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The evolution of the cosmological density parameter is examined with particular reference to
the inflationary phase of the early Universe. The standard treatments of the Friedmann-Lemaitre
equations as a dynamical system are considerably extended, and are generalized to allow the presence
of an arbitrary mixture of perfect fluids with different equations of state. Phase-plane diagrams are
constructed which show the evolution of the density parameter with the expansion of the Universe
in both inflationary and noninflationary cases. More detai1ed models are constructed from sequences
of simple models, and the relation between the results presented here and those previously obtained
is shown explicitly, using analytical and graphical methods. The treatment is then extended to deal
with the inflationary case directly, namely, when the energy density is dominated by a scalar inflaton
6eld. It is shown in this case that a number of special regions of parameter space can be projected
onto plane systems so as to permit a useful phase-plane representation, and some of these cases are
displayed graphically.
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A previous paper by two of the present authors [1]was
devoted to the problem of understanding how the cos-
mological density parameter, defined by A =—8irGp j3H~,
where p is the total cosmic energy density and H is the
Hubble parameter, evolves with the expansion of the Uni-
verse. In that study, phase-plane diagrams illustrating
the relationship between A and S, the cosmic scale fac-
tor, were constructed under the approximation that the
Universe could be well described as being dominated by
a single matter component during each epoch of its evo-
lution.

This assumption makes the drawing of the phase plane
easier, albeit at the price of introducing points in the
(S, A) plane where there are discontinuities in dA/dS.
Since the matching conditions on all the other physically
relevant quantities can be satisfied (for details see Ref.
[1]) the qualitative picture produced in the phase planes
suffers no serious damage from this procedure. What

does cause a problem, however, is the fact that in the
process of dividing the evolution of the Universe into ar-
bitrary epochs labeled by the initial and final values of
S, an implicit assumption was introduced that the mech-
anism of inflation produces exactly the same number of
e-foldings of expansion in universes having different val-
ues of A at the start of inflation.

This paper will accordingly devote itself to two aims:
the first is to show how to deal with the study of the
phase diagrams for the evolution of A without making
any such restrictive assumption as that described above,
while the second is to use the methods and approxima-
tions commonly used in the study of inflationary models
in order explicitly to discover the dynamical effects of the
inflaton field on the behavior of A.

It is appropriate to mention the earlier work on this
topic here: the problem was first examined thoroughly
for a dust-6lled universe with a cosmological constant in
the paper by Stabell and Refsdal [2). A different ap-
proach to the same problem was adopted by Harrison
[4], who utilized the classification due to Robertson [3].
McVittie [5] also briefly discussed universes filled with
matter described by a polytropic equation of state (see
[6]). Most of the content of these papers is contained
in the review by Felten and Isaacman [7]. Szydlowski,
Heller, and Golda [8] have examined the homogeneous
isotropic cosmological models from the point of view of
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II. PURE FLUIDS

A. The phase-plane equations

The analysis presented in this paper will mainly be re-
stricted to the FLRW (Friedmann-Lemaitre-Robertson-
Walker) universes with scale factor S(t) and spatial cur-
vature K = k/S~, where the constant k can be normal-
ized to +1, 0, or —1 (see, for example, Ref. [6]). Then in

terms of the Hubble parameter H = S/S, the nontrivial
relations are the Einstein equations

30 = 8vrGp —3K,

3H+3H'+ —,'8~G(p+3p) =0,

and the energy-conservation equation

p'+ 3H(p+ p) = 0,

(2)

where p is the energy density and p is the total pressure.

their structural stability, and have also treated the case in

which the dynamical system is nonconservative. It should
be noted here that the study by Ehlers and Rindler [9]
provides an entirely different formulation of the problem
of following the phase flow of the Friedmann-Lemaitre
universes. That work should be seen as complementary
to the present paper. Finally, Lidsey [10] has treated the
A problem within the context of a specific scalar field

model.
The next two sections, on pure fluids and combina-

tions of fluids, respectively, review the work contained
in the earlier paper [1]. We make a number of impor-
tant improvements to the treatment given there, and cor-
rect some minor errors. For the sake of comparison with
the most significant results of the earlier work just men-

tioned, we generalize and extend the results of [2] and
provide analogous phase portraits to those in that pa-
per for some cases in which the fluid pressure does not
vanish.

The equations for the phase portraits of those models
in which the inflation is driven by the energy density of a
scalar field potential are derived in Sec. IV, without the
necessity for any restrictive assumptions about whether
the field is rolling slowly or rapidly down the potential.
These equations form, in the most general of the cases
under consideration, a nonautonomous system of dimen-

sion higher than 2, so that the phase plane approach of [1]
is here restricted in its usefulness. This forces us to con-
sider alternative methods of approaching the problem,
and the latter parts of that section are therefore devoted
mainly to developing useful ways of looking at the evolu-

tion of the density parameter in these situations. Finally
we draw some conclusions and discuss the implications
of our results for relativistic cosmological theories.

Some of the possible types of behaviors of the dynamics
of these models are illustrated in Sec. IV, with particular
emphasis laid on following approximately the evolution
of the scalar field and the other dynamical parameters
during the epoch immediately preceding the inflation.

A = 8vrGp/3H

leads, with Eq. (1), to the relation

K = (A —1)Hz = (Ap —l)H(~)/y,

where y = S(t)/Sp, and Hp, Ap, Sp are the values at the
present time t = tp of H, A, and S. This relation shows
that K & 0(= 0, & 0) if A & 1(= 1, & 1). Alternatively,
one can solve for A as

A = [1 —3K/8irGp]

w A = [1+3Hp(1 —Ap)/8+GPyz] (8)

Although it provides an exact expression for A as a func-
tion of time, (8) does so only implicitly via the depen-
dence on time of p and S, so in order for it to be useful,
the complete solution of the field equations must be avail-
able. Of course, most of the questions which are asked
within the context of standard cosmology are nontrivial
precisely because ignorance of the exact solutions to the
resulting equations is the normal state in which the cos-
mologist is found. It is the main purpose of this section,
therefore, to replace the (largely useless) expression (8)
by a difFerent relation which will prove to be more useful
in showing how the universe evolves. Such an equation
can be derived as follows.

Defining the deceleration parameter q by

one finds from Eq. (2) that

q = —(1 —3p/2)A, (10)

showing that p =
3 is a critical value separating decel-

eroijrig (q & O, p & s2) from accelerating (q & O, p & s)
periods in the universe.

Following [11] we will say that the universe is infia
tionary when q ( 0, for this is the essential feature which

can enable the horizon to grow to sizes larger than the
observable region of our universe. This definition of what
is actually meant by inHation is not the only one possible,

An overdot appearing anywhere denotes a derivative with
respect to the cosmic time t. These quantities are taken
to be related by an equation of state of the form

(4)

Note that the relation (4) can be taken as the definition of
the index p. The physics of the model is then expressed in

the specification of p, indeed the equations are indetermi-
nate until this is done. In general, p can vary with time;
it will be expressed here in terms of S(t), as p = p(S),
because S(t) determines the physical conditions prevail-

ing at each time t W.e shall make extensive use of the
definition (4) throughout this paper. This specification
then enables us to determine the (S, A) phase planes of
Secs. II and III.

Defining the total density parameter A by
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but is the definition most commonly used in the study of
inflationary models. It also has the further virtues of sim-
plicity, generality, and locality, the question of whether
a universe model is inflationary at a given time can be
answered on the basis of quantities known only at that
time. This situation should thus be contrasted with def-
initions of inflation which require knowledge of the past
history of the cosmological model.

The time derivative of Eq. (5), together with Eqs. (1)
and (2) shows that

Apart from the special cases p = sz, A = 0, and A = 1,
this vanishes when

1 10= —+
2 6(p —2/3)

(15)

One can obtain the explicit solution to (12) either directly
or by integrating (2) to give

I = cpu "
u —= S(~)/Sp

and substituting in (8) to find
dA/d~ = (2 —3q) H(1 —A)A .

A = (1+ [(1 —Ap)/Ap]ys'i z) '. (17)
This shows that dA/dh = 0 when (i) H = 0 [i.e. , at a
turning point: S(t,) = 0, and at all times in a static
universe: S(t) =const], (ii) A = 0 (an empty universe:

p = 0), (iii) p = zs (the critical case with q = 0), and (iv)
A = 1 (the case of spatial flatness: K = 0).

Finally, the desired phase-plane equation for A is ob-
tained by dividing S through Eq. (11):

The behavior is quite different, depending on whether

P )
N

or P & s. In the critical case (P = sz), as men-
tioned above, A = Ap =const is a solution for all values
of Ap, so the phase curves in the (S, A) plane are simply
the horizontal lines. This conclusion is completely in ac-
cordance with the form of the difFerential equation (12)
and the discussion following it.

dA/dS = [2 —3p(S)](1 —A)A/S. (12)

This leads to the required phase-plane diagrams once
p(S) is specified. Nonstatic solutions can be followed

through turnaround points where S = 0 because there
H -+ 0, A ~ oo like 1/Hz, and A —+ oo as well.

It follows immediately that both A = 0 and A = 1 are
solutions of Eq. (12), no matter what form p(S) takes; on
the other hand, if p(S) = sz for all S, then A = Ap ——const
is a solution for all values of Ap. Furthermore, combin-
ing (10) and (12) shows that dA/dS = —2q(1 —A)/S, so
that the signs of dA/dS and q are the same when A & 1
and dA/dS = 0 when q = 0.

Note that in Eq. (12), the scale factor S takes the role
of a kind of conformal time variable. This can be seen
even more clearly by writing Eq (12) .in terms of the
logarithmic scale factor s = ln S:

dA/ds = [2 —3p(s)](l —A)A.

It is worth noticing at this point that our analysis
will be based on Eq. (12) which yields the (A, S) phase
planes. Actually, the full set of dynamical equations
would include the K equation and either of the H or

j equations. The fact is, however, that these two latter
equations are both implicitly included in the A equation
and no essential information comes from the other equa-
tion, since A does not involve K or p explicitly.

C. The standard case: p &—

In this case dA/dS & 0 for A ) 1 but dA/dS & 0
for A & 1. Points where dzA/dSz changes sign occur
for the values of A determined by (14); if s ( p & 1
they exist with A & 1, but if p ) 1 they exist with
0 ( A & 1. The shapes of the curves in the latter
case are shown in Fig. 1; the basic features are the
same when sz ( P & l. All the curves diverge from
the fixed boundary point (S = O, A = 1), which is a
state resembling an Einstein —de Sitter universe. Those
for A ) 1 increase monotonically, diverging to infinity
at a finite value of S [found by setting the denominator
to zero in Eq. (17)]; those for A & 1 decrease mono-
tonically toward zero. The line A = 1 is the separatrix
between these two types of behavior. It is useful to bring
the infinities of both S and A to finite values by suit-
able transformations s = f(S), ~ = g(A), for example,
s = arctan(logS), u = arctan(logA). Then the value
A = oo becomes a boundary between the expanding and
collapsing regions of the universe model, and the total
phase-plane diagram is as in Fig. 2, the bottom half cor-

B. Epochs of constant adiabatic ratio

Now consider a situation where p(S) is constant for a
series of epochs each defined by initial and final values of
S:Si & S & Sz. This corresponds to the universe being
dominated by a simple one-component adiabatic matter
field during that time. Then Eq. (12) holds for each such
range of S, with p constant; diiferentiating shows that

z
———(2 —3p) [1 —(2 —3p) (1 —2A)]

(1 —A) A

(14)

t

0

FIG. 1. Phase portraits for p ) 3. Curves showing the
evolution of 0 with S. The line 0 = 1 is an unstable asymp-
tote, the line 0 = 0 is a stable asymptote for all curves lying
below 0 = 1, and the curves above 0 = 1 all become vertical
for Bnite S.
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FIG. 2. Phase portraits for p & 3. The completion of
Fig. 1 to include the points at infinity and the curves corre-

sponding to contracting universes. The points at the top and
bottom right are Milne universes, the dotted line corresponds
to a set of states of instantaneous time symmetry, and the
lines A = 1 are a set of Einstein —de Sitter universes.

FIG. 4. Phase portraits for p & 3. The completion of
Fig. 3 to include the points at infinity and curves correspond-
ing to contracting universes. The points at the top and bot-
tom left are Milne universes, the dotted line corresponds to
a set of states of instantaneous time symmetry, and the lines
0 = 1 are a set of Einstein-de Sitter universes.

responding to expanding universes and the top to col-
lapsing universes with the models for A & 1 making the
transition from expansion to collapse. The time symrne-

try of the Friedmann equation (1) leads to a symmetry
between the top and bottom halves of the diagram. The
asymptotic states at the top and bottom right-hand cor-
ners are the collapsing and expanding Milne universes,
respectively, while the singular source and sink points on
the left-hand side are initial and final Einstein —de Sitter
universe singularities. Particular cases of importance are
pressureless matter (p = 1) and pure radiation (p = s).

D. The inflationary case: 0 & p & ~

In this case dA/dS ( 0 for A & 1 but dA/dS ) 0 for
A & 1. If 0 ( p & s, points where d2A/dS~ changes

sign occur for 0 & A & 4, but there are no such points if

s & p & s. The shapes of the curves in the former case
are shown in Fig. 3; the basic features are the same in
both cases (and also if p & 0). All the curves converge
toward the separatrix at A = 1, those for A ( 1 diverg-

ing from the fixed boundary point (S = 0, A = 0j and
monotonically increasing toward 1, while those for A ) 1

monotonically decrease toward 1. The curve A = 1 is
a separatrix between these behaviors. It is again useful
to bring the infinities of both S and A to finite values

by suitable transformations s = f(S),u = g(A), as in
the previous section. The total phase-plane diagram is
as in Fig. 3, the bottom half corresponding to expand-
ing universes and the top to collapsing universes, with
the models for A ) 1 this time making the transition
from collapse to expansion. The asymptotic states at
the right-hand edges are the collapsing and expanding
de Sitter universes, respectively, while the singular source
and sink points on the left-hand corners are "big-bang"
models with q ) 0 at the origin; the horizontal lines at
A = 1 correspond to models that start or end asymp-
totically at a state describing the Einstein —de Sitter uni-
verse. A particular case of importance is that of expo-
nential expansion: p = 0. In this case there is no longer
an initial singularity, because an infinite proper time is
required to reach the edge S = 0. Thus these steady-
state universes expand forever without S ever being zero.
Apart from the symmetry between the top and bottom
halves of each of Figs. 2 and 4, another symmetry is ap-
parent: the two figures look much like time reverses of
each other. In fact, this is made explicit by the realiza-
tion that Eq. (17) is invariant under the transformation

y ~ 1/y, 2 —3p -+ 3p —2. Thus, in particular, the
cases of radiation and a cosmological constant are exact
inverses of each other in terms of the time measured by
the universe's expansion.

E. A 4-epoch inflationary universe

0.99
0

FIG. 3. Phase portraits for p (. 3. Curves showing the
evolution of 0 with S. The line 0 = 1 is a stable asymptote,
the line 0 = 0 is an unstable asymptote for all curves below
0 = 1, and the curves above 0 = 1 approach 0 = 1 asymp-
totically. The further the value of p is from 3, the sooner a
given curve approaches 0 = 1.

It is not realistic to assume that p is constant through-
out the history of the universe, but one can obtain a rea-
sonably realistic model if one assumes that the universe
evolves through epochs during each of which p is con-
stant. Consider a universe vrhich is radiation dominated

(p = s ) for an initial epoch I, from the origin of the uni-
verse at S = 0 until the start of inflation at S = S,, then
undergoes exponential expansion (with p = 0) during the
inflationary epoch II, from S, to Sy, undergoes radiation-



EVOLUTION OF THE DENSITY PARAMETER IN. . . 1403

TABLE I. Equations of state for the 4-epoch in8ation-
ary model. The corresponding evolution curves are shown in

Fig. 6.

q~0 q 0 q 0

Epoch Scale factor

0& S(S,
S, (S(S~
S~ & S&S,

S, &S

Kco,

C
0

dominated expansion after inflation for a third epoch III,
from Sy to S„and finally enters a matter-dominated
epoch IV, from S, to the present (when S = So) and
beyond. Thus one solves Eq. (12) for A(S) to obtain the
4-epoch solution in the form of Eq. (17) with the efFective
equation of state for each epoch as given in Table I. In
effect, the universe moves on curves as those in Fig. 1 for
epoch I, as those in Fig. 3 in epoch II, and then as those
in Fig 1a.gain in epochs III and IV. At each interface
between epochs, the junction conditions of general rela-
tivity require that the scale factor S and its first deriva-
tive S be continuous [13]. From Eqs. (1) and (5), this
means that A must be continuous there also, so that the
joining requirement is simply that the curves represent-
ing the evolution of the universe in the (S, A) plane are
continuous. However, the tangent vectors to the curves
will not be continuous, since the equation of state of the
matter is discontinuous there. The resulting phase plane
is shown in Fig. 5. Its general form is not dependent on
the details of the inflation chosen; as long as q ( 0 in
that epoch, the same general form will result. The ba-
sic feature is that A diverges away from 1 in the initial
expansion of the universe: the inflationary epoch brings
it back to very near unity, i but after inflation it again
diverges away from 1, either to +oo (and recollapse) if
A ) 1, or to zero if A ( 1. Qualitatively new behavior
occurs: oscillating universe models are possible, because
of the changes of the equation of state, that are never sin-
gular. To see what is happening, one should again bring
the points at infinity on the (S, A) plane to finite values
by transformations s = f(S),~ = g(A) as before. The
total phase-plane diagram can then be drawn as is shown
in Fig. 6. As usual, the bottom half corresponds to ex-
panding and the top half to collapsing universes. There
are two new critical points at A = oo, with the corre-
sponding separatrices as shown. Motion of the evolution
curves at the new critical points is undefined because of
the change in the equation of state that occurs there. ~

Notice that here, in contrast with many treatments, the
effective energy density of the cosmological constant is in-
cluded in A. This is done by representing A as a fIuid with
p = —p; p = A (;:-p = 0). The contribution of A to 0 is
then given by Eq. (5).

Note that the left-hand critical point can be reached in a
finite time from the origin of the universe.

FIG. 5. Phase portraits for the 4-epoch infIationary mod-
els of Sec. IIA. The evolution of 0 with S. Here q is the
deceleration parameter. From left to right, the dotted verti-
cal lines divide the regions of the initial radiation epoch, the
in6ationary epoch, the postreheating radiation epoch, and the
postdecoupling matter-dominated epoch, respectively.

III. COMBINATIONS OF FLUIDS

We now consider the situation where the universe
evolves through epochs when the energy-momentum con-
tent is the sum of simple fluids (each one characterized by
constant p). Equations (1)—(4) are therefore still valid,
but now p and p are each the total energy resulting from

q&0
0-

qco $&o

A
C
T
I

N

G

E
X
P
A

~N
0
i

N

G

FIG. 6. Phase portraits for the 4-epoch infIationary mod-
els of Sec. II A. The completion of Fig. 5 to include the points
at infinity and curves corresponding to contracting universes.

Models with k = +1 expand from an initial singularity,
reach a maximum, and then recollapse to a final singular-
ity circle around the separatrix, starting at the left-hand
edge where A = 1 and eventually ending on the left-hand
edge again. Some models with k = +1 recollapse be-
fore inflation ever takes place: these are the ones lying
to the left of the separatrices. Models with k = —1 have
oscillating values of A, which starts at 1 and ends at 0.
The oscillating nonsingular universes (with k = +1) will
occur only if the inflationary mechanism is time symmet-
ric, so that if an expanding universe inflates from S, to
Sy then a collapsing universe will "deflate" in the cor-
responding way for the same values of S. This may not
be true for specific inflationary mechanisms [14]; then a
single equation of state p = p(S) cannot describe both
the expansion and the collapse, so that none of the phase
curves in Fig. 6 corresponds to such a case.
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summing the contributions of the X components: 0, = 87rGp;/3H (24)

p=) pi) (18)
then summing these contributions using Eqs. (5) and (18)
shows that

n=) n, , (25)
N

» =).», ,

where the ith energy density p, and pressure p, are re-

lated by the usual equation of state

p' = (~ —1)»', (20)

where the p, are, in the most general situation, not con-
stants. Also, the contracted Bianchi identities yield the
conservation equations

N

) (». +3H(». +p.)) =0

Now, comparing with the case of a single perfect fiuid,
we realize that the necessary assumption of one equa-
tion of state is no longer enough to render the system of
field equations solvable for all the variables. In fact, if we
want to trace the evolution of all the matter components,
a number of assumptions is required. Actually, we would
need X assumptions: one for each matter mode, moti-
vated by the physics of the problem under consideration.

In this section we will deal with the simplest of these
possible assumptions, namely, that the various fiuid com-
ponents are both noninteracting and adiabatic.

as is required for consistency.
The time dependence of the total density parameter fl

is still given by (11), where now p is given by (23). A

is expressed directly in terms of S using Eqs. (16), (17),
and (25):

A = 1+ (1 —Ao) ~ ) A~oy

while from (16) and (23), p(S) is given by

p=(p, )=
I ) p;A, py

~'
I ) A,py

' = HO, [(2 —3p, ) —(2 —3p)Q], (28)

(27)

Despite the clarity of these last two equations, it is
more transparent, from the point of view of trying to
determine the evolutionary qualities of the universe, to
derive evolution equations for the p, and the 0,. The
derivation simply repeats the steps used in obtaining
(ll). One finds that the generalized form of that equa-
tion is now

A. Many-component noninteracting fluids while the relation corresponding to (10) is found to be

Assuming the components are noninteracting, each one
separately obeys the conservation equation (3):

p, + 3H(p, + p, ) = 0. (22)

(23)

This should be at least a good approximation to the situ-
ation where there are a number of types of radiation and
pressureless matter together with a cosmological constant
for example, since these components will not exchange
energy density at any noticeable rate. Summing (20)
over all components and using the definition (1), the ef-
fective total index p relating the total energy to the total
pressure is given by

(29)

Equation (28) can also be written in other forms which
illustrate different characteristics. One can factor out
(2 —3p), for example, to obtain

' =(2 —3&)H~, I

'
I

—~ (30)
dt ( 2 —3p)

or one can rearrange the terms inside the square brackets
in (28) and substitute from (23) to obtain

dn,'=Hn, 2~1 —) n, —3 ~, —) ~n,
)

The nonadiabatic character of the present configuration
must be stressed here, given the time dependence of this
p index.

Remember that we normally require the sound speed
in a fluid to be less than the speed of light, which con-
strains the p, to be less than 2. It is easy to see from the
form of (23) that if these constraints are satisfied by the
individual p, , then we also have p ( 2 in accordance with
the causality requirement. Also, if the density parameter
of the ith matter component is defined as

Similarly, it is easy to obtain an equation for the evo-
lution of the mean adiabatic index p by differentiating
(23). The result is

(32)

Finally, the previous two equations can be combined
to construct an equation whose phase portraits show the
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evolutionary relation between the total density parame-
ter and the total adiabatic index:

dA (2 —3p)(1 —A)A~

dP 3 pgA P &zA
Cl

A
O
Z:

CJ

Note that this equation is singular when there is only
one matter component. This is not a problem with the
formulation given here, but simply a reHection of the fact
that there is no evolution of A with p in this particular
case.

We now proceed to apply some of the results of this
section by presenting some models described in terms of
multicomponent fluids.

B. Matter with three components

0
0

FIG. 7. Phase portraits for the 2-epoch inflationary mod-
els of Sec. III. Curves showing the evolution of 0 with S. The
left half of the diagram represents the radiation and inQaton
Quid together, while the right half represents the mixture of
radiation and dust Quids.

For our purposes, it is sufFicient to restrict attention to
the case of a 3-component fluid defined as follows: pres-
sureless matter pi ——0, pi = 1; radiation p2 = pq/3, pq ——

s, cosmological constant ps = —ps, 7s = 0. Using (16),
Eq. (23) becomes

Mi/Ss + 4M2/384
~( ) =M, /8 +M, /S. +M (34)

where the M~ are constants representing the relative mag-
nitudes of the three contributions to p. Equation (34) can
also be written with the M~ replaced by the A, . Equa-
tions (12) and (34) together determine the (S, A) phase-
plane evolution of the universe with matter as described
above. Explicitly, from (26),

0=
1 + (1 —Ao)/(A iy ' + A2y + Asy )

' (35)

where the A, are the values of the relevant parameters at
the present time, and so are constants.

C. A 2-epoch inflationary universe

In contrast with the previous section, use of multi-
component fluids allows one to represent an inflationary
universe by a model with only two epochs, the first one
including an inflationary period (when q ( 0).

In the initial phase from S = 0 until S = Sy, we include
radiation and a cosmological constant, but no matter.
The phase plane is then described by Eq. (12) where now,
from Eq. (34)

4/3
1+nS4 ' (36)

where n is a constant; p decreases monotonically from

3 at the beginning of the expansion to zero; it passes
through the critical value s when 8„;q ——n i~4, the in-
Hationary era (q ( 0) occurring when 8 is larger than
this value, that is, when 8„;q (S (S;. The phase plane
shown in Fig. 7 is like the combination of epochs I and II
in the previous section (see Fig. 6), except that the phase
curves are now smooth everywhere in these eras. The ex-
plicit form for A(8) is given byEq. (35) with Ai = 0. The

diagram will be symmetric if the matter density is zero.
In the subsequent phase from 8 = Sy onward, matter

and radiation are included, and the cosmological constant
omitted. The phase plane is again given by (12), this time
with

4/3+ PS
1+PS

(37)

where P is a constant; p decreases monotonically from s
to 1 as the universe expands. The phase plane is now
like the combination of epochs III and IV in the previous
section (again, see Fig. 6). The explicit form for A(S) is
given now by (35) with As = 0.

The total phase plane is obtained by joining these two
phases together at 8 = Sy, as in the previous section,
the phase curves must be continuous at this join. The
resulting diagram is again like that of Fig. 6, which rep-
resents the evolution of the entire universe from S = 0
to the present day and beyond. There is one significant
difference in Fig. 6 now: the phase curves will be smooth
at the junctions between epochs I and II, and between
epochs III and IV, the only discontinuity in the tangent
vectors being at the junction of epochs II and III, when
8 = Sy. The left-hand critical point at A = co will
now be an ordinary saddle point, which represents the
Einstein static universe. Thus the somewhat disturbing
state of undecided motion which appeared in the model of
the previous section no longer occurs. The stable critical
point at A = oo does not represent any universe model,
for it lies on a surface of discontinuity of the equation of
state. However, as in the previous case, one Gnds a family
of oscillating universe models around this critical point.
All the usual inflationary universe models, though, start
at the initial singularity at the left-hand side of Fig. 6
where 0 = 1, and then expand forever if A: = —1 or 0,
or, if k = +1, recollapse either before the inflationary
era begins or after it ends. Finally, an unstable family
with A; = +1 tends asymptotically to the Einstein static
universe in the infinite future.
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D. The (q,o) phase plane

A complementary approach to the study of the evo-

lution of 0 when two noninteracting matter components
are present was developed by Stabell and Refsdal [2] who

produced phase-plane diagrams in the (q, o) plane, where
o = 0/2. They only considered the case p = 0 but in-

cluded an explicit cosmological constant that was not
included in the total o. Here we generalize their treat-
ment to accommodate different equations of state, so as
to allow comparison of their results with ours.

In the context of the inflationary universe, we wish to
examine phase planes during a radiation plus A phase.
With this in mind we will rewrite the equations of Ref.
[2] in terms of the general perfect fluid equation of state.
The reasoning used in deriving these forms is exactly
analogous to that used in Ref. [2], but the results ob-
tained are more general in that they apply to a fluid

with an arbitrary equation of state. In plotting the final

phase planes of this section it will be more transparent
to use 0 as the density parameter instead of o, but this
change is only made at the end of the section. Some of
the material contained in this section repeats earlier ma-

terial, but this is in the interest of clarity and in order to
aid direct comparison with the relations given in Ref, [2].
It also facilitates direct comparison with the derivations
given in Ref. [2].

The Einstein equations with an explicit A term and
ideal gas equation of state can be written

A = 3H'[(3p —2)o —
q]

= 3Hp~[(3p —2)op —qp].

Multiplying (38) by 1/3H2 and substituting (45) for A,

k = H S [3po —q —1] = Hp Sp [3po p
—

qp
—1].

For a perfect fluid we have

pS ~ = ppSp~ ——const,

so that inserting Eqs. (43), (46), and (47) into (38),

( Ssg-2 S2
S = Sp 2op + [(3p —2)crp —

qp] —2

(46)

(47)

—(3pop —qp
—1) (48)

For convenience in the discussion that follows we define

F(S) =—S . (49)

The case p &—

For p ( 3 the universe contains two inflationary compo-
nents (unless ap = qp) and the behavior is quite different
from p & s. The different cases are now considered sep-

arately, extending the descriptions given by Stabell and
Refsdal in Ref. [2].

8vrGp = —~(k+ S ) —A,

8&G S S2 k

3 (p —1)p = —2—— ——+A,S S S2

and, from (38)

3(, kl
2 k S')—

~

H'+ —
~

= -(8~Gp+A).

Substituting Eq. (40) in Eq. (39) results in

(39)

(4o)

S 3 ( 2 k 3—3—= —
~

H'+ —+- [8~G(q-1)p-A].
S 2q S' 2

(41)

Now multiplying Eq. (41) by 1/H2 and introducing q we

get

a. A & 0 [(3p —2)« —
qp & 0]. F is positive when S is

less than some S = S, and negative when S & S,. Since
S2 must always be positive, S must always be less than
S,. These are thus oscillating universes (type 0).

b. A & 0 and k & 0 {(3p—2)op —
qp & 0 and 3pop-

qp
—1 & 0j. By inspection, F is always positive. S

can never change sign and, since Sp & 0, S is always

greater than zero. These universes, denoted by Mi, are
ever expanding and tend to the de Sitter universe.

c. A & 0 and k & 0 {(3p —2)crp —
qp & 0 and

3op —
qp

—1 & 0). In this case we have to look more closely

at Eq. (48) to understand the behavior. Differentiating

F with respect to S,

( Ssg —2

= Sp
~

—2(3p —2)«

3q = (3p —2)— (42)

S
+2 [(3p —2)op —qp]—

So2
(50)

and by introducing the new density parameter

o—: = 0/2,
4vrt p
3H2

(43)

A
q = a(3p —2)— (44)

Vfe want to be able to express A and k in terms of o.o,

qp, and y. From (44),

I' has a minimum value, I', at &&
——0, S = S~:

2

F =2op
i

& (3'Y —2)« —qp )
2

(3&-2)«+[(3V —2) —qpl I

g (3p —2)« —
qp p

—[3pop —qp
—1],
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= So I

( (3p —2)op

&(3~ -2)~o - qo)
(52)

1. qp. & —1. F is positive for all S greater than

(a) If F~ ) 0 then S is always positive and the universes
are monotonically expanding (type Mq). Apart
from the Einstein —de Sitter case (qp = op = 2),
the final state is the de Sitter universe.

(b) F = 0. This may occur in two regions.

1. qp & —1. These are universes of type As. They
may be regarded as having asymptotically started
from the static Einstein universe (—q = o = oo)
at t = —oo. They expand toward a final de Sitter
state.

2. o.p ) z (obtained by solving k = A = 0). These
universes (type A2) start at q = o' =

z and expand
toward the static Einstein case (q = cr = oo).

S„=S, "+'.
qp

(55)

These are M2 models and behave as previously de-
scribed.

3. qp ) 0. F is positive for all S less than

S„=S, "+'.
qp

(56)

These are therefore oscillating models of type 0.

2. —1 & qp & 0. F can never be negative. The models
(type Mq) monotonically expand into a de Sitter
state.

(c) If F~ ( 0 then F is negative for an interval around
S . There are again two different cases: 8. The case p &—

1. qp ) 0, S~ ) Sp. The universe expands to some
maximum S which is less than S and then con-
traction begins. This is a universe of type 0(5).

2. qp & 0 . The universe contracted from an infinite
time in the past until S = S;„(S;„)S ), when
expansion began. These universes, which are type
M2, expand into the de Sitter universe.

Figure 10 shows the representation of the different
models in the (qp, crp) plane for the case p = 1. The
Ar and As curves are obtained by solving the equationF;„=0. The Aq curve separates universes of type 0
from universes of type Mp. The A2 curve separates uni-
verses of types Mq and Mq.

8. The case p =
~

In this case (48) becomes

The behavior is significantly different from p )
There are four cases to consider.

1. A ) 0, A,
' & 0. The universes are of the type M~

described earlier.

2. A ) 0, k ) 0. The universes are of type Mp and
expand into the de Sitter universe.

3. A & 0, A' ( 0. The universes are oscillating (type
0). They expand up to some maximum y when
contraction begins.

4. A & 0, k ) 0. This is a new type of universe
not previously encountered in this section. F is
positive for some range y;„& y & y,„. The
universe oscillates between these bounds without
y ever becoming singular. These universes will be
denoted type N.

, ( S'lF = Sp
~
qo+1 —qo

So)
'

and its derivative is

dF S
dS S2'

p

(53)

(54)

E. Relations for arbitrary p

We now derive equations for the phase planes in the
(q, o) plane and the (o, y) plane. Equations (40) and (47)
combine to give

The only maxima or minima of F are at S = 0 (maximum
if qp & 0 and minimum if qp & 0. There are three cases
to consider:

8vrGpSo~

3S3~—~S~

which simpli6es to

(57)

2CTp

2o.p + ((3p —2)harp
—

qp j ys& —[3pop —qp —1] ys& ~

Now we use (45) in (44) to obtain

S(~) S2
q = (» —2)~ ——

2
—. l(» —2)~o —qo]S2 Sg

(58)

(59)
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Again we substitute for 8 and simplify the result into

(3p —2)cr + [qo
—(3p —2)op] ys~

20p + [(3p —2)op —qo] ys'r —[3prro —
qp

—1] ys~

Equations (58) and (59) are the phase-plane equations and may be used to produce diagrams in the (q, a) plane
or the (q, y) plane as preferred. If it is desired to include the contribution of A in 0 then we can add a term
[(3p —

2)harp
—qp] y r in (58), giving

pro —
[qo

—(3p —2)r o] y"
2oo + [(3p —2)o'o —qo] ys~ —[3ptro —qo —1]ys~ ~ (61)

so that Eq. (60) then becomes simply

q = (3p,g —2)0. (62)

F. The (q, A) phase plane

Figures 8—11 show the phase planes produced, which
illustrate the descriptions given above. Figure 10 (p = 1)
is similar to that given in [2], but with 0 replacing cr as
the density parameter. The lines k = 0 and A = 0 are
seen to act as boundaries between the different classes of
models. All the models which asymptotically approach
the de Sitter universe may be regarded in some sense as
"late inflationary. " In Sec. IIID it was stated for the
one-component case that all universes with A ) 0 ap-
proached a final state of the de Sitter universe. This
is clearly not true for the two-component model, when
universes with a positive cosmological constant may also
be of type O. Figure 11 shows the phase plane for A
and radiation. It is this case that we expect to be most
relevant to the inflationary scenario as in the new infla-
tionary models it is quite plausible that radiation density
was significant at the start of inflation. There is still no
universal agreement on the question of whether or not a
radiation-dominated preinflationary epoch will affect the
course of inflation [12]. It can be seen that Figs. 10 and
11 are qualitatively very similar, with the only noticeable
difference lying in the slopes of the lines.

Although Figs. 8—11 are restricted to thoro dimensions,
they give a hint as to how the phase structure of the

three-dimensional (q, A, p) system might look. To see
this, one should imagine these diagrams to be stacked
vertically in order of increasing p.

Figure 9 shows the model for cosmological constant
and a p = s component. It can be seen that all the
paths are now straight lines. The models cannot cross
the k = 0 or A = 0 lines, this accounts for the unusual
shape of the phase plane in the region q ) 0. If the paths
of models in this region are extrapolated they converge
at q = —1, cr = 0 but in fact the models are doomed
to oscillate forever with q & 0. Figure 8 shows the two-
inflationary-component phase plane. The curvature of
the lines has changed sign from the case p & 3. Uni-
verses which used to be of type Mi are now of type N,
it is impossible for them to cross k = 0 or A = 0 so they
can never reach the de Sitter universe. This is of inter-
est because with two inflationary components, we might
naively expect all model universes to tend to de Sitter
universes.

IV. SCALAR FIELD FLUIDS

The problem of constructing the phase portraits of the
inflationary models is considered in this section. As in

[1], inhomogeneities will be neglected in this treatment,
however, see [12] for further discussion. These phase por-
traits are harder to construct in the case now under con-
sideration, where the scalar field is treated completely
dynamically, than the corresponding phase planes of the
previous paper. This is mainly because there, it was as-
sumed that the history of the Universe could be modeled
by specifying the effective equation of state of the dom-

20

O

20

0
lO'Q

FIG. 8. The (q, fI) phase plane for nonzero A and p = 3.
The dashed line represents the A = 0 and the dotted line the
k = 0 case, respectively.

0
IO iQ

FIG. 9. (q, 0) phase plane for nonzero A and p = ~. The
dashed line represents the A = 0 and the dotted line the A: = 0
case, respectively.
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O

0
IO Q

FIG. 10. (q, 0) phase plane for nonzero A and p = 1. The
dashed line represents the A = 0 and the dotted line the Ic = 0
case, respectively.

inant component during eras labeled by the initial and
final values of the scale factor. In addition, as mentioned

in the Introduction, the explicit inclusion of the inflaton
field transforms the plane autonomous system studied in

[1] into a dynamical system of minimum dimension 3, in

general nonautonomous, so that the phase curves can be
vastly more complicated than in the plane case. Nev-

ertheless, a number of conclusions can be drawn from

an examination of the equations for the phase portraits
provided certain approximations can be taken to hold

throughout the periods examined. Some of the specific
cases dealt with below are those where the spatial curva-

ture is negligible, and where the effective adiabatic index

is taken to be constant. Either or both of these cases
can provide a good approximation at different epochs,
although it is unlikely in the general case that they will

describe the behavior of the dynamical system for a large
fraction of the time during which inflation occurs. Nev-

ertheless, in view of the complexity of the general case
compared to these special cases, their treatment provides
a useful amount of insight into the type of behavior pos-
sible for the evolution of the Universe.

A. The basic equations

model whose matter content consists of a fluid, which
we shall be most interested in taking as radiation, and
a scalar field, henceforth the inflation, which is also spa-
tially homogeneous:

3H + 3K = 8vrG[zi jP + V(P) + p], (63)

3H+ 3H =8+G[V(P) —4P —zi(p —3p)], (64)

P+ 3HQ+ BV/BP =0, (65)

0+3H(p+ p) =o (66)

Equation (63) is the Friedmann equation, (64) is the Ray-
chaudhuri equation, and (65) is the inflaton field equa-
tion, which is equivalent to the conservation equations de-
rived from the Bianchi identities for the scalar field stress
tensor (a detailed discussion is given in [16]) and (66) is
the usual equation for the conservation of energy of a
fluid. Here an overdot denotes differentiation with re-

spect to cosmic proper time, H is the Hubble parameter,
defined in terms of the cosmic scale factor S as H = S/S,
P is the infiaton field and V(P) is its corresponding poten-
tial, 3K is the purely spatial part of the scalar curvature,
K = k/Sz with k a constant, p is the fluid energy den-

sity and p its pressure, and the units are chosen so that
5 = c = 1, and the gravitational constant G = I/mzp,
where tnp is the Planck mass.

It is crucially important to the developments of this
section that the system (63)—(66) actually contains only
three independent equations, rather than the four which
are apparently present. This is easily seen by differenti-

ating (63) and substituting Eqs. (64)—(66) to get (64). Of
course, this is merely a consequence of the fact that the
Bianchi identities are not independent dynamical equa-
tions, but just express the integrability conditions for the
equations of motion. Practically, the result of all this is
that we can choose to examine the system constructed
from any three of Eqs. (63)—(66).

Another important remark concerns Eq. (65) which

governs the behavior of the scalar field. We mentioned
earlier, at the end of the previous section, that a combi-
nation of interacting fluids could provide the conditions
needed to set the appropriate inflationary stage. Now,
Eq. (65) can be written as

Here we shall need to begin with the field equations
for an isotropic and spatially homogeneous cosmological

d (P2l
+ 6H —= —V(P),dtt2) 2

(67)

0
io-in

FIG. 11. (q, 0) phase plane for nonzero A and p = 3. The
dashed line represents the A = 0 and the dotted line the A: = 0
case, respectively.

which allows us to identify this equation with the cor-
responding equation for the combination of two interac-
tive fluids. The first fluid is just the kinetic energy of
the scalar field and is characterized by the p = 2 value
which is expected for a free field (see below). The sec-
ond fluid is the potential energy and is characterized by
p = 0, but contrary to what was considered earlier can-
not be straightforwardly associated with a cosmological
constant precisely because of its interaction with the ki-
netic energy. (If it were a constant then the scenario
would be identical to that with a combination of nonin-
teracting p = 2 and p = 0 fluids. )

Before proceeding further, it will be useful to pause
in order to notice a few useful relations obeyed by the
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quantities appearing in Eqs. (63)—(66). The first is that,
since K = k/S,

K = —2HK. (68)

Also, it will be necessary to use the fact that the scalar
field can be treated as a Quid whose energy density and
pressure are

that we make the explicit dependence of g on P disap-
pear, preserves the nonadiabatic character of the model.
Futhermore, as we will discuss in what follows, not only
does this case match what is expected to be the conve-
nient shape of the inQationary potential, but also pro-
vides the "most unfavorable " one, in the sense that this
potential provides the smallest maximum damping of the
inBaton's roll.

uy = —,'4" + V(4')

py = —,'O' —V(4)

so that the total energy density and pressure are

(69)

(70) B. Scalar field models with a Bat potential

l. Soletiona for a Pui,'potential

pT =qP +V(P)yp,
pT = ,'O' -V(4-) + p

(71)

(72)

It is a simple matter to see that pz obeys the same con-
servation law, Eq. (66), as p. The total density parameter
obeys the differential equation given in an earlier section,

0 = (2 —3' )HA(1 —A),

where pz is the usual index, defined by the equation

P+ 3H(b = 0

which implies that

j= j,S-'(~)

(78)

Let us suppose now that the potential is fiat, V(P) =
Vo, at least over a sufBciently wide region of the domain
of variation of P. Then from Eq. (65) we obtain

s~ = (» —1)~T (74) where Ps is a constant of integration giving the value of
P when S = 1. Substitution into (63) yields

exactly as in an earlier section. This is entirely consistent
with Eqs. (69) and (70), and also with the definition k 8vrG (1

H + —=
~

—AS +Vo)S~ 3 q2
(80)

'2
which leads to the differential equation

75

—,'P'+ V(P)
(76) 1dS

S dt

8+G fl 2 s k
(81)

By use of the field equations, this can also be written as

fp = 2
(3H~ + 3K —8z.GV(g) —8irGp

3H'+ 3R' —«Gn (77)

The above equations will be useful in analyzing the mo-
tion of the dynamical system. Before dealing with the
general case, we show that in a class of restricted cases
there is still a useful phase plane construction, although
this is now different from that of Ref [1]. .

VVe shall now ignore the matter component, for the
sake of avoiding any un. necessary difficulty in the subse-
quent analysis. Using the definition of the p index (76),
we can express either of the components of the energy
density of the scalar field in terms of the other and of

Then, substitution into the original field equations
(63)—(65), yields a system of equations which clearly re-
quires the specification of the p behavior in order for it
to be solvable. In the general case, p depends both on

P and on P whose behavior we ignore. This means that
an ad hoc assumption is required.

Two simple cases can, however, be distinguished for
reasons which will become immediately clear. These are
the p =const case and the situation where the potential
is constant: V = Vo ——const. The 6rst of these cases
corresponds to demanding adiabatic dynamics from the
model and is clearly of no interest. The second case, on
the contrary, though representing a simpli6cation, given

Equation (80) is the Friedmann equation for a universe
with stig matter (that is, the equation of state p = p
[26,21]) plus a cosmological constant (corresponding to
the fiat potential Vo). It is interesting to note that al-
though there has been much discussion of the stifF matter
equation of state in the literature, no full proposal has
been given so far for its physical realization. We now see
that it represents the pure kinetic effect of a scalar field

(with a fiat potential); it is exactly realizable as a classi-
cal scalar field with potential Vo with value Vo = 0 (which
is of course not at all the same thing as no scalar field
at all). Finally the value of P(t) is given by integrating
(79), or we can obtain P(S) from

4 «+ 4'0 = 4'0
dS

.SH(S)"

k = —1:-S(t)= 3
sinh (t —to),S~G

with H(S) given by (80).
The exact integration of Eq. (81), although possible in

general, involves either elliptic or quasielliptic integrals
[22] or a parametric solution [4]. Some particular cases
however, admit a representation of the solutions in terms
of time t and nontranscendental functions.

(1) For the $0 ——0 (cosmological constant only) case,
one obtains the de Sitter solution in its diferent forms:
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3
:- S(t) = exp (t —t()),8+G

3
:- S(t) = cosh (t —t()).

(83) S(t) =
~4V, ~

(84) and dust-type behavior (p = 1) when

(91)

We will not discuss these standard solutions any further;
thus from now on we assume tttt() g 0.

(2) For the A: = 0 case (flat model), one derives

1/6

S(t) =
~2V() )

(92)

X/6
- 1/3

S(t) = ' sinh (V24~G'(t —tp))

and entering the inflationary domain of values when it
crosses the critical value p = 6, for

when V() P 0, and

) 1/6

S(t) &
&") (93)

1/6

(t) = i, ) (t —tt) "'
(86)

for the "stiff matter" case V() = 0.
We may note that all of (82)—(86) have the same

asymptotic form at large time. From (79), in all cases
the kinetic term will die away rapidly as the universe
expands (whether 4)() is positive or negative). This is
generally true. See, for example, Refs. [23,24].

8. The effective equation of atate

Although the set of solutions derived provides a de-
tailed knowledge of the behavior of the dynamical vari-
ables involved, namely, S(t), H(t), T((II)), . . . , a clear phys-
ical picture of the features of these solutions can be better
drawn by discussing the evolution of the adiabatic ratio
&(S(t)).

Using Eq. (79) we may (using the assumption P() g 0)
rewrite (76) as

2

1+2~S(t)6f2

It is immediately apparent that p will undergo a decrease
from its initial value as the universe expands, provided
V() ) 0. Indeed,

dp dp dS V() Ss dS

((t2

(88)

which is negative when V() S )0. If, when the field starts
along the Hat region of the potential, the value of S(t) is

S(t) «-—1 P(~)

2 Vp

the efFective value of p will be

(89)

(90)

that is, as mentioned above, the infIaton field will be a
massless field behaving as stiff matter. Subsequent de-
crease brings p to lower values, reaching radiation-type
behavior (p =

6 ) when

Then it asymptotically approaches zero, namely, the de
Sitter regime. This happens for

( . ) 1/6

S(t) && (94)

We thus realize that no matter which initial conditions
apply to the inflaton field when it enters the flat region of
the potential, if this region is wide enough for S to reach
the value (93), exponential inflation inevitably occurs,
and occurs increasingly rapidly.

Until now, no assumptions have been made about the
ratio P()/V() other than it is positive. It is known that
violation of the strong energy condition results when

p2—&1
V t

which for the case under consideration becomes
'2—'S-'(t) &1

Vp

(95)

(96)

3. Exit from in+ation

As a Hat potential drives the scalar field toward infla-
tion, independently of its initial state of motion (which
probably corresponds to stiff matter), so clearly some
change in the shape of the potential must be responsible
for moving the universe away from infIation. Supposing
V is no longer taken to be fiat, we reconsider Eq. (76)
and investigate the sign of dp/dt . We have

which is clearly equivalent to (93). Thus, if we demand
P() be sufficiently small compared to V(), we may guar-
antee that inflation occurs as early as we like. However
such a restriction needs physical justification; if on the
other hand we allow all initial conditions for P for a given
flat potential section V(), in many cases inflation will not
start until late [maybe too late, if P runs off the flat part
of the potential before (96) becomes true].

If V() ( 0, life is quite different. When V() = 0, p stays
at the value 2 and no inflation takes place; we have the
stiff matter solutions. When Vp ( 0, as the universe ex-
pands, p increases from 2 upward, and no infIation takes
place; recollapse follows soon. This case is presumably
unphysical.
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V ( —3HUp
dt

and (2) p decreases if

(98)

(99)

where both H and p will be approximately constant in
the exponential inflationary era (in fact p will be very
nearly zero). Thus V should decrease sharply from its
flat value V = Vo if it is to trigger an increase in p
sufficient to drive it away from the p ( s region, as
happens with the "new inflationary" potential.

(A, S) phase ptanes

Let us now investigate the efFect of a flat potential on
the evolution of the density parameter 0, extending to
this particular case the study developed by two of us in
a previous work [1). It is important to notice that there
are no further assumptions necessary about the behav-
ior of the scalar field during the evolution described by
these phase planes. In particular, there is no "slow roll"
assumption made in constructing the diagrams shown.
Introducing the density parameter 0,

0= (100)

the field equations show that

0 = HA(1 —Q)(2 —3p),
S= HS.

(101)

(102)

dp 1 d fV)—= --~(t)—
I

—.
dt 2 dt gjz) (97)

showing that the sign of j depends on the evolution of
the ratio V/pz . Evaluating &, (V/gP), we find that (1)
p increases if

tive behavior attached to these diagrams are immedi-
ately accessible. Considering just the expanding uni-
verses (since the contracting phase amounts to a time
reversal of these), we see, from the previous result, that
the phase trajectories are asymptotic, for S —+ 0, and
for S ~+oo to the value 0 = 1. Prom Eq. (39) we see
that for S = (Po/Vo) (which corresponds to p = s, as
we have seen before) the trajectories have an extremum
corresponding to their maximum deviation from the flat
A = 1 model, since at the left of this point the deriva-
tive dQ/dS is positive (negative), for a A ) 1 (A ( 1)
universe, and the converse happens on the right. There-
fore, one expects the phase trajectories to emerge from
the (0 = 1,S = 0) singular point (which corresponds
to an Einstein —de Sitter universe for stifF matter) at the
left of the phase plane, move away from the 0 = 1 Hat
model, reach a maximum deviation, and approach the
Hat model again, which is reached asymptotically at the
singular point (A = 1, S = +oo) (this time, the de Sitter
universe .

Actually, this is exactly what happens, with two im-

portant exceptions. These are, firstly, the 0 ) 1 trajec-
tories which reach 0 = +oo before entering the inflation-
ary region, starting at the maximum deviation point, and
which correspond to the closed models which thus recol-
lapse before inflation (note that the 0 = +oo value of the
density parameter occurs when H = 0, which is also the
situation for which our conformal time coordinate breaks
down). Secondly, the exceptional Einstein static universe
that is the fixed point of the phase plane, and the four
models that asymptotically approach it, that form sepa-
ratrices in the phase plane.

The behavior of these inflaton models under the influ-
ence of a Hat potential is represented in Figs. 12 and 13,
where the (0, S) phase diagrams are drawn (represent-
ing the curves on which both Po is constant and C is
constant, these being integration constants of the field
equations). We have drawn them in two ways (1) with

We now assume Vo ) 0, P g 0, for the cases P = 0 and
Vo = 0 are covered in detail in [1] (being, respectively,
the cases p = 0 and p = 2), and Vo ( 0 is nonphysical.
Dividing these two equations, and using (87) then yields

dn & 1 n= 2 1 —3 v (1 —0)— (103)
1+2~v, ss~

which is equivalent to the autonomous dynamical system
resulting from transforming to a conformal time 7 such
that d/dt = Hd/d~ in (101) and (102). Equation (103)
is easily integrated, and we obtain the well-known form

0

O
O
Z

, Xl

O

&C
U

Z
C&

Ci

g(g2p Ng —
41 (104)

where C is a constant of integration.
Using this result, and assuming the potential to be

flat during the whole evolution of the Universe, so that
the eEect of this class of potentials is made explicit, we
are able to draw the phase diagrams (A, S) (cf. [1]).
However, some of the essential features of the qualita-

I'IG. 12. Compactified phase diagram showing the evo-
lution of 0 with S for a scalar field fluid with a flat poten-
tial. The lower half of the plane corresponds to expanding
universes, the upper half to contracting universes. The inte-
gration constant C is held fixed and the ratio P /(2Vo) var-
ied. Higher values of this ratio correspond to curves closer
to 0 = 1. The critical trajectories marked with an aster-
isk separate the universes which recollapse (bounce) from the
ever-expanding (contracting) universes. These trajectories
are characterized by C(P /2VO)'~3 = —.
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0

~ A
O
X
Xl

A

C)
d f P~ ~ d4

(106)

Making the steady-slope ansatz V = cuoP+ Vo, where Vo

and uo are constants, yields

0 I

0

m
OC

Z
C7

Now, we make the assumption that P& ) 0 and that, in
particular,

(107)

FIG. 13. Compactified phase diagram showing the evo-
lution of 0 with 8 for a scalar fluid with a flat potential.
The lower half of the plane corresponds to an expanding uni-

verse, the upper half to a contracting universe. The ratio
qP/(2Vo) is held fixed and the integration constant C is var-
ied. Higher values of this correspond to curves closer to 0 = 1.
The critical trajectories marked with an asterisk separate the
universes which recollapse from the ever-expanding (or con-
tracting) universes. These trajectories are characterized by
C($2/2V )

1/3 2

the same value of Po on all curves (C varying between
the curves), and (2) with C taking the same value on all

curves (and Po varying between them). As was done in

[1) we have brought the infinities of both S and n to
finite values by suitable transformations, such that the
global dynamical behavior of the models might be fully
apparent. The main differences between the two phase
diagrams concern the relative position of the points of
maximum deviation from the n = 1 model. For the
fixed Po case, all the trajectories which exhibit infiation-
ary behavior reach the critical p = s value for the same

S, namely, for S = (Po/Vo) . For the second case above,
that critical value is reached for values of S which in-
crease with Po. It was implicit up to this point, that we
were keeping the value of Vo fixed in both figures. There
is no loss of generality in doing so, since what really mat-
ters is the ratio Po/Vo and therefore, a phase diagram
with Vo varying but nonzero would look like the second
of the cases described above (the case Vo = 0 being of
different character, see [1]).

C. Scalar fluid with a steady-slope potential

Let us now consider a steady-slope potential in order
to try and improve on the results of the preceding subsec-
tion. This is suggested by our discussion that a nonvan-
ishing time derivative of the potential induces variations
of the effective p index. One requires that, at a certain
stage and during a long enough period, the potential in-

creases so that the kinetic energy of the inflaton field is

efhciently reduced. The simplest potential which enables
this is one exhibiting a steady slope over a sufBciently
wide region of its domain [25]. Using the scale factor S
as the time variable, the scalar field equation becomes

where Q is a constant. The equations can be integrated
to yield

o ~oSq

V=Vo+ —S~ .

(1o8)

(109)

dn & Oo —gSq" l n
2 —3 s (1 —n) (110)

Different diagrams result according to the relative values
of ~o and Q. Using the Friedmann equation it is possible
to derive the k = 0 solution. We have

S 8zG (go l k

S 3 (Ss j SI

—+Vo
I

——

This, taking Q to vanish, leads to the identity

S2 dS
4 —40=6

8nG 0+V

which yields

83 = —sinh (+24mGVg(t —to) ) .
Vp

(113)

In the case that the inHaton potential has a constant
slope, then, we can conclude that there exist a variety
of solutions, in particular some like that shown in (113)
which are plausible infiationary solutions.

V. CONCLUSIONS

Here @o is a constant of integration giving the initial
value of Pz.

It becomes clear that, dependent on appropriate signs
and values of uo and K, the kinetic energy is now
brought to a minimum in a finite time. Actually, in the
cases for which it vanishes, the steady-slope approxima-
tion breaks down at that particular point, since the ki-
netic energy cannot afterward become negative.

The (n, S) phase planes for this shape of potential are
given by the equation

d (P~ s I dV
dS ( 2 ) dS

(1o5)
The phase plane for a standard FLRW model with

matter, radiation, and a cosmological constant is like that
shown in Fig. 7; for a standard FIRE model with just
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matter and radiation (A = 0) it is like Fig. 1; and for
a complete inflationary model (A ) 0 for S ( Sy, but
A = 0 for S & Sy) it is like a combination of these. (Imag-
ine Fig. 6 with the evolution curves smooth at all bound-
aries, as in fact Fig. 5 has been drawn. ) These curves
help one to visualize the probabilities of difFerent values
of 0 arising from specification of the microphysics, i.e.,
the function p(S). However, as noted above, the physics
of the universe may not be time symmetric between ex-
pansion and collapse; if not, then separate forms of p(S)
are appropriate for the expansion and collapse phases,
so that corresponding adjustments must be made to the
above-mentioned diagrams. In particular, p(S) will no
longer be symmetric between the top and bottom halves
of Figs. 2, 4, 6, and 7. The oscillating (nonsingular)
models occurring in the inflationary cases are possible
because a reversible inflation mechanism has been as-
sumed in the form of p = p(S). This will not be true
for all inflationary mechanisms: some will be time irre
versibte, and these will not allow such cyclic behavior [14,
15]. If the inflationary mechanism is not time reversible,
but p can still be represented in the form p = p(S, A)
separately in the expanding and collapsing phases, then
similar diagrams to those presented here will be possible
in that case too.

Note also that there may be no era before the inflation-
ary epoch when the Universe is dominated by radiation,
so the history of the Universe could plausibly begin on
the left of the epoch labeled II in Table I and Fig. 5.
For example, the Universe may initially be dominated by
curvature, inhomogeneities, or part of the stress tensor
of a scalar field [16]. These possibilities are examined in
detail in Ref. [12] in the context of chaotic inflation [17].

Whatever happens at early times, it is clear that at
any given value of S, one can choose any value for 0 and
find an evolution curve for an inflationary universe that
will lead to that value of 0 at that stage of evolution of
the universe. That is, inflation does not, without some
further input, imply that 0 = 1 at the present: in fact,
by itself it does not solve the "flatness problem, " as it
does not automatically require 0 to be within 2 orders
of magnitude of unity.

Conversely, the fact that 0 is now measured to lie in
the range (10 i, 10) cannot be taken as providing con-
clusive evidence that our Universe evolved through an
inflationary epoch sometime in the past. Such an input
will probably consist of a restriction on the allowed range
of values of the spatial curvature. Most work on inflation
implicitly assumes that such constraints hold, as indeed
seems reasonable (see [12] for a discussion). It should
be emphasized, however, that any constraint on the ini-
tial value of the spatial curvature applied near the clas-
sical singularity must, of necessity, be derived by taking
quantum efFects into account, since the classical dynami-
cal system (1)—(3) describes the behavior of systems with
all possible initial spatial curvature values. The dimen-

sional arguments used in deriving quantal constraints are
strongly physically motivated, but even so, the actual
problem of defining a useful measure over the space of
initial data remains without a total solution [18].

It should also be remarked that the alternative phase
curves drawn in the (q, A) plane, as in the pioneering
work of [2], are simply obtained by changing the inde-
pendent variable from S to q, the relation being given by
Eq. (10). Although the phase planes show very clearly
the nature of the evolution of these universes, they do
not, of course, show the relation between the chosen
variables and cosmic proper time. In order to see at
what point during an inflationary period the cosmologi-
cal problems are solved still requires detailed calculations
of the sort performed in Ref. [19].

In this paper we have also shown that the models con-
structed as having a potential of constant slope form a
bridge between the qualitative investigations of [1] and
the physical models normally used to describe inflation.
The simplest of these are achieved when the scalar field
has a completely level and flat potential, which provides
an easily soluble model, while approximating the dynam-
ics of a typical inflationary model for a relatively long
period. Even more interesting from the point of view of
trying to find exact solutions which model the behavior
desired of inflationary models are those described at the
end of the previous section in which the potential has a
constant slope. Clearly a considerable amount of work
remains to be done with these models.

Overall, then, the figures presented here demonstrate
that the qualitative conclusions of [1] remain valid even
when the effective equation of state is determined by the
behavior of a scalar field rolling on a simple potential.
Furthermore, the present treatment comprises a consid-
erable improvement over the earlier work. This is because
the transition from the velocity-dominated noninflating
phase (when P2 )) V[/]) to the slow-rolling inflationary
phase (with P (( U[P]) is not set arbitrarily, as it was
modeled in [1], but is given as part of the dynamics spec-
ified by the initial conditions of the models.
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