straight-
forward to calculate the stress-energy tensor T & in a
coordinate frame using Eq. (18}. All components are

I

finite at the Cauchy horizon. Using the PPON frame
given in the Appendix for x,y constant motion, we can
compute T~„„~=E~„~E~,~T & along geodesics through the
Cauchy horizon: All components remain finite. There-
fore the addition of a minimally coupled scalar field does
not turn the Cauchy horizon into a curvature singularity
of any type. Since quasiregular singularities are topologi-
cal, no field perturbation can turn a horizon into a
quasiregular singularity. Hence the Cauchy horizon
remains a nonsingular Cauchy horizon.

V. CONCLUSIONS

The results of test perturbations are easy to summarize.
In general, wave modes are expected to change the non-
scalar curvature singularity of the dust-filled type-V LRS
spacetime into a scalar curvature singularity, but a small
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class of wave modes leaves the nonscalar curvature singu-

larity as it was. The Cauchy horizon is left unchanged
under arbitrary test perturbations.

When we considered Taub-NUT-type cosmologies
[1,2], examination of the behavior of wave modes alone
predicted different results than the behavior of T[,I,) in a
PPON frame and the behavior of stress-energy scalars.
In the type-V LRS spacetime, however, examination of
T(,&) and stress-energy scalars led to agreement with the
conclusions of King [9], who looked at the behavior of
the wave amplitudes alone.

To investigate and test our conjecture further, we need
to examine other spacetimes with nonscalar curvature
singularities and any associated Cauchy horizon. We
also need to compare with related exact solutions in
which fields have been added. Such work is underway.
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APPENDIX: PARALLEL-PROPAGATED
ORTHONORMAL-FRAME VECTORS

From the geodesic equation (7), it is straightforward to
derive x,y-constant frame vectors which satisfy the
parallel-propagation condition E~~~).Q(",)

=0 and the
orthogonality condition E[,)„EI['I,) =5~,&). The frame vec-
tors are

E(o) =

p+ v'w

2h
—p+Vw

25 E(i) =

p+ v'w

2A

p+ &w
2h

0 0
0 0
0 p 0

1/+Q ' ' ) 0
0 1 yu'Q

where w=P +46„b,=Z 1, and Q—=X e '. The
upper signs refer to frame vectors carried by geodesics
which approach the nonscalar curvature singularity, and
the lower signs refer to frame vectors carried by geodesics
which approach the Cauchy horizon.
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