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‘We apply the general formalism of Langer to compute the nucleation rate for systems of relativistic
particles with a zero or small baryon-number density and which undergo first-order phase transitions.
In particular, we obtain an expression for the pre-exponential factor and it is proportional to the
viscosity. The initial growth rate of a critical size bubble or droplet is limited by the ability of
dissipative processes to transport latent heat away from the surface.
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I. INTRODUCTION

The dynamics of first-order phase transitions has fas-
cinated scientists at least since the time of Maxwell and
van der Waals. Much work on the classical theory of nu-
cleation of gases and liquids was carried out in the early
part of this century, culminating in the theory of Becker
and Déring [1]. There were and still are many important
applications, such as cloud and bubble chambers, freez-
ing of liquids, and precipitation in the atmosphere. The
modern theory of nucleation was pioneered by Langer
[2]. Langer’s theory is based in a more fundamental way
on the microscopic interactions of atoms and molecules.
It can also be applied close to a critical point where in
fact most of the current interest in the condensed matter
community has been. Finally, nucleation theory has been
extended to relativistic quantum field theory by Callan
and Coleman [3] for zero temperature and by Affleck [4]
and Linde [5] for finite temperature. Applications here
are to elementary particle phase transitions in the early
Universe [6, 7] and even to the nucleation rate for black
holes (8].

The goal of nucleation theory is to compute the prob-
ability that a bubble or droplet of the A phase appears
in a system initially in the B phase near the critical tem-
perature. Homogeneous nucleation theory applies when
the system is pure; inhomogeneous nucleation theory ap-
plies when impurities cause the formation of bubbles or
droplets. For the applications we have in mind, namely,
the early Universe and very-high-energy nuclear colli-
sions, it seems that homogeneous nucleation theory is
appropriate. In the everyday world it is usually the op-
posite; dust or ions in the atmosphere are much more
efficient in producing precipitation. Nucleation theory
is applicable for first-order phase transitions when the
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matter is not dramatically supercooled or superheated.
If substantial supercooling or superheating is present, or
if the phase transition is second order, then the relevant
dynamics is spinodal decomposition. In this paper we
concern ourselves only with homogeneous nucleation the-
ory. For an excellent overview of all these topics see Ref.
[9].

Suppose that a system is cooled below its critical
temperature. Then there exists a critical sized droplet
(or bubble, depending on whether the energy density
in the lower-temperature phase is greater or less than
the higher-temperature phase). If a droplet that forms
because of statistical fluctuations is too small, its sur-
face free energy is relatively large and the cost in total
free energy is positive. The droplet will evaporate. If
the droplet is large, its surface free energy is unimpor-
tant, and the droplet will accrete molecules and grow. A
droplet of critical size is metastable, it is balanced be-
tween evaporation and accretion. The classical theory of
Becker and Déring [1], which is nicely reviewed by Mc-
Donald [10], says that the probability per unit time per
unit volume to nucleate the dense liquid phase from a
dilute gas is given by

"es 1/
I =a(i) (—627(2:)> 2 A(1)e C)/T, 1)

where €(i.) is the formation energy of a critical sized
droplet consisting of i, molecules, a prime denotes differ-
entiation with respect to the number of molecules i, T is
the temperature, 7i(1) is the density of single molecules
and a(ix) is the accretion rate of single molecules on a
critical droplet. Usually the accretion rate is taken to
be proportional to the surface area of the critical droplet
times the mean speed of molecules in the gas times a
“sticking fraction” less than 1. The first term in Eq. (1)
is a dynamical factor influencing the growth rate, the
second term characterizes fluctuations about the criti-
cal droplet, and the product of the third and fourth
terms gives the quasiequilibrium number density of crit-
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ical sized droplets.

Langer’s modern theory of nucleation yields the follow-
ing formula for the rate:

K
I=§#%5AWT (2)

where AF is the change in the free energy of the system
due to the formation of the critical droplet. € is a statis-
tical prefactor which measures the available phase space
volume. & is a dynamical prefactor which determines
the exponential growth rate of critical droplets which are
perturbed from their quasiequilibrium radius R.,.

k= L In[R(t) - R.).

7 3)
The basic structure is the same as in the classical theory,
but the prefactors are different. The dynamical prefactor
has been calculated by Langer and Turski [11,12] and by
Kawasaki [13] for a liquid-gas phase transition near the
critical point, where the gas is not dilute, to be

2XoT

R = —————
2
£2n2R3

(4)
which involves the thermal conductivity A, the surface
free energy o, the latent heat per molecule ¢ and the
density of molecules in the liquid phase n,. The inter-
esting physics in this expression is the appearance of the
thermal conductivity. In order for the droplet to grow be-
yond the critical size latent heat must be conducted away
from the surface into the gas. For a relativistic system of
particles or quantum fields, which has no net conserved
charge such as baryon number, the thermal conductiv-
ity vanishes. The reason is that there is no rest frame
defined by the baryon density to refer to heat transport.
Hence this formula obviously cannot be applied to such
systems.

A relativistic quantum field theory approach has been
worked out by Callan and Coleman [3] for nucleation
from one vacuum to another and extended by Affleck
[4] and Linde [5] to finite temperature. In the limit that
thermal fluctuations dominate quantum fluctuations the
rate is

fow (S P (T VIG TN s
o \2nT det[-V2 4+ V"(0,T)]

(%)

where S3 is the three-dimensional action associated with
the formation of a critical sized bubble or droplet. The
w_ is the frequency of the unstable mode. The ratio of
determinants contains some interesting dynamics. The
V" is the second derivative of the potential with respect
to the “order parameter” ¢ which is actually a field de-
scribing the shape of the critical bubble or droplet. This
ratio of determinants is almost never evaluated because
it must be done numerically. A notable example of such
an evaluation is presented by McLerran et al. [14] for
the sphaleron of electroweak theory. Usually dimensional
analysis is invoked to approximate the preexponential
factor by T or by T2, so that
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It is clear that the nonrelativistic expressions are in-
adequate when we deal with a relativistic quantum field
theory at finite temperature. We have in mind the QCD
and electroweak phase transitions when the baryon den-
sity is negligible. We want to do better than estimate
the prefactor by dimensional analysis as quoted above.
To evaluate the ratio of determinants is extremely cum-
bersome and must be done numerically. In addition it
requires identification of a scalar field as an order pa-
rameter, which has not yet been accomplished in QCD.
The classical expression is probably not accurate because
both the hadronic matter and the quark-gluon plasma are
expected to be rather dense and strongly interacting near
the critical temperature, not dilute. Therefore we have
set our goal in this paper to estimate the pre-exponential
factor using the basic formalism of Langer as applied to a
course-grained effective field theory with zero net baryon
number.

In Sec. II we briefly review the essential features of
Langer’s nucleation formalism. In Sec. III we construct
an effective, course-grained field theory to describe the
state of matter which interpolates between the two equi-
librium phases. This is done in the sense of a Landau ex-
pansion of the free energy away from equilibrium states.
We determine the parameters in terms of physical quan-
tities, such as the surface free energy and the surface
thickness. In Sec. IV we calculate the prefactor using
relativistic hydrodynamics. It turns out that x has a
form very similar to the nonrelativistic expression, but
with the thermal conductivity replaced by the viscosity.
In Sec. V we put everything together to obtain the nucle-
ation rate as a function of temperature, and summarize
our findings.

In a subsequent paper we develop a set of rate equa-
tions which govern the time evolution of the system as
it converts from one phase to another using as input the
nucleation rate. We propose that these are more accu-
rate than the expression given by Guth and Weinberg [15]
and widely used in the literature on phase transitions in
the early Universe. We apply these phase transforma-
tion equations to two problems: the QCD phase transi-
tion in the early Universe and in high-energy heavy-ion
collisions.

II. REVIEW OF LANGER’S FORMALISM

The general theory of nucleation developed in Ref.
[2] starts with the introduction of a set of variables 7;,
i =1,...,N, which describe N degrees of freedom of
the system of interest. Oftentimes it is convenient to
take these to be collective coordinates. In the system
with which we are concerned, for example, the 7; will
be the energy density e(r) and flow momentum M(r) at
positions r in the system. Thus a sum over the index i
represents an integration over r and a sum over each of
the density and flow fields.

We next introduce a distribution function p({n},t),
which is a probability density over configurations {n} and
is also a function of time t. We assume that p({n},t) sat-
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isfies a continuity equation of the form

vl Btp = Z a”h (7)

=1

where the probablhty current J; is given by

OF dp
ZM” (371 p+Tam> ®)

j=1

Here M;; is a generalized mobility matrix and F'{n} is a
coarse-grained free energy. Both of these latter quantities
will be discussed in detail below in more specific connec-
tions. Note that Egs. (7) and (8) can be derived via
standard statistical techniques [2] by adding a suitable
Langevin force to the Hamiltonian equations of motion

Ogmi = Z Am 617 (9)

j=1

where A is an antisymmetric matrix with entries 0 or 1.

The choice of variables 7; should depend on the prob-
lem, but this general description is applicable to all sys-
tems that are characterized by the equation of motion of
the form (9). If we have chosen a suitable set of coordi-
nates we can describe the system in this 7 space. In this
7 space the equilibrium configurations, for which 9;p = 0,
have the probability distribution of the form

Pea{n} ox exp[—F{n}/T] . (10)

Such configurations are the initial metastable point in
the n-space denoted by {7}, or the final state. In this
space the phase transition starts from a metastable point
{no} and moves to the vicinity of a stable point: a point
where F' has its minimum. In this process the system
most likely has to pass a saddle point {7j}. See Fig.
1. This configuration, {7}, describes a situation close to
{no} except for the presence of one critical size droplet
of the new phase. At the saddle point we can assume
stationary flow 9;p = 0, and we can calculate the current
across this saddle. The rate of probability flow across
this saddle {7} determines the droplet formation rate in
the system. This rate

2
'«908
/”o .
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\
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FIG. 1. Paths for nucleating a stable phase from a
metastable phase in 7 space.

I = Iyexp[-AF/T], (11)

telling us the number of critical size droplets created in
unit volume in unit time, was evaluated in Ref. [2]. The
activation energy AF is given by

AF = F{n} — F{mo} - (12)

The prefactor Iy is the product of two terms

K
Iy = 5;90 ) (13)

the dynamical prefactor « (of dimension [c/fm]) and the
statistical prefactor Qg (of dimension [fm~3]). In terms

of the eigenvalues Ao and A of the matrix

?F{n}
on;0n;

’

evaluated at points {77} and {no} respectively, the statis-
tical prefactor can be written as

1/2
onT 1/2 N onT 1/2 N )\((20)

20 =v(ZE)" I (”) () |
[A1] Aa s \2nT

a=ao+2
(14)

where V is the volume of the 7-space available for the
flux of probability flow [2]. We will evaluate € in the
next section.

Since {no} is a minimum of F, all the A9s must
be positive. Similarly, the X, are eigenvalues of the
above second-derivative matrix, in this case evaluated
at the saddle point {7}. Because {7} locates the high-
est point along the path of lowest energy leading away
from {7}, there must be one and only one eigenvalue
o, which is negative. This is the eigenvalue denoted
by A; in Eq. (14). If F{n} has translational symmetry,
then there must be at least three other eigenvalues A,
which are identically zero, corresponding to the three in-
dependent translations of the position of the symmetry-
breaking fluctuation (bubble or droplet) described by
{7}. The product of X\’s appearing in Eq. (14) starts
with a = ag+ 2, where ay is the total number of symme-
tries of F' which are broken by {7}. The integration over
these ap degrees of freedom defines the factor V in Eq.
(14). That is, V is the volume of the ap-dimensional re-
gion of n-space spanned by the set of configurations {7}
which leave F{7j} invariant.

The dynamical factor & is the exponential growth rate
of the unstable mode of deformation {77}. To compute &,
we linearize Eq. (9) about n; = #;. That is, we write

N

oF
M;j—F=v, 15
,-,2z=:1 Y om;om (15)

8,;1/1- = —

where v; = n; — 7;. Then, setting v o« e, we identify »
as the positive eigenvalue of the matrix

N

OF
- E Mj—o . 16
= 7 om;0m; (16)



1382 LASZLO P. CSERNAI AND JOSEPH 1. KAPUSTA 46

In the nucleation problem the instability described by &
is the initial growth rate of a bubble or droplet which has
just exceeded the critical size.

III. COURSE-GRAINED EFFECTIVE FIELD
THEORY

The model of nucleation which we propose here will be
defined by the choice of the statistical variables n; and the
corresponding coarse-grained free energy F'{n}. The con-
ventional formulation of classical many-body statistical
mechanics in terms of particle positions and momenta is
not very convenient for the present purpose. Nucleation
is characterized by semimacroscopic fluctuations involv-
ing large numbers of particles. Therefore hydrodynamic-
type collective variables are more appropriate to describe
the formation of bubbles or droplets.

Hydrodynamics can be derived from microscopic ki-
netic theory by a coarse-graining or cellular method [16,
17]. That is, one divides up the macroscopic system into
semimacroscopic cells of given volume and assigns spe-
cific densities and flows to each of these cells. The free
energy computed by performing a partition sum subject
to the cellular constraints is the coarse-grained F' that
we are talking about. There is no problem, in principle,
in summing over the cellular densities and flows to ob-
tain the true equilibrium free energy. Moreover, as long
as each cell comes to local thermal equilibrium rapidly
compared to the times required for the hydrodynamic
processes that one wants to consider, then one can use
the coarse-grained F' for computing nonequilibrium prop-
erties of the system.

The question which arises at this point is: What is
a suitable size for the coarse-graining cells? In order for
the hydrodynamic description to make sense, the cell vol-
ume must be much larger than the average volume per
molecule. For our purposes, however, the cells cannot
have linear dimensions appreciably larger than a correla-
tion length. If the cells are chosen to be too large, phase
separation will occur within single cells, and the inter-
esting details of the condensation mechanism will be lost
in the process of taking cellular averages. To put this
another way, we expect F' as a function of the average
energy density e to be a nonconvex function with distinct
minima corresponding to the two phases. But, if the cell
size is large enough for well-defined phase separation to
occur within a cell, then F' must approach its convex en-
velope and cannot possibly have the above property. We
conclude that the cell size can be neither much larger nor
much smaller than a correlation length.

A. Relativistic hydrodynamics

The equations of motion of relativistic fluid dynamics,
8,T"* = 0, can be given in terms of E = T% and M"* =
TY% that is, E = (e +pv?)y? and M = (e + p)y?v, where
e is the energy density and p is the pressure [18]. The
low speed limit of relativistic fluid dynamics (v? &~ 1 and
pv? < e, but p not assumed small compared to e) is given
by

Be=-V -M 17)

and
1
oM = -V (EM ® M) - Vp. (18)

Here w = e + p is the enthalpy density, we assumed that
the relativistic energy density is E = (e+pv?)y? ~ e, and
that the relativistic momentum density is M = wy?v ~
wv.

With the above mentioned restrictions in mind we will
try to find a suitable form for the coarse-grained free
energy F'. This is not a trivial problem. We choose as our
basic variables the local energy density and momentum
density fields, e(r, t) and M(r,t). The free energy F' must
consist of a kinetic energy Fi and an interaction term
Fy. The kinetic term is simply

Fg(e,M) = % /d3r wv ? = /d37' ﬁMz . (19)

We shall assume that F7 is a functional of e only, and
that it can be written in the form [19, 20]

A} = [ [jRE? 450 o

where f(e) is the Helmholtz free energy density and
1K (Ve)? is the usual gradient energy. K is a constant to
be determined. Note that in this discussion we assume
that the temperature T' is constant.

Using the above F' with the mobility matrix

M.
M;j = 0;(M;) + (M;)0; — 2—1;(3#11) ,

My = —0se
Moo =0,
Moy; = (81;11)) + wo; , (21)

the equations of motion for e and M, that is, Egs. (17)
and (18), are obtained as the low speed limit of relativis-
tic fluid dynamics:

_ 6Fk 6Fk
e =—(Vu) 551 YV M
=-V -M(r) (22)
is the equation for energy conservation and
M 6Fk 6F
oM = — [VM+M V- %VQU} . g—l\-/.[—(;)-+ Se—(r—)Ve
1 2 of
=-V-{=M®M ) - K(V?)Ve+ ==Ve (23)
w Oe

is the equation for momentum conservation, the Euler
equation. From Egs. (18) and (23) it is clear that we
must identify the last term on the right-hand side with
the gradient of the pressure; that is,

9 Ge—vf— —wp (24)
de

in the limit of a uniform system in equilibrium. Note that
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when e(r) is varying so slowly that the gradient energy
can be neglected, Eq. (20) is consistent with

fley=e—-Ts=-p. (25)

At asymptotically high energy densities the equation of
state of the QCD plasma is that of the Stefan-Boltzmann
gas with a bag constant, f(e) = —e/3 + B. However,
we have to bear in mind that near the phase transition,
and particularly in the metastable region, the equation
of state is not that of a Stefan-Boltzmann gas. Therefore
we will keep f(e) explicit throughout the equations.

B. Parametrization of the free energy

Imagine having two phases in equilibrium with each
other at temperature 7', and furthermore consider an in-
terface separating them. This interface cannot be per-
fectly sharp. The interface must have a finite thickness
on the order of a correlation length. In a local density
picture the energy density e should vary smoothly from
one phase to the other. Since first-order phase tran-
sitions have a latent heat, this means that we should
know the free energy density f(e) for the energy density
ranging between one phase and the other. To be spe-
cific, in what follows we assume we are dealing with the
QCD phase transition. Then the low-temperature, low-
energy-density phase will be denoted by a subscript h (for
hadron) and the high-temperature, high-energy-density
phase will be denoted by a subscript ¢ (for quark). These
subscripts can be replaced by others if one considers the
electroweak phase transition, for example, or some other
phase transition. In addition to the need to know f(e)
for e, < e < eq we would also encounter situations where
we would need to know f(e) for a range of values about
en and e,. Statistical fluctuations about local thermal
equilibrium would require such knowledge, for example.

For a range of temperatures about T, f(e) should have
minima located at en(T") and e,(T). There should also
be a barrier between these two minima located at some
eo(T). We require that

f(en(T)) = —pn(T) ,
f(eq(T)) = —pg(T) . (26)

Therefore, at fixed T' we shall parametrize f(e) by a
fourth-order polynomial in e. Because of the pinning
of the two local minima shown above, f(e) will have its
global minimum at ey(T") when T > T,, and will have
its global minimum at e, (7T") when T < T,.. At the crit-
ical temperature the two minima of f(e) are equal. Our
parametrization is

- 0 (e—€0)® _ (en+eq —2e0)fy
fle)=fo+ 2 3(ep — 80)(6q —€p)

d (e — eo)?, (27)

(e — €)®

0

4(en — eo)(eq — €0)

where e, (T), e4(T), pr(T), and py(T') are specified func-
tions of T, and f§ is the curvature of f at the top

of the barrier located at ey (ff’ < 0). Let us define
Ae =e; —ep > 0 and Ap = pp, — py. In terms of these

f (MeV/fm3)

_80 1 1 1 1 . 1 I

0 500 1000 1500 2000
e (MeV/fm3)

FIG. 2. The bulk free energy density at fixed tempera-
tures of T'=0.987,, T = T. and T = 1.027T,. The numerical
scales are obtained from a particular model of the QCD phase
transition as discussed in Sec. III.

variables
2 1/2
_enteg + 8 (Ae)? " i (Ae)? + (Ae)?
2 12Ap 12Ap 4 !
(28)

where the + (—) is chosen when Ap > 0 (Ap < 0) and

fd (eq — €0)*(eq — 2en + €o)

fo=—pqg+ 12 en — €p (29)
The first derivative of f is
iy Of _ fo(e—eo)(e—en)(e—e)
TO= 5 =" -~

Thus, if the location of the two minima and their depths
are given for fixed T', then only one free parameter f{
remains. In particular, this parameter determines the
barrier height, position, and curvature at all energy den-
sities:

f(e) = Y

(en — €o)(eq —

o lle—co)(e—en)

+(e —eg)(e —eq)
+(e—en)(e—eg)].  (31)

See Fig. 2 for illustrations of f(e) when T is greater than,
equal to, and less than 7,. Unless we can extract this
free-energy function from the Lagrangian in a more fun-
damental way we shall be content to use this parametriza-
tion in the following analyses.

C. Surface profile

For the remainder of this paper we restrict ourselves
to the case of idealized bubbles or droplets. That is, we
consider only the limit in which the nucleating fluctua-
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tion described by {7} is, indeed, a well-defined sphere
of the hadronic phase with radius R large compared to
the interface thickness or the correlation length ¢ (to be
defined below). In principle we need not make this re-
striction in the present theory. As we shall see, however,
this limit is the appropriate one in the cases of interest
here. By going to this limit we can do all of our calcula-
tions analytically instead of having to resort to numerical
methods.

The stationary point {7} is given in our model by
v(r) = 0 and e(r) = &(r), where & satisfies

8Fr
se(r)

For a spherical bubble of hadronic matter surrounded by
quark-gluon plasma at T' < T, the energy density & de-
pends only on the distance r from the center of the bub-
ble. Deep inside the bubble the energy density should be
ep; far away from the bubble the energy density should
be e4. The energy density profile &(r) then describes a
smooth transition from one phase to the other. As dis-
cussed above, we will assume that the surface is located
at a distance R from the center that is much greater
than the surface thickness. Analogous dropletlike solu-
tions for nonrelativistic matter with conserved particle
number were considered in Refs. [21, 22].
Using our parametrization of f(e) the static profile
equation becomes
[ > 2d

£a - "
K dr? +rdr]e+f0

_ . of
— 2 —
KV e+8é_0. (32)

(e—eo)(e—en)(E—eq) _
(en — eo0)(eq — €0)

(33)

We introduce a correlation length defined at the top of
the barrier by €2 = —K/f{/. Then

d2e 2de

e 2dz (e eo)(E—en)(E—e) _
dr?2  rdr

Blen —e)eg—e0) O B4

Let us find the behavior of the solution in each of three
regions: (i) the interior hadronic region r < R — &p; (ii)
the interface region around R; (iii) the exterior quark-
gluon plasma region r > R + &.

(i) In the interior of the bubble one can assume that
€ = ep + g1(r) where g1(r) is a small deviation from the
equilibrium hadronic energy density. g; should satisfy

d291 2 d91 —2
229 =0 35
drz r d'f‘ §h gl ’ ( )
where

€h = €3 (eq — e0)/Ae

defines the correlation length in the hadronic phase. The
solution of this equation is of the form

g1 = r™ [Aysinh(—r/£) + By cosh(r/¢)].

From the requirement that the solution be finite at the
origin we get B; = 0. In order to match onto the interface
region A; must be very small, proportional to e=R/¢x.

Then &(r) =~ ep throughout most of the interior.
(i) Near R we can write & = eg + go(r). Linearizing in
g2 leads to

d?gs . 2dgo

— — — —2 —
dr?2 = r dr +& 92 =0. (36)
The general solution is
r)=—sin| — | +—cos|{—) . 37
92(r) = Psin () + 2 eos (& (37)

We require that g2(R) = 0, which is equivalent to defining
the location of the surface by the equation &(R) = ep.
Thus the solution for € near the center of the bubble’s
surface is

— Az . <7‘——R)
€=e¢o+ —~sin & (38)

and A; > 0.

(iii) For the exterior the solution has the same func-
tional form as in the interior except that only Bz = 0 is
required by the boundary condition. The exterior solu-
tion is therefore

A
E=¢€q— Ts e/, (39)

where

€2 = &l(en — €0)/Ae

defines the correlation length in the QCD plasma and
Az > 0.

At the critical temperature f(en) = f(eq). Then the
free energy, Eq. (27), becomes symmetric, eg = (e +
€q)/2 and & = & = £3/2. In this case the interfacial
profile has a nice analytical solution in the planar (R —
00) limit:

e(z) = - Aetanh | — 40

é(z) =3 en + e, + Aetan (2_5;)] . (40)
Here the surface is located at £ = 0 with hadronic matter
on the left and QCD plasma on the right.

Suppose that a hadronic bubble has formed in the
QCD plasma at T < T, because of statistical fluctua-
tions. The change in free energy of the system is

AF = 4?“( fr = fo)R® + 4w R%, (41)

where o is the surface free energy. In our case, for baryon
free matter,

AF = %@q (T) — pn(T)|R? + 4r R0 (42)

The hadronic droplet is stationary if 9gAF = 0, which
leads to Laplace’s formula

PA(T) — pg(T) = E% - (43)

Thus the activation energy, in our approximation, is
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4
AF = §7raR2 ) (44)
The surface free energy can be calculated from our
parametrization of F;. For a planar interface or for
a sphere whose radius is much greater than its surface
thickness, the formula is [19]

o de\?
=K dr | — ] .
o /; N T ( dx) (45)
Inserting the solution for the planar interface at T, from
Eq. (40), this integral takes the form

_ (BN 1 1 K(Ae)?
U_K( 2 ) 2_5«;/—00 dzcosh4(z) 64

We can estimate the thickness of the planar interface,
2&p, as being of the order of the thermal de Broglie wave-
length for massless particles at the critical temperature

2w

(46)

260 = 3T 47
This yields
or1fm, {&~E~07fm, (48)

if T, =~ 200 MeV. According to lattice gauge theory simu-
lations with no dynamical quarks the surface free energy
is about [23, 24]

o~ 50 MeVfm™2 . (49)

The correlation length and the surface free energy deter-
mine the parameters —f' and K in the course-grained
free energy. In principle these parameters are tempera-
ture dependent. Their temperature dependence is, how-
ever, unknown to us. When numerical calculations are
made later in this paper we shall use these values inde-
pendent of T. To get an idea how bad this assumption
is, we can calculate the radius of a critical bubble at zero
temperature. From Eq. (43), and assuming the pressure
of the perturbative phase of QCD is smaller than the true
one by the bag constant B =~ (200 MeV)*, we get the ra-
dius to be R =~ 0.5 fm. This is a typical hadronic radius,
so perhaps the temperature dependence is in reality not
very strong.

IV. THE PREFACTOR

In this section we evaluate the exponential prefactor
in the nucleation rate. This prefactor is a product of
two terms: the statistical prefactor and the dynamical
prefactor. The statistical prefactor Qg is a measure of
both the available phase space as the system goes over the
saddle and of statistical fluctuations at the saddle relative
to the equilibrium states. The dynamical prefactor x
is the exponential growth rate of the bubble or droplet
sitting on the saddle. The latter is the more difficult to
calculate. We shall evaluate it using techniques exactly

analogous to those employed by Turski and Langer [11,
12].

A. Statistical prefactor

The general expression for the statistical prefactor was
given in Eq. (14). To evaluate it, we first consider the
eigenvalues of the matrix of second derivatives of F, the

Aa- The /\S,O) are eigenvalues of the operator

62F; 3 % f ,
PR = (—-KV2 + 3?3) sr—r').

(50)

Here by 8%f/ aeg we mean the second derivative of f with
respect to e at fixed temperature evaluated in the equilib-
rium quark-gluon phase. This is a measure of fluctuations
in the system and cannot be determined from knowledge
of the equation of state alone. Since the right side of Eq.
(50) depends on r only through V2, its eigenfunctions
are plane waves, with wave vectors q and eigenvalues
32
A9 =Kq?+ 6—e§-. (51)

There is also a set of eigenvalues, formally to be in-
cluded among the )\,(f ), which come from the kinetic term
Fk. In Ref. [12] it was concluded that these eigenvalues
are spurious; that is, they do not describe physically rel-
evant fluctuations and hence do not appear in the final
formula for any observable quantity. This is true in our
case as well.

At the saddle point, e(r) = &(r), the operator

82Fy o%f

be(r)de(r ') = (_KV2 + :9—52_> S(r—r’)

e=é(r)
(52)

is no longer translationally invariant because of the r
dependence of €. As has been discussed previously in Ref.
[21], the resulting spherically symmetric Schrodinger-like
eigenvalue equation has an s-wave ground state with a
radial eigenfunction proportional to dé/dr and a negative
eigenvalue

A~ —2K/R?. (53)

This eigenstate is associated with the instability of the
critical bubble against uniform expansions or contrac-
tions. The next states are the three p waves, with
eigenvalues A = 0, which occur because of the broken
translational symmetry. Then there are higher-order
partial waves with positive X corresponding to volume-
conserving deformations of the shape of the droplet. Fi-
nally, there is a continuum of nonlocalized eigenfunctions
of (52) starting at A = 92f/de2. These eigenfunctions
are similar to the states associated with the A(®) in that
they describe fluctuations in the bulk plasma, but here
these fluctuations are perturbed by the presence of the
bubble. As before, the eigenvalues associated with the
kinetic part of F' are spurious and can be disregarded.
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We can recognize the products over « in Eq. (14) as
representing fluctuation corrections to the mean-field ex-
cess free energy of the bubble. If we were to evaluate
AF using measured values of the surface energy and
thermodynamic potential, it would be inconsistent to in-
clude fluctuation corrections to AF in the prefactor Q.
Strictly speaking, the nucleation formula used here re-
quires that AF first be evaluated at the stationary point
obtained from Eq. (32), and then be corrected by the
fluctuation terms in p. But this procedure would im-
ply that the radius of the critical droplet be determined
by the ¢ given in Eq. (45), which is not necessarily the
same as the experimental surface free energy because of
the fluctuation corrections. What we shall do, instead, is
delete the explicit fluctuation terms in g, and interpret
o everywhere as the true surface energy; we shall make
a similar assumption concerning other thermodynamic
quantities that appear. This procedure possibly can be
justified by going beyond the Gaussian approximations
for n-space integrations which were used in deriving Eq.
(14); that is, by constructing a renormalized perturbation
expansion in the neighborhood of {7}. If this program
can be carried out, we might also be able to compute sys-
tematically curvature corrections to the surface energy.
These corrections will be omitted here, and we shall fo-
cus our attention on other ingredients of the nucleation
formula, particularly the dynamical prefactor. See also
Ref. [12] for additional comments on this aspect of the
analysis.

Note, now, that there are ap+1 = 4 more terms in the
product over the A than in that over the X, in Eq. (14).
This means that tﬁe logarithm of the combined products
is not precisely a free-energy difference. To see what is
happening here, it is useful to think in terms of a one-

to-one pairing between the )\g)) and the A. At the top

of the spectra (large positive A(®) and X) both kinds of
eigenvalues correspond to short-wavelength fluctuations
which extend throughout the volume of the system V.
We can pair these eigenvalues so that their contributions
cancel each other to the extent that the droplet volume
is negligible compared to the total volume of the system.
At the bottom of the continuum a finite set of A, which
correspond to localized deformations of the bubble, fall
appreciably below their associated A(®). Thus, by pair-
ing the A’s as described, the correction to AF remains
of order R? in the limit V' — oo, as it must. This pro-
cedure leaves four unpaired A(®)’s at the bottom of the
spectrum which are not accounted for by the revised AF'.

Specifically, we have
1 8%f\?
== = 54
(27rT 663) (54)

4 A(O)

Jim, (ﬁ)
B=1

remaining as the sole explicit contribution from the com-

plicated products over the o Eq. (14).

Having written down the value for A; in Eq. (53), we
need only evaluate the factor V to complete the calcula-
tion of €. The formula for V has been given in Refs.
[21,2]. Tt is

1/2
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V=v [% / dr(Vé)2]3/2 —v [i’%ﬁrﬂ . (55)

Here we have used (45) for ¢ and that dé/dr is apprecia-
ble only in a narrow region near r = R for the bubble.
The resulting expression for Qg is

o _y (4B o\Y® (rTR2NY? (1 925\
°T T\ 3K K orT e2) -

(56)

Identifying the correlation length &; in the quark-gluon
phase as in Sec. III by

(57)

we can write (56) in the form

2 ,0\%2 (R\*
Q=——(= - W 58
°T 33 (7) (&) (58
If one considers the nucleation rate to be per unit volume
then the volume V should be divided out of the above
expression. Usually in this paper we do mean the rate

per unit volume and so Qy will not include the factor V
in subsequent discussion.

B. Dynamical prefactor

The dynamical prefactor x should be obtained as the
positive eigenvalue of the matrix given in Eq. (16). Us-
ing the mobility matrix, Egs. (21), and the fact that the
bubble solution is spherically symmetric and satisfies Eq.
(32), one finds that x = 0. This means that the bubble
does not grow. The reason was discussed by Langer and
Turski [12]. In order for a bubble (or droplet) to grow,
latent heat must be transported away from the surface
region. For the nonrelativistic systems they were consid-
ering, they discovered that heat conduction was neces-
sary to allow for growth. This eventually led to Eq. (4),
which says that & is proportional to the thermal conduc-
tivity A. It is clear that to get our bubble to grow we
must include the effects of dissipation on the dynamics.

In relativistic dissipative fluid dynamics one adds new
terms to the stress-energy-momentum tensor and to the
baryon current as follows [18, 25]:

TH = —pg"” + (p + e)uru” + ATH, (59)

N¥ = nut + ANH. (60)

In the absence of dissipation AT*” and AN* are both
zero, and u* is the flow four-velocity of the matter. When
dissipation is present one has a choice of defining u#* to
be the velocity of baryon flow or the velocity of energy
flow. These are known as the Eckart and Landau-Lifshitz
approaches, respectively. In the Eckart approach AN*
is zero by definition. Then AT*Y is a linear combination
of a shear tensor, a projection tensor on the hyperplane
normal to u#, and a heat flow vector, with coefficients be-
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ing the shear viscosity 7, the bulk viscosity ¢, and heat
conductivity A, respectively. In the Landau-Lifshitz ap-
proach AT*#” does not have the term involving the ther-
mal conductivity; rather, AN* is nonzero and is in fact
proportional to A. These two approaches are completely
equivalent and describe the same physics. However, the
systems we are dealing with in this paper have no net
baryon number, no baryon chemical potential, and so the
Eckart approach is indeterminate. We must define u* to
be the velocity of energy flow. The thermal conductivity
simply is not defined because there is no net baryon den-
sity to define a frame of reference with respect to which
energy can be conducted.

The contribution to the stress-energy-momentum ten-
sor due to dissipation is

ATy = = 1(Outy + Bpuy — wuu' O — uyu'd,uy)
o (e %n)(aub)(gw, — Uyl . (61)

The coefficients of shear and bulk viscosity must be pos-
itive from the requirement that the entropy should not
decrease. In fact, the divergence of the entropy current
is

B, (sub) = — L ATHO, " | (62)
(] T ©

from which one can calculate the total entropy change
of the system. This equation is a direct consequence of
the equations of motion, which are just the usual ones
of conservation of energy and momentum, 9,7 = 0.
In general in our applications the flow three-velocity is
small compared to the speed of light. The relativistic
treatment is required mainly by the fact that the pressure
is comparable to the energy density, and by the absence of
a net baryon number to define the motion of the matter.

We now want to determine the equations of motion
of dissipative fluid dynamics for small deviations about
the stationary configuration e(r,t) = &(r),v(r,t) = 0.
To that end we write e = &(r) + v(r,t) and v = v(r,t)
and linearize the full equations of motion, including the
gradient term Fk, in terms of v and v:

Ov=-V-M=-V.(av), (63)

By (wv) = VE[-KV2u + f"v] + V[(¢ +47/3)V - v] .
(64)

Here and after when we write f, f/, or f” we intend that
they be evaluated at the stationary configuration, so that
they are complicated functions of r.

To determine « we look for radial perturbations of the
form

v(r,t) = v(r)e* , (65)

v(r,t) = v(r)fe" . (66)

These radial deviations are governed by the equations of
motion

w(r) = ~ 2 [Pou(r)] (67)
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and
_ de d 24 "
nwv(r) = % [—K (-d?é- + .‘F-(E) +f ] l/(’f')
d 1d, ,
v g |cramms ] e
Eliminating v(r) using the first equation we obtain a lin-

ear, third-order differential equation for the velocity pro-
file:

de[_(d* 2d
2= _ il I Y
K*ou(r) = -K (dr2 + rdr) f ]

X [:—2% [r2wv(7‘)]]

+ g R+ an 5 2] (e

Self-consistent solutions of this equation, together with
the boundary conditions, should provide us with the al-
lowed values of k. Unfortunately, this is not a trivial
equation to solve. Therefore we will first analyze the be-
havior of the solution in three regions: the interior of the
bubble, the exterior of the bubble, and the surface re-
gion. However, we first note a constraint which follows
from Eq. (67) together with the conditions that v(r) van-
ish at the origin and at infinity, namely

/oo drarriv(r) =0. (70)
0

In the interior region, from the origin to within a few
correlation lengths of the surface, recall that & ~const.
Then the first term on the right side of Eq. (69) vanishes
and the equation for v(r) reduces to

20" 4+ 2rv' — (a2r? +2)v =0, (71)

where a? = kwp /(¢ +4n/3). The general solution of this
Forsyth-Jacobssthal differential equation is

v(r)=A(9r£—Tl2)e
(72)

where A and B are constants. We must require that v
and v’ vanish at r = 0. Consequently both A and B are
zero, so that the velocity vanishes in the interior of the
bubble. (This is true to the extent that é=const in this
region.)

In the exterior region, far outside the surface, the
energy and enthalpy densities approach their equilib-
rium values in the bulk quark-gluon phase, € — e, and
W — wg. Then the first term on the right side of Eq. (69)
can again be neglected as a first approximation. The so-
lution with the proper large-r behavior is

o(r) =C (93 + -:3) e (73)

where C is a constant and a2 = xkwy/(¢ + 4n/3).
In the region of the surface, r ~ R, the stationary con-
figuration &(r) is varying rapidly, and dé/dr is nonzero.
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Therefore, unlike the deep interior or exterior of the bub-
ble, the first term on the right side of Eq. (69) cannot be
dropped. In fact, as we shall see, k is proportional to
the viscosity which we assume to be very small. Then
the other two terms in Eq. (69) are of second order in
the viscosity, and we shall ignore them. Thus, to good
approximation, in the surface region v(r) satisfies

[-KV2+ f"v(r)=0. (74)

Given that &(r) satisfies Eq. (32), and that v(r) must go
to zero at the origin and at infinity, the solution to the
above equation is

de
~— 75
vr) ~ 2 (75)
Together with (67) this implies that in the surface region
D T, pde
v(r) = rzw(r)/o dr'r g (76)

where D is a constant. For distances r exceeding the
bubble radius R by more than a few correlation lengths,
but less than 2R, Eq. (76) can be integrated to give

2
v(r) &~ DAGR—

. 77
wy T2 (77)

Remember, as always, we are assuming weak to moderate
supercooling so that R > £.

Let us summarize what we have learned of the general
behavior of v(r). In the interior, up to a few correla-
tion lengths of the surface, v is essentially zero. It rises
rapidly and reaches a maximum somewhere in the sur-
face. A few correlation lengths outside the surface v(r)
begins to fall like r~2, according to Eq. (77). Eventually
v(r) falls exponentially according to Eq. (73). If (77) and
(73) are to join together smoothly at, say, 10 correlation
lengths outside the surface, it must be that a;, < R71.
Now one could entertain the possibility of smoothly join-
ing together (73) and (77) to get an approximation to
the exact solution v(r) of Eq. (69). There are three un-
knowns: the amplitudes C and D, and the decay constant
aq (or equivalently x, which is what we are after in the
end). The ratio C/D can be determined from the con-
dition (70). The magnitudes of C and D are irrelevant.
This still does not suffice to determine . Therefore we
turn to a different way of analyzing the growth of the
bubble. The above analysis is not wasted, though, as we
shall see.

It is necessary to distinguish between the actual radius
of the bubble, R, and the radius of the bubble in the
stationary or metastable configuration, R., determined
by Laplace’s formula (43). If the stationary bubble is
perturbed only slightly then the energy density profile
will only change by a minute amount. Transport of heat
away from the surface will be a very slow process be-
cause of the assumed smallness of the viscosity. As the
bubble slowly begins to expand, the energy density pro-
file will not change much, only the profile needs to be
moved out a small distance dR in a time dt. The en-
ergy flux density (energy per unit area per unit time)

which must be transported outwards is AwdR/dt. Here
we do not distinguish between the difference of energy
densities and the difference in enthalpy densities of the
two bulk phases because the pressure difference is small
compared to the energy density differences; we shall refer
to them interchangeably as the latent heat. This energy
flux must be balanced by that due to dissipation, which
is —(¢+4n/3)vdv/dr [18]. We evaluate the flow velocity
just outside the surface of the bubble. According to Eq.
(77) the derivative is dv/dr ~ —2v/R. Therefore energy
balance gives us the relation

dR v?

The outward momentum flux density (momentum per
unit area per unit time) is Awv?. (This neglects a small
contribution from viscous terms which can be considered
a higher-order effect.) The momentum flux density must
be equated to the force per unit area which comes from
the Laplace formula

29, ( L _1
Awv*® =20 <R* R) . (79)
Again, the velocity is to be evaluated just outside the
surface.

The Egs. (78) and (79) are not identical to the
Rankine-Hugoniot-Taub relations [26, 27] for discontinu-
ities across a sharp surface because the surface under
consideration is curved and because the velocity is not
constant on the outside.

Using both energy and momentum conservation we can
eliminate the velocity and solve for dR/dt:

dR _ 4(¢ +4n/3)o(R - R,)
dt (Aw)? R?R,

This is a differential equation for R(t) from which we can
read off the value of . It is

_ 40(¢+4n/3)
" T T(aw) R

(80)

(81)

This may be considered the principal result of our paper.

Note that Eq. (81) justifies a posteriori our assertion
that a; < R™!. Note also the similarity of Eq. (81) to the
result of Langer and Turski, Eq. (4). In the relativistic
case the linear combination of viscosity coefficients re-
places the thermal conductivity times the temperature,
and there is an extra factor of 2 because here the operator
d/dr acts on the function 1/7% while for them it acts on
the function 1/r. Actually, it may be worthwhile to ex-
tend the nonrelativistic treatment to include viscosity as
well as heat conduction. To our knowledge this has never
been done in the literature. Our result suggests that vis-
cosity is as important as heat conduction in allowing the
initial growth of a bubble or droplet. It may even be
possible to find real materials in which heat conduction
is anomalously small, so that the growth rate would be
dominated by viscous forces.

For an ultrarelativistic gas the coefficients of viscosity
can be estimated as
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3 Oe

where 7 is the collision time, and a is the Stefan-
Boltzmann constant, defined such that the energy density
is e = aT* [25]. Since the square of the sound velocity
(8p/de) is close to  for ultrarelativistic gases, the bulk
viscosity ¢ is usually much smaller than the shear viscos-
ity n.

Recently [28] the shear viscosity of quark-gluon plasma
was estimated in leading order of QCD. In this case the
viscosity is an additive sum of the quark and gluon vis-
cosities, 7 = 13 +174. Both components are given in terms
of viscous relaxation times, 7, and 74, by Eq. (82). For a
zero baryon chemical potential

2
n= %aT‘iT and ¢ =4aT*r [-1— - (@)] , (82)

N
ol =411 T(1+?f> a? |lnasl , (83)

where o, = g?/4r is the QCD fine structure constant.
The two terms 1 and N¢/6 come from the contribution
of gluon-gluon and gluon-quark scatterings. The viscous
relaxation rate for quarks is

7t = 03971, (84)

Around the critical temperature of 200 MeV, a;, has been
estimated to be about 0.23 [29]. The relaxation times at
T = 200 MeV thus are on the order of 1 fm/c. For QCD
with 2 flavors the viscosity is

11278
"7 @n(lay)
The possibilities and difficulties of evaluating transport

coefficients in lattice QCD were pointed out by Karsch
and Wyld [30].

(85)

V. DISCUSSION

Inserting Eqgs. (58) and (81) into Eq. (2) gives us the
nucleation rate

= é (1)3/2 (g +4n‘1/3)R*e—AF/T
m \3T £ (Aw)? )

where AF = 4moR?/3 and R, is given by the Laplace
formula (43). This is the probability per unit volume
per unit time to nucleate a hadronic bubble out of the
QCD plasma. If one considers nucleating a QCD plasma
droplet in a hadronic gas instead, one just needs to eval-
uate the correlation length and the viscosities in the
hadronic phase rather than the quark-gluon phase. At
the critical temperature, R, — 00, and the rate vanishes
because of the exponential. The system must supercool
at least a minute amount in order that the rate attain
a finite value. Note that at the critical temperature the
preexponential factor is linearly divergent in R. which is
qualitatively unlike the simple dimensionless estimates of
Egs. (6).

In determining the nucleation rate for hadronic bub-
bles in a supercooled quark-gluon plasma we ignore the
relatively small variation of certain quantities with tem-

(86)

perature. We take

o =50 MeV/fm® , (87)

a, =023, (88)
£ =0.7fm, (89)
BY4 =235 MeV . (90)

Since we are assuming massless pions, and massless
quarks and gluons, with the deconfinement dynamics
modeled by the bag constant, we have

3r?_,
Ph= —ga'T , (91)
377r2 4
6812, ,
= — . 93
Aw VT T (93)

Finally, the stationary bubble radius is given by the
Laplace formula to be

20
pr(T) —pg(T)

In Fig. 3 we plot the radius of the critical size bubble
as a function of temperature. As the critical temper-
ature is approached the radius R, diverges. However,
it quickly reduces to typical hadronic sizes as the tem-
perature falls. When T/7.=99.5%, R.=12.7 fm; when
T/T,=97%, R.=2.2 fm. When the temperature has
fallen to 90% of its critical value, R, is about 0.73 fm;
this is comparable to the correlation length &, and to
the surface thickness of the bubble. At this point one
could say that many of our approximations have broken
down. This is probably the limit where the notion of ho-
mogeneous nucleation theory can be applied. For lower
temperatures we suspect that spinodal decomposition be-
comes the primary means of driving the phase transition.

R.(T) = (04)

102 F T L T T T T T L
10 — —
- E
e [ ]
L= L 4
x

o - -
1 B =

101 L L A L | 1 Il ! i
0.9 0.95 1.0

T/Te
FIG. 3. The radius of a critical size hadronic bubble in

a supercooled quark-gluon plasma. It diverges at the critical
temperature.
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FIG. 4. The exponential prefactor Iy from Eq. (86) using
the numerical estimates given in the text is plotted as a func-
tion of temperature and compared to the simple dimensional
estimates T and T¢.

Whether the transition is completed before the temper-
ature has fallen this much depends upon the expansion
time scale of the system. Undoubtedly the transition
would have been completed well before T'/T,=90% in the

early Universe because of the relatively slow expansion,
about 1078 sec. For ultrarelativistic nuclear collisions
the answer is so far unclear.

In Fig. 4 we show the preexponential factor calculated
in this paper as a function of temperature. For com-
parison we also plot the simple dimensionless estimates
T2 and T*. It is clear that neither of the latter two are
good approximations of the former. The preexponential
factor diverges as the critical temperature is approached
because it is proportional to R,. It is very temperature
dependent, especially near T,. However, it is important
to remember that the exponential drives the full rate to
zero at 1.

This completes our calculation and analysis of the ther-
mal nucleation rate for systems with zero or negligibly
small baryon number. In a subsequent paper we shall
use it in a set of rate equations for the time evolution of
the QCD phase transition in the early Universe and in
ultrarelativistic nuclear collisions.
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