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Quantum field theory allows violation of the weak energy condition in the form of locally negative en-
ergy densities and fluxes. If the laws of physics place no restrictions on the extent of energy condition
breakdown, then dramatic violations of the second law of thermodynamics, causality, and cosmic cen-
sorship might become possible. In this paper, we explore the possibility that manipulation of negative
energy fluxes could lead to the production of naked singularities. This might be accomplished by inject-
ing a negative energy flux into an extreme (Q =M) charged black hole. However, quantum field theory
requires that an initial negative energy flux due to quantum coherence eFects must be followed by a more
than compensating positive flux. Thus any singularity resulting from this process would be only "tern-
porarily" naked. In an earlier publication, we dubbed the occurrence of a naked singularity with limited
duration "cosmic flashing. " There, in a two-dimensional analysis where the fluxes were produced by
moving mirrors, we showed that quantum field theory imposed limits on the magnitude and duration of
the negative energy flux in the form of an uncertainty-principle-type inequality. If ~I'M~ is the magni-
tude of the change in the mass of the black hole due to the absorption of negative energy, and hT is the
effective lifetime of the naked singularity thus produced, then we showed that ~ixM~AT & 1, in units
where c =A'=1. The current paper analyzes the behavior of a minimally coupled, quantized, massless
scalar field propagating in a four-dimensional extreme Reissner-Nordstrom black-hole background. In
this case a similar inequality is shown to hold for a general negative energy flux, irrespective of how the
flux is produced. A numerical analysis shows that the angular-momentum-dependent potential barrier
around the black hole screens out the contributions to the flux from the higher I modes. We estimate the
metric perturbations produced by the negative energy flux. In an order of magnitude estimate, we show
that these are smaller than the metric fluctuations expected from quantum gravity. Therefore we con-
clude that quantum field theory prevents an unambiguous violation of cosmic censorship.

PACS number(s): 97.60.Lf, 03.70.+k, 04.60.+n

I. INTRODUCTION

A remarkable feature of quantum field theory is that it
allows states in which the local energy density can be-
come negative [1]. This implies that at least local viola-
tions of the "weak energy condition" are permitted by
quantum field theory. The weak energy condition (WEC)
states that T„„.U" U'~0, for all timelike or null vectors
U". This is the weakest of all the "standard" energy con-
ditions [2] used in proving singularity theorems and it is
obeyed by known forms of classical matter. Violations of
the WEC in quantum field theory must be taken serious-
ly, however, because of examples such as the Casimir
effect and squeezed states, which have been experimental-
ly confirmed [3]. Other examples of theoretical processes
which involve negative energy densities and/or cruxes in-
clude radiation by moving mirrors [4] and black-hole eva-
poration [5]. On the other hand, if the laws of physics
impose no limits on the degree of energy condition viola-
tion then the result could be possible gross violations of
the second law of thermodynamics, causality, and cosmic
censorship. The fact that the observed behavior of the
physical world is consistent with at least the first two of

these principles suggests that some such constraints exist.
One possible form of restrictions are "averaged energy

conditions, " i.e., energy conditions suitably averaged
over null or timelike curves [6—8]. It can be shown [8],
for example, that Penrose's singularity theorem (which
uses only the WEC) will still hold if the WEC is replaced
with the "averaged weak energy condition" (AWEC).
(As used in Ref. [8], this condition effectively says that

f T„K"K'dA ~0, when averaged over a half-infinite

null geodesic y. ) The extent to which quantum field

theory enforces the AWEC is not yet definitely known,
but it has been shown to hold in various special cases
[9—11]. However, recent results indicate that it may not
hold in an arbitrary curved four-dimensional spacetime
[11]. The current resurgence of interest in averaged ener-

gy conditions stems not only from their role in singularity
theorems, but also from the recent observation that viola-
tions of the AWEC are required to maintain traversable
wormholes [12]. These wormholes have the disturbing
(or intriguing, depending on one's point of view) property
of being generically transformable into time machines
[13,14].

Another type of possible restrictions on the behavior of
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negative energy are "quantum inequalities. " These have
taken the form of uncertainty-principle-type inequalities
on the magnitude and duration of negative energy fluxes
due to quantum coherence effects. (The integral of the
energy flux in an inertial frame over all time is non-
negative, but this alone does not constrain the magnitude
and duration of the negative-energy part of the flux. ) It
was shown some time ago [15] that negative energy fluxes
seen by inertial observers in two-dimensional flat space-
times appear to obey an inequality of the form

where ~F~ is the average magnitude of the negative flux
and 6T is its duration. Let

~
b,E

~

=
~
F~ 6T be the amount

of negative energy passing by a fixed spatial position in a
time b, T. Equation (1.1) implies

I~El»&1, (1.2)

and hence
~
b T

~
is less than the quantum uncertainty in

the energy, (b, T) ', on the time scale ~b T~. As original-
ly formulated, the proof of this inequality was limited to
only certain classes of quantum states in two-dimensional
spacetimes. However, recently a more precise version of
this type of inequality has been proven to hold for all
quantum states of a free massless scalar field in both two-
and four-dimensional flat spacetime [16). The inequality
may be expressed as an integral of the flux multiplied by a
sampling function. This inequality will be discussed in
more detail in Sec. II. This relation is of the kind re-
quired to prevent large-scale violations of the second law
of thermodynamics.

In at least some circumstances quantum inequalities
seem to be stronger constraints on the behavior of nega-
tive energy fluxes than averaged energy conditions. For
example, consider an inertial observer in two-dimensional
Minkowski spacetime at fixed position. At time t =0, a
5-function pulse of negative ( —) energy massless scalar
radiation traveling along the +x axis crosses the
observer's world line, accompanied by a subsequent posi-
tive (+) energy 5-function pulse. [This would seem to
represent the most efficient separation of ( —) and (+) en-
ergy. ] If AWEC holds when applied to this observer's
(timelike) geodesic [17], it would imply that the initial
( —) energy pulse must be followed at some time later by
compensating (+) energy. However, AWEC would seem
to place no constraint on when the (+) energy has to ar-
rive. By contrast, it can be shown [16] that quantum ine-
qualities imply that there exists a maximum time separa-
tion between the two pulses which is within the limits al-
lowed by the uncertainty principle. This constraint re-
quires the (+) energy to arrive within a time I/~b, E~,
where

~
hE

~
is the magnitude of the amount of ( —) ener-

gy transmitted.
A useful thought experiment to test whether ( —) ener-

gy fluxes could be manipulated to produce large-scale
macroscopic effects is to consider a ( —) energy flux of
massless scalar radiation injected into an extreme
(Q =M) charged black hole. An inflnitesimal increase in
the charge Q (or a decrease in the tnass M) would destroy
the hole and create a Q & M naked singularity spacetime,

in violation of the cosmic censorship hypothesis. One
might think that such a situation could be realized by
dropping or firing charged classical test particles into the
hole to increase Q above the critical limit. Interestingly,
this turns out not to be the case. It was shown some time
ago [18.,19] that in these scenarios either a dropped test
particle will always be repelled by the (like) charge of the
hole, or the increase in mass produced by an injected test
particle is always enough to o8'set the increase in charge.
Similar results were found for extreme (a =M) rotating
black holes. We can imagine repeating the above thought
experiments, replacing the test particles with fluxes of
( —} energy. Here one is using the quantum properties of
the matter fields to lower the mass of the hole, while
keeping its charge fixed [20] (since the scalar radiation
carries no charge). Classically any amount of (

—) energy
injected into the hole would be suScient to create a
naked singularity. Figure 1 shows the spacetime of an
eternal extreme (Q=M} charged black hole. It was ar-
gued in Ref. [21] that this spacetime could be regarded as
the limit of the more realistic Q &M black-hole space-
times formed by gravitational collapse, the limit in which
the cosmic censorship hypothesis becomes most vulner-
able. An inspection of Fig. 1 shows that an infinitesimal
perturbation of the spacetime could allow a null ray to
connect the singularity with future null infinity. In this
case, it is not immediately obvious as to what mechanism
might prevent a violation of cosmic censorship.

In an earlier paper [21], we studied negative energy
fluxes produced by a moving mirror in two-dimensional
black-hole spacetimes. There it was shown that, for
physically reasonable mirror trajectories, any initial ( —

)

energy flux must be followed by a more than compensat-
ing (+) energy flux. This implies that any naked singu-

r=0

FIG. 1. The spacetime of an eternal, extreme (M=Q)
Reissner-Nordstrom black hole. Here 0+ is the future event
horizon, the point I represents future timelike infinity, and
r =0 is the (timelike) singularity. The 45 line above I+ is a
Cauchy horizon; the spacetime may be extended beyond this
line, although this is not shown in the figure.
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~SM~ST & 1 . (1.3)

Surprisingly, our result did not depend on the initial dis-
tance of the mirror from the hole [22]. The change in the
mass of the hole, due to the absorption of the ( —

) energy
flux, is below the scale of the normal quantum fluctua-
tions of the hole's mass expected from the uncertainty
principle on the time scale AT. We therefore concluded
that cosmic flashing would not be observable, since it
would be "lost" in the background noise of quantum fluc-
tuations.

The most serious drawback of our previous analysis is
the two dimensionality of the model. The mirror is con-
strained to move in only one spatial dimension. It must
therefore either fall into the black hole, in which case one

r=M

larity created in this process would have a finite lifetime.
We called the production of a naked singularity with lim-
ited duration "cosmic flashing. " The limiting case, illus-
trated in Fig. 2, is obtained by using 5-function pulses of
(
—

) and (+) energy which are separated by a time inter-
val b, T (as measured by an observer at infinity). The best
chance of observing cosmic flashing is to make hT as
large as possible. This can be done by a suitable choice of
mirror trajectory. Let the magnitude of the change in the
mass of the black hole due to the absorption of the ( —)

energy Ilux be ~b.M ~, and let b, T denote the eff'ective life-
time of the naked singularity. (It can be shown [21] that
the latter is the same as the time interval between the
pulses. ) It was discovered that there exists a quantum in-

equality in this case also, similar to that in flat spacetime,
and given by

has to take into account the (+) mass of the mirror, or it
must stop before crossing the horizon. There is no poten-
tial barrier around the black hole in two dimensions, so
one cannot model wave scattering off the hole. Lastly,
there are no Einstein equations in two dimensions so that
one cannot directly tie changes in mass to changes in
spacetime geometry. It is conceivable that in four dimen-
sions one could violate inequality (1.3) by superposing
wave modes with different angular momentum quantum
number I. Although each individual mode might obey
the inequality, the combination need not. To overcome
these diSculties, a more general analysis is required.

In the present paper, we analyze a minimally coupled
massless scalar field propagating in a four-dimensional
extreme Reissner-Nordstrom black-hole background.
One can take the point of view that any allowed quantum
state of the field should be physically realizable by some
mechanism. Moving mirrors simply provide one such
method for generating states that have associated (

—
) en-

ergy cruxes. Unfortunately, the radiation from a moving
mirror in four dimensions is not known exactly even in
flat spacetime, except in special simplified cases. There-
fore, in this paper we will consider ( —) energy Iluxes in
general, without regard to how they are produced. By
generalizing the formalism of Ref. [16], we demonstrate
the existence of a bound on the integrated (

—
) energy

flux. Our numerical analysis shows that the angular-
momentum-dependent potential barrier screens out the
higher l modes, and leads to an inequality of the form of
Eq. (1.3). This discussion is presented in Sec. II. In Sec.
III we show, in an order of magnitude estimate, that the
metric perturbations produced by (

—
) energy are smaller

than the metric fluctuations expected from quantum
gravity. This implies that the spacetime region in which
cosmic flashing occurs is unavoidably smeared" by
quantum effects. Thus once again our conclusion is that
quantum field theory prevents an unambiguous observa-
tion of a violation of cosmic censorship. We again stress
that our conclusion is independent of how the ( —) ener-

gy flux is produced. In passing, we also note that our
current results, as well as our earlier two-dimensional
mirror results, do not depend on a particular renormal-
ization of the stress-energy tensor. This is because we

work only with the "flux" components of the stress ten-
sor which are finite without renormalization. Our metric
convention is ( —,+,+, +) and, unless otherwise noted,
we work in units where 6 =c =6= 1.

II. LIMITS ON COSMIC FLASHING

A. Back reaction in the Reissner-Nordstrom spacetime

FIG. 2. A cosmic flashing spacetime. A ( —) energy pulse at
advanced time v =v, converts an M = Q Reissner-Nordstrom
metric into an M & Q metric; a (+) energy pulse at v =v, con-
verts it into an M )Q metric. Between retarded time u =u~
and u =u2, outgoing null rays from the singularity reach future
nu11 infinity. The future horizon H+ is the u =u2 line. Here
the pulses are depicted as originating from past null infinity.

We wish to consider a Reissner-Nordstrom black hole
for which the metric is

ds = C(r)dt +C '(r)d—r +r (d8 +sin Od&p ),
(2.&)

where C ( r ) = ( 1 2M /r +Q—/r ). Suppose that a quan-
tized field propagates on this background for which the
renormalized energy-momentum tensor is denoted by
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(T„). In general there will be a flux of energy across
the black hole's horizon, causing a change in mass given
by

M=F= f (T")r dQ . (2.2)

I'=E= T, " r2 n, (2.5)

which is the second half of Eq. (2.2). The Reissner-
Nordstrom metric, Eq. (2.1), is a solution of Eq. (2.3) only
if the right-hand side of the latter equation contains just a
contribution from the classical electromagnetic field of
the black hole, which we here take to be T„". If there is a
flow of energy into or out of the black hole, the mass pa-
rameter M will become time dependent. If Q remains
fixed, we may take the metric to be of the form of Eq.
(2.1},but with C =C(r, t} and M a function of time. The
relevant component of the Einstein tensor is

Although this relation may seem obvious, it is instructive
to derive it from the semiclassical Einstein equation

G„„=8m ( T„"„+( Tq, ) ) . (2.3)

Here T„" is the energy-momentum tensor for classical
matter. The energy as measured at infinity absorbed by
the black hole is defined by

Z= f &T„.)PdX", (2.4)

where P is the timelike Killing vector and d X" is the
area element of the three-dimensional hyper surface
defined by the outer horizon of the black hole. Here we
are assuming that the fractional change in M is small
over the time scale I, the light-travel time across the
black hole. Therefore the metric is approximately
Reissner-Nordstrom and hence has a timelike Killing
vector. The timelike Killing vector has the explicit form

P=5",. The area element may be expressed as
dX"=n "dX, where n"=5'„C' is the unit normal in the
radial direction, and d X=C'~ r d 0 dt is the scalar area
element in a hypersurface of constant r. From these
facts, and taking a time derivative of Eq. (2.4), we can ex-
press the energy Aux into the black hole as

has solutions which we take to have the form

r 4' (2.9)

Here the I; (O, y) are the usual spherical harmonics,
=1 if m is odd and g =i if m is even, and 5„I is a

phase which will be defined below. The radial mode
functions Ui„&(r) are solutions of the equation

d U
eff+(co —V )U=O, (2.10)

where V,ff is the effective potential given by

2(Mr —
Q ) l(l+1)

V,s —C r
4 2r

(2.1 1)

(r M)
l l

2M(r —M)
eff

7" 2
(2.12)

The maximum of this potential occurs at r =2M for all l
and has the value

21(l + 1)+1

32M
(2.13)

The mode label A, takes on two values (+) and (
—).

The modes are defined so that the (+) modes have no
component which is outgoing from the past horizon, and
the ( —) modes have no component which is incoming
from past null infinity. The asymptotic forms of the radi-
al mode functions near the horizons (r'~ —~ ) and at
large distances (r'~ ao ) are given by

U +col —i urB Ie
(2.14)

and by

The independent variable r* in Eq. (2.10) is the usual tor-
toise coordinate for which r"=fC '(r)dr The. case
which is of particular interest to us is the extreme Q =M
black hole for which

2M
r2

The semiclassical Einstein equation tells us that

(2.6)
U „,-' ~ )fc+A'e Nl T —+ —oo

(2. 15)

(Tr) G r1

8m'
(2.7)

as the (rt) component of T„" vanishes. If we insert into
this relation Eq. (2.5), we discover that F =M, which is
the first half of Eq. (2.2).

8. Scalar Seld on the Reissner-Nordstrom background

/=0 (2.8)

We are interested in a massless scalar field, P, propaga-
ting on the Reissner-Nordstrom background. The wave
equation

Here A
&

and B
&

are the reAection and transmission
coefficients, respectively, for the (+) mode, and the
primed quantities are the corresponding coeScients for
the ( —) mode. The (+) mode is a wave which is incom-
ing from past null infinity, with a transmitted portion in-
going on the future horizon and a reflected portion which
is outgoing to future null infinity. The ( —) mode is
outcoming from the past horizon, with a transmitted por-
tion outgoing to future null infinity and a reflected por-
tion which is ingoing on the future horizon. We may see
that the (+) and ( —) modes are orthogonal to one
another by regarding them as the limits of wave-packet
modes. At early times, any (+) mode will be localized at
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large distances (r*~ 0D ), whereas the ( —) modes will be
localized near the horizon, and hence the overlap be-
tween the two must vanish. The phase 5 l which appears
in the definition of the mode functions is the phase shift
for the (+) mode transmitted wave:

8,=/8 (/e
' (2.16)

We now wish to regard P as a quantized field propaga-
ting on the Reissner-Nordstrom background. The mode
functions fi I have been normalized so as to have unit
Klein-Gordon norm. Thus we may expand the quantized
field P in terms of creation and annihilation operators as

f), j +&i, I fi. I (2.17)
lcolm

Here gi i denotes an integral on cu and a discrete sum

on the remaining mode labels. The energy-momentum
tensor for the scalar field is

(2.18)

The energy flux across the future horizon of the black
hole is given by Eq. (2.2) with the expectation value taken
in the quantum state of the field. We now wish to impose
the restriction on this state that only (+) mode quanta be
excited. This means that we require that
(a .1.~ a I~ & =0 and (a I a I & =0, and hencea a
only A, =+ modes will contribute to F. Physically, this is
the requirement that there be no particles emerging from
the past horizon, and that the only particles that can
cross the future horizon are those that have come from
past null infinity. Near the future horizon, we may now
write

&T "&=2Re g ui~'(&&+ I &+ I &f+. i f i &&+ —
I &+ I &f+ I f+ I ) .

a)lm
co'l'm '

(2.19)

Here we have used the fact that f+„I „=C 'f, , — icoC 'f—+ I near the future horizon. If we now insert this
expression into Eq. (2.2), use the orthogonality relations for the spherical harmonics

(2.20)

and

f ~i~~i~dII=( 1) &n&m,
—m- (2.21)

and the asymptotic form of the ingoing radial functions, Eq. (2.14), the result is

F= Re g vcoci) i8 iB Ii((Q i 0 I &e +(0 i 0 i &8 ) .
277 Il

(2.22)

Here v = t + r * is the advanced time coordinate, and the
label + has been dropped from the a l

's.
Strictly speaking, the above discussion (and the in-

equality on F to be derived below) applies only to the ex-
treme, Q =M, Reissner-Nordstrom black hole. A nonex-
treme black hole will also have a Hawking radiation con-
tribution to the flux. However, even in the nonextreme
case, our analysis could be easily adapted to apply to that
portion of the flux which is injected into the black hole
from large distances.

C. A constraint on negative energy
fluxes into the black hole

If the quantum state is such that F is instantaneously
negative, we have a negative energy flux into the black
hole, and according to Eq. (2.2), the black hole's mass
will decrease. The integral of F over all u is necessarily
positive for any nonvacuum state, i.e.,

F v dv=Re co8„l a l a„l )0, 2.23
a)lm

since a l a„l is the number operator for mode ~lm.
However, this constraint alone is insufficient to prevent
an observation of cosmic flashing. Our goal will be to es-
tablish an inequality which limits the magnitude and
duration of a negative energy flux. The approach adopt-
ed here is similar to that used in Ref. [16] to prove ine-
qualities which constrain negative energy fluxes in flat
spacetime. Define an integrated energy flux P by

uo f F(u)du
U2+ Uo~

(2.24)

Here Uo is an arbitrary time interval. The function
uo/[ir(u + uo ) ] is a normalized sampling function with a
characteristic width uo. We can think of Puo as being the
average energy observed by a detector which measures
the flux for a time Uo. The particular functional form for
the sampling function which we have chosen is con-
venient, but one could presumably obtain similar results
with other functions.

From Eqs. (2.22) and (2.24), we have that
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II'= ' Re y &~~'IB„,B., I[&a„, a., &e '+&a„i a„I &e '].
con)'Im

(2.25)

The proof of the inequality on P follows closely the procedure used in Ref. [16]with minor modifications. The first step
is to show that

coco'Im

v'~~'IB &B„~I&a„.& a„& &e ~ g v'coco'IB &B,ll&a„.i a I &e
coco'Im

(2.26)

This inequality is very similar to that proven in Appendix B of Ref. [16]. Let the integration on co be replaced by a
discrete sum; take ~=~„=nero, ~ =~'„=n'h~, where n, n'=1, . . . , 00, and let a=uohco. Furthermore, define the

quantities

(2.27)

and

J —
[

—a[In —n'I —(n +n')] 1]Bnn
—e nn (2.28)

The quantities A„„and 8„„., are analogous to the quantities A „and 8 „,respectively, defined in Appendix B of Re
[16]. In particular, for any two positive integers Jand M,

J+M J+M
X B..= g ~~IB.~le "a„& ly& &O. (2.29)

n, n'= J n=J

Here I f& is the actual quantum state of the scalar field, and the above inequality follows by virtue of the left-hand side
being the norm of another state vector. Thus the argument given in Appendix B shows that

n, n'=1
A„„~O. (2.30)

However, when further summed on I and m, this inequality is just Eq. (2.26). Thus we can now use Eq. (2.26) to rewrite
Eq. (2.25) as

+~~ IBceIBru'I le [ & a co Imarulm '& + & a~rma~'t m& ]-
coco'lm

(2.31)

The establishment of a lower bound on P now follows closely the argument given in Appendix A of Ref. [16]. We
take the quantum state to be an arbitrary state in the Fock representation:

(2.32)

where g(„) is a sum over all possible sets of occupation numbers and the coefficients are normalized so that

g Ic(tn;])I zl .
I n,. I

The right-hand side of Eq. (2.31) can be expressed as

S—=2Re g h &h~I(&a~r~a~r~ &+&a~I ~a„l~ &),
coco'lm

where
' 1l2

N

4n.

(2.33)

(2.34)

(2.35)

Let us denote the contributions to S in Eq. (2.34) which arise from the m =0 and the m %0 terms as So and S„,respec-
tively. Thus S =So+S„.The quantity So is exactly of the form to which the lemma proven in Appendix A of Ref. [16]
may be applied; it shows that

So~ —gh
col

(2.36)

A lower bound on S„ is established using a slight modification of the argument of Ref. [16]. The explicit form of S„ is
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. &h.'i[n„i lcl'+V'n, n„, c*(n 1~
—l, n, —1)c]

I I n I cucolm

+ g h„rh„i[@ n~ im(n~lm+1)c*(n~im+l, n„im.—1)c
Cg7% CO

+V n i n„i c*(n I
—l, n I

—1)c] '+c.c. , (2.37)

de~ot~s ~omple~ conjugate and the notation con entio of Ref. [16]
ments of the coefticients c are written explicitly only if they have been raised or lowered from their original value n„,
We now add and subtract the term

g h , lcl = g h , (2.38)
I n I col

culm col
mWO

and relabel the sums on the occupation numbers to write

S„= g g g h 1[n I c(n I
—l)l +(n I — +1)lc(n I + l)l

colmI I n I co

+Qn„i (n„i +1)[c'(n I
—1)c(n I +1)+c.c. ]]

+ g h, h, [+n„I n„, c"(n ., —1)c(n I
COW N

+Q(n I +1)(n i +1)c'(n,i +1)c(n I +1)

+[+(n I +1)n i c "(n
I

—1)c(n I +1)+c.c. ]j —g h I . (2.39)
NI

m%0

We have also used the freedom to let m ~—m inside the summation. Finally, we may write this as
2

S„= g g gh„I[+n I c(n I
—1)+Q(n I +1)c(n, +1)) —g h

col
m&0 m%0

(2.40)

Thus, D. Numerical results:
The square barrier approximation

and

S„)—g h
col

m&0

S =SO+S„)—g h I= —g (21+1)h„t .

(2.41)

(2.42)

Since the exact form of the field modes is not known
analytically, we must evaluate Ps numerically. Accord-
ingly, we can approximate Eq. (2.44) for Ps by letting the
integral over co go over into a summation, and defining
the dimensionless variables

(2.45)

[An alternative derivation of Eq. (2.42) will be given in
the Appendix. ] Because S is itself a lower bound on F, we
have, writing the sum on co as an integral and using Eq.
(2.35),

and

Up

M

We then obtain

(2.46)

F &F~,

where

P& = — g f dcoco(21 +1)lB„Il
e

4~ l=p 0

(2.43)

(2.44)

Fs= — g g b, WW(21+1)lB, l
e " . (2.47)

4~M w

We will demonstrate the existence of a bound on Pz by
approximating the actual potential barrier V,~, with a
square barrier potential V&. This model barrier is "in-
scribed" in the actual barrier in the manner depicted in

Fig. 3. The potential Vz is defined to be
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ber I. The square barrier is chosen to have height equal
to half the maximum height of the actual barrier, and
width equal to the width of the actual barrier at half the
maximum height. The equation satisfied by the U(r)
modes with the model barrier is

d U

dr
+(co —V ) U =0, (2.49)

I

I

I

I

I

M r

Vs= '

I ( I + 1)+0.5
16M

0 for r' & rb' and r' & r,*.

fol r Cr Crb,

(2.48)

Here VM is the maximum height of the actual potential,
which depends on the angular momentum quantum num-

FIG. 3. The actual potential barrier V,z, and the model
square barrier potential Vz, here depicted as functions of r(r* ).
The height of Vz is half the height of the maximum of V,z. The
scalar waves are assumed to be incident from right to left.

(2.50)

where v=+ Vz —co, and k =co. In our formula for Pz,
we will need

with r(r*). This has the same form as the Schrodinger
equation for a particle moving in a one-dimensional
square barrier potential.

Our strategy is to use the model potential Vs to obtain
a bound on P~ as follows. For modes with co & Vz, we
will simply set the B I equal to one. For modes with
aP( Vz, we will compute the B I using Eqs. (2.48) and
(2.49). We expect the transmission coefficients through
the square barrier to be greater than those through the
actual barrier for all modes [23). Since this procedure
overestimates the contributions to the flux, the proof of a
bound on I'~ using the model barrier potential implies an
even more stringent bound on Pz for the actual potential,
and thus on P as well. In this paper, our goal is only to
establish the existence of a bound rather than the best
possible bound. The requirement of the continuity of U
and dU!dr* at r*=r,* and r'=rb*, and a standard al-

though tedious calculation yields

—K(rb* —r *) —&k (rb —r *)—4ik]ce e
cc)l ' (v+ik)

(~+k )(1+e " '
) —2e ' ' (a 6kx+k )—

(2.51)

g g EWW(2I+1)~B I ~
e ". (2.52)

We have set the ~B„&~'s equal to 1 in the first double sum-
mation, corresponding to modes with ~ ~ Vs. The
~B„,~'s in the second double summation, corresponding
to modes with co ( Vs, are evaluated numerically using
Eq. (2.51). Here I„ the critical value of I at which
m = Vs, is given by2=

I, = —0.5+0.5V1+4(32W —0.5), (2.53)

where we have used the fact that I ~ 0 for all 1. The latter
inequality also implies a minimum value for 8'= AM of

We will now split the right-hand side of Eq. (2.47) into
two parts:

I,

P~) g g bWW(21+1)e
4~M2 w I=o

W;„=0.125 . (2.54)

A numerical computation of the right-hand side of Eq.
(2.52) for 1 ~ v ~ 10 yields the following bound on P:

a

p)p Co M
M' (2.55)

where a =3.8 and Co=0.96.

E. Quantum inequalities

F(v) = ~AMi [ —5(v)+p5(v —b T)], (2.56)

where p is the fraction by which the (+) pulse overcom-

In four dimensions, as in two dimensions, the best op-
portunity to violate cosmic censorship arises with the use
of widely spaced 5-function pulses of ( —) and (+) ener-
gy. Therefore, let
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pensates the ( —) pulse. Note that this situation is depict-
ed in Fig. 2 with v, =0 and Uz=b T. From Eqs. (2.24),
(2.55), and (2.56), we find that

T

I~MlaT & ~C
a 2

Uo
G (2.59)

F= IMMI (p —1)p' —1 0

nb, T p(p2+ 1) M2 U
(2.57)

where P= v0/b T. This inequality is nontrivial only when

where the function G (p) is given by

Pl —a(P2+ 1 )

1 —(p —1)P
(2.60)

p
—1

In this case

(2.58) Although the sampling time v 0 may be arbitrary, we wish
to choose it so as to minimize the right-hand side of Eq.
(2.59). The minimum of the function G (p) occurs at

1/2
V(a+I) p +8(1—a)p —(a+1)p+2(a —1)

2(a —1)(p —1) (2.61)

IMMI ~T &
5T (2.62)

In order to increase the chances of observing a violation
of cosmic censorship, we would like to have hT as large
as possible. Furthermore, if AT(M, the effective life-
time of any naked singularity is of order M since the
cosmic Gash will decay on this time scale, as discussed in
Ref. I21j. Hence the case of greatest interest is when
AT &M. We then have an inequality on the magnitude
of the change in mass similar to Eq. (1.3) in the two-
dimensional case:

ISMlaT & 1 . (2.63)

In both cases, the change in the mass is of the order of
the quantum energy fluctuations associated with the time
scale AT. Recall that the inequality given in Eq. (2.63)
was derived using the model square barrier V&, where we
overestimated the contributions of the various modes to
the (

—) energy flux. Therefore, the actual bound on P
and the corresponding inequality on IMMI and hT will be
even more stringent than Eq. (2.55) and Eq. (2.63).

When p))1, G(P ) grows as p' ",in which case
the bound Eq. (2.59) is not especially strong. Equation
(2.58) shows that p must be very small for large p. When

p is large, there is a large overcompensation by the (+)
energy pulse. Hence for large p, even sampling functions
with small widths will pick up enough of the contribution
from the (+) pulse to render P )0 and the inequality Eq.

For given values of a and Co, the interpretation of the
inequality, Eq. (2.59), is qualitatively different for
different ranges of p. Recall that our numerical calcula-
tion gave us a =3.8 and Co =0.96. With these values, we
find three cases which may be characterized by whether
p

—1 —
—,0, p))1, or p —1« —,', . (Here —,'0 is representative

of any number that is an order of magnitude less than
unity. ) Each of these cases will be discussed below.

If p
—1 —

—,'„ the optimum bound in Eq. (2.59) is ob-
tained when p —1, i.e., Uo

—b T, which leads to
G(P )-1, and

a 2

(2.57) trivial. However, causality prohibits the magni-
tude of the subsequent (+ ) pulse from affecting the obser-
vability of the naked singularity. Therefore we would not
expect large p pulses to be any more effective for violat-
ing cosmic censorship than those of small p.

For (p —1)« —,'„p grows as (p —1) '~ and G(p) de-
creases as (p —1)' ' . This suggests a restriction on
5-function pulses which is even stronger than Eq. (2.62).
If we create a ( —)5-function pulse with b,M = —IMMI,
and follow it with a (+)5-function pulse with energy
6M =plbM I

a time b T later, then there is a minimum
value of p for given IEM~ and hT which increases as
IMAM Ib, T increases. For (p —1)« —,'„

M
~ 1+K

2(a —2) /(a —3)

(IbMIbT) (2.64)

where E is a constant of order 1. In the case of 5-
function plane wave pulses in four-dimensional flat space-
time, a =4, and it can be shown that an inequality similar
to Eq. (2.64) holds:

2
2

& I+aP- (2.65)

where 2 is the area of the collecting surface,
I
b,E

I
is the

magnitude of the ( —
) energy pulse, and K is a (different)

constant of order 1.
It is of interest to note that a similar restriction applies

to 6-function pulses produced by moving mirrors in two-
dimensional spacetimes. For example, consider a mirror
initially at rest in flat spacetime, which instantaneously
begins accelerating toward the observer with constant
proper acceleration a, thereby emitting a (

—)5-function
pulse of magnitude I bE

I
= a /(12m). A time hT later, its

acceleration ceases and therefore it emits a (+ )5-function
pulse of magnitude ply, EI, where p=+I —V /(1 —V)
and V is the velocity of the mirror I21]. In the nonrela-
tivistic limit V=ab. T=12nlb, EIGHT and p=l+2V, so
the (+) pulse overcompensates by a factor of
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p= 1+24~~ DE
~
b, T. An examination of the spacetime di-

agrams for mirror trajectories involving a (
—)5-function

pulse followed by a (+ )5-function pulse indicates that an
analogous restriction must hold for the relativistic case as
well.

%'e suggest that these are all examples of a more gen-
eral principle which demands that an energy loan (i.e.,
negative energy) must always be repaid "with interest"
depending on the magnitude and duration of the debt.
This might be dubbed "the quantum interest conjecture. "

III. INTERPRETATION

AT&M . (3.1}

If we use this condition and the quantum inequality, Eq.
(2.63), we find

m 2

M
(3.2}

where mz is the Planck mass. Thus for a macroscopic
black hole, the fractional change in the mass is extremely
small. For example, in the case of a nondischarging
black hole [20] with M ~ 10 Mo, we have

AM & 1
86

M
(3.3)

In this section, me wish to discuss the significance of
the quantum inequality, Eq. (2.63), and to show that it
implies that any violation of cosmic censorship produced
by (

—
) energy fluxes is not unambiguously observable.

As discussed in Sec. II E, me mant

m
Qg

ATM M' (3.8)

and

5g~, =[(o~t„„))~"~0)]'"

5RqG=[(0~)R„„, k)'& ~0)]'".

(3.9)

(3.10)

These quantities are formally infinite and require renor-
malization. However, we may estimate their magnitudes
by a dimensional argument. The gravitational Lagrang-
ian is of the form LG ~ (1/G)(Vf„„) ~ (VP), where G is
Newton's constant and P has the usual dimensions for a
quantum scalar field operator, i.e., (length) ' in units
where R=c =1. Hence f„,o-~GQ~ v'G (length)
Thus 5g&G and 5R&G are proportional to &G =)tz, the
Planck length. Because 5g&G is dimensionless and 5R&G
has dimensions of (length), near the black hole's hor-
izon,

We now wish to compare the magnitude of the metric
and curvature fluctuations expected from quantum gravi-
ty [24] with the perturbations in these same quantities
due to the absorption of a ( —) energy flux. If the latter
are smaller than the former, then the effects of the ( —)

energy flux cannot be observed. The former may be es-
timated by the following argument. Let f„be the quan-
tized operator of linear metric perturbations on the
Reissner-Nordstrom background, and P„, be the cor-
responding Riemann tensor operator. The scale of the
quantum gravity fluctuations of the metric and Riemann
tensor are given by rms expectation values such as

Let the change in a typical component of the Riemann
tensor due to the ( —} energy pulse be b,R„„,and the
corresponding change in the metric be b g„. Since hM is
small, we have

and

lp
gQG M

(3.11)

hR„~AM, Ag„~ hM . (3.4)
lp

5RgG— (3.12)

hM
R pvpe M

(3.5}

AM
gPV (3.6)

(These quantities are understood to be computed in a
coordinate system which is well behaved near the hor-
izon. } If we successively apply the quantum inequality,
Eq. (2.63), and the condition Eq. (3.1), we find

Figures 1 and 2 show that to obtain an observable viola-
tion of cosmic censorship we need to liberate null rays
just inside the horizon. Hence, we are interested in
evaluating these quantities near r =M. Equation (3.4)
and dimensional considerations give

A somewhat less rigorous though more physical argu-
ment is the following. We can estimate the typical scale
of metric fluctuations using the expected energy density
of gravitons on a curved background. For example, if we
describe the back reaction of gravitons on a background
vacuum solution of Einstein's equations, we would ex-
pand the Einstein equations to second order in the metric
perturbation h„„, and find the effective energy-
momentum tensor of the gravitons to be
T„' ' =( I /8m. G)G„'„'. It is of the form

~G) (Vh } +h(VVh )
PV

/p
2

Now consider a region of characteristic size I. The
metric perturbation h„varies on a scale l, so
Vh-5g„„/l, where h„-5g„ is the typical scale of
metric fluctuations. Therefore, ( Vh } -h ( VVh )—(5g„„) /I, and hence

and

hR „ M4 ' (3.7)
(G) (5g„„)'

2 2lpl
(3.14)
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The typical zero point energy in gravitons should be Too'.
The dominant contribution to this zero point energy
should come from modes whose wavelengths are of order
1, i.e., co —1/1. Therefore,

[g] co 1

13 14

A comparison of Eqs. (3.14) and (3.15) yields

lp
5gpv

(3.15)

(3.16)

If we are interested in metric fluctuations on a given
curved background, then 1 is the typical radius of curva-
ture, e.g. , M in the black-hole case. In our case l-M,
which again gives Eq. (3.11). These estimates agree with
those given by previous authors using different arguments
[24].

From Eqs. (3.7}, (3.8), (3.11),and (3.12), we see that

and

hR „„(&5R gG (3.17)

hg„«5g« . (3.18)

This shows that the metric perturbations due to the
effects of (

—} energy are below the scale of the normal
metric fluctuations expected from quantum gravity.

In our earlier paper, where the (
—

) energy pulses were
produced by a moving mirror in a two-dimensional
spacetime, we argued that a necessary condition for the
cosmic censorship violation to be observable is

~
AMID, T ~ 1. There we found that this condition was not

satisfied, leading us to conclude that the resulting viola-
tion of cosmic censorship was unobservable. Our argu-
ment was based on a common interpretation of the
energy-time uncertainty principle which assumes that to
measure the energy of any system to within an accuracy
oE, the time AT required is AT I/5E. The validity of
this interpretation has been criticized by Aharonov and
Bohm [25], and also by Sorkin [26]. In the present paper,
we arrived at a similar conclusion as in our earlier paper
without using the energy-time uncertainty principle. In
particular, note that the energy-time uncertainty princi-
ple was not used in the derivation of Eq. (2.63) [nor was it
used to derive the similar inequality Eq. (1.3) in our ear-
lier paper].

We conclude that quantum field theory prevents at
least the unambiguous observation of any naked singular-
ity produced in this process. The spacetime region in
which cosmic fiashing occurs (i.e., the region between the
lines u, and uz in Fig. 2) will be "blurred" by quantum
eA'ects. An observer at future null infinity would not be
able to say that a given null ray in this region, when
"traced backward, " definitely originated at the singulari-
ty. This conclusion seems to be supported by recent
work of Kuo and Ford [27] which indicates that in fiat
spacetime, states of quantum fields involving ( —

) energy
Auxes are accompanied by large fluctoations in the
stress-energy tensor. When the fluctuations in ( T„,} are
large, the semiclassical approximation G„=8~(T„,, } is

not expected to hold. Their results and ours suggest that
at least in certain circumstances involving ( —) energy
fluxes, the predictions of the semiclassical theory of grav-
ity (e.g., the production of a naked singularity from an
extreme black hole) may be suspect. In our case, the
effects of ( —} energy predicted on the basis of semiclassi-
cal theory are below the scale of quantum gravity effects,
a scale at which we expect the semiclassical picture do
break down.

The existence of quantum inequality restrictions shows
that quantum field theory does impose some constraints
on the manipulation of negative energies. It is important
to determine the generality of these constraints. The
work of Wald and Yurtsever [11]hints that there may be
connections between quantum inequalities and averaged
energy conditions. It would also be desirable to find an
analytic form for the numerical quantum inequality
which we have established. Such a formulation might
suggest a more general inequality which would hold on a
wider class of spacetime backgrounds than those exam-
ined thus far. It would seem especially important to ex-
amine black-hole evaporation. The integrated negative
energy flux through the horizon due to the normal eva-
poration of the hole, as measured by a static observer
outside the horizon, would not seem at first sight to obey
a quantum inequality-type restriction. To what special
features of black-hole radiation can this be attributed?
The negative energy fluxes that we have considered are
those which can be manipulated (e.g., shot into the black
hole from infinity). Black-hole radiation cannot be mani-
pulated, except in a rather limited sense by changing the
temperature of the hole through the injection of mass or
charge, for example. The difference between these two
kinds of situations involving negative energy fluxes is not
immediately clear and warrants further study. It would
also be interesting to examine effective ( —

) energy fluxes
due to the motion of an observer through a static (

—
) en-

ergy background. These questions are currently under
investigation.
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oo

0I = dcoh t(o I +o
0

(A 1)

It satisfies theyroperty that 01 =0& . Consequently,
the operator OJ OI is a Hermitian operator and has
real expectation values. It is also a positive operator in
that
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(Ot Ot ) 0. (A2)

This follows from the fact that the left-hand side is just

the norm of the state vector ~'P) =Ot ~g), where ~1()
is the quantum state in which we are taking the expecta-
tion value. We may write this expectation value explicit-
ly as

(O,.O, .) =f "de de'hath„t[(a'. tmarolm )+(aul ma—co'I —m )+(arel ma 'I —m )+(a I —ma 'Im ) ]+f dco h
0 0

(A3)

Finally, we may use the fact that

~colm co'l —m col —marco'Im (A4)

Here S is defined in Eq. (2.34). It follows from Eqs. (A2)
and (A5) that

g(Ot Ot ) = gh t+S .
Im colm

and that Jo"drodto'h th t(a„t a„t ) is real to write
S~ —g hzt,

colm

which is Eq. (2.42).
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