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Evaporation of rotating black holes and the equivalence principle

Brian Punsly
4014 Emerald Street, No. 116 Torrance, California 90503

(Received 30 March 1992)

This article is an investigation of the physics which underlies Hawking radiation from rotating black
holes. It is shown that a global scalar field theory which is compatible with the equivalence principle
demands that a rotating black hole in isolation experience thermal evaporation. The main goal of this

paper is to attain a physical understanding of the phenomenon with a particular emphasis on computing
the renormalized stress-energy tensor in the asymptotic zones, near the event horizon and at stationary
infinity. This tensor is shown to be a measure of the change in the zero-point oscillations of the local
field theory which is formulated by inertial observers during free fall, as compared to a global standard.
An external onlooker sees the zero-point energy in a freely falling coordinate patch decrease as it ap-
proaches the horizon. This translates to a negative energy density of the field, near the horizon, in the
components of the renormalized stress-energy tensor. The external onlooker interprets the zero-point
energy lost during free fall as an outgoing stream of particle-antiparticle pairs.

PACS number(s): 97.60.Lf, 04.20.Cv, 04.60.+ n

I. INTRODUCTION

This article is a derivation of the asymptotic form of
the dynamic components of the renormalized stress-
energy tensor of a scalar field, near the event horizon of a
rotating black hole and at asymptotic infinity, as a conse-
quence of the equivalence principle. The analysis paral-
lels the treatment of Ref. [1], which is a similar calcula-
tion for Schwarzschild black holes.

The Kerr geometry is far more complicated than the
nonrotating case, requiring additional calculational
machinery. More in-depth physical explanations appear
in Ref. [1],and many steps are omitted here from calcula-
tions which are similar in the two cases. However,
enough details are included so that this article can stand
on its own.

There is not nearly as much published research con-
cerning Hawking radiation from rotating black holes as
there is from Schwarschild holes. The energy and angu-
lar momentum fluxes at asymptotic infinity have been in-
ferred for scalar fields from partial calculations and plau-
sibility arguments in Refs. [2,3]. In Ref. [4], Unruh's an-
satz for particle creation is used by Iyer and Kumar to
find the fluxes at asymptotic infinity. The ansatz imposes
a boundary condition at the horizon which essentially

puts the particle creation in the normalization amplitudes
of the wave functions [5]. Some information on the re-
normalized stress-energy tensor is found in Ref. [6]
through a plausibility argument based on analogies to ac-
celerated observers in flat spacetime. In theory, point-
separated bitensor regularization of the stress-energy ten-
sor can be used as it has been for the Schwarzschild hole
in Refs. [7—9]. Some of the preliminary steps can be
found in Refs. [10,11]. In Ref. [12), a calculation exists
for the renormalized stress-energy tensor of a massive
scalar field in the Hartle-Hawking vacuum based on the
renormalized effective action generated by a point-
separated method [3]. This calculation is valid for Comp-
ton wavelengths that are much less than the radius of
curvature of spacetime near the horizon. Thus, by (6.12)

of this article there is very little radiation in this case and
it is essentially a pure vacuum polarization phenomenon.
There are also some heuristic results for the renormalized
stress-energy tensor for electromagnetic fields in Ref.
[13].

By contrast, one of the strengths of this article is that
the results are derived from first principles —the
equivalence principle. The mathematics of point-
separated bitensors in Kerr geometry generates some
algebra of astronomical proportions. In this formalism,
the mathematics is much more tractible. As in Ref. [1],
an in-depth expose of the underlying quantum physics
which governs this problem is presented, as opposed to
the pure calculational treatments based on point-
separated bitensors. This analysis shows the utility of the
method developed in Ref. [1],to study the Schwarzschild
case, for understanding more complicated problems in-
volving field theories in curved spacetimes. It should be
noted that the following is valid for both massless and
massive fields.

The main premise of this effort is that freely falling ob-
servers can formulate their version of quantum Geld

theory so that it looks just like special relativistic Geld

theory in their local neighborhood. As viewed globally,
these locally formulated field theories differ from point to
point of spacetime and, in particular, between those ob-
servers near the horizon and those near asymptotic
infinity. This article compares the stress energy of the
zero-point oscillations as measured by inertial observers
near the horizon with the same as measured by stationary
observers at asymptotic infinity. It is shown, when com-
pared to a global standard, that the energy of the zero-
point oscillations decreases during free fall and this is the
essence of Hawking radiation. One advantage of this
analysis is that, by considering the vacuum state of the
freely falling observers near the horizon, one is forced to
acknowledge that the "Unruh" vacuum approximates the
only vacuum state of physical relevance for a black hole
in isolation (as opposed to Hawking-Hartle- or
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Boulware-type vacua).
The article is organized as follows. First, to be able to

piece together the local inertial analyses in order to ob-

tain a covariant global field theory, one needs a space-
filling family of freely falling observers whose four-

velocities are hypersurface orthogonal. Unfortunately, in

the Kerr spacetime the tetrads carried by such observers

can never be a coordinate frame. Thus, one is forced to
calculate in an anholonomic basis throughout the article.
This creates its biggest problem in Sec. III, where the
wave equation for a scalar field in a freely falling frame is
derived and solved, locally, near the horizon. In Sec. IV,
the solutions of the wave equation as formulated by ob-
servers at stationary infinity, the so-called "global" solu-
tions, are reviewed. The Fourier decomposition of the
"global" solutions in terms of the "local" solutions
defined in Sec. III is accomplished near the horizon. An
inverse relation is found, as well as the Bogoliubov trans-
forrnation relating the particle creation and annihilation
operators in the two different formulations of field theory
(local and global). In Sec. V, the renormalized stress-
energy tensor of the local vacuum is found. Since this
vacuum is tied to the motion of each of the freely falling
observers, it is straightforward to find the renormalized
stress-energy tensor of spacetime. This is deduced in Sec.
VI by using the foliation of spacetime described in Sec. II
to piece together the local results. Like the
Schwarzschild case, it has a thermal component, but now
there is a contribution in the superradiant modes as was
found in Ref. [4]. The Hawking radiation is clearly
shown to be the result of negative energy and angular
momentum of the local vacuum (as viewed from station-
ary infinity), which is tied to each freely falling observer,
flowing towards the hole along the congruence of
observer's world lines.

II. THE FOLIATION OF SPACETIME

where p—:r +a cos 8 and 6=r 2—Mr+a . There are
two event horizons which are given by the roots of the
equation 6=0:

h=(r r—+ )(r —r ),
r~ =M++M —a

(2.2a)

(2.2b)

where r+ and r are the outer and inner event horizons,
respectively.

The redshifted energy of a particle (the energy as seen
as asymptotic infinity in the stationary frames), co, is
given in terms of the four-momentum in the stationary
frames, P„,by

—P,:—co . (2.3)

Tildes will be used to denote quantities evaluated in the
stationary frames at asymptotic infinity throughout the
remainder of the article. The component of angular
momentum of a particle along the symmetry axis of the
hole, —m, as seen in the stationary frames at asymptotic
infinity, is defined by

P~—= —m . (2.4)

For geodesic motion, both co, m, as well as the mass of
the particle, m„are conserved. In Kerr geometry there
is a fourth constant of motion K, Carter's fourth constant
of motion, which can be given in positive-definite form:

K =P e+ boa sin8+ . +m, a cos28,
sin8

(2.5)

where Pe is the momentum conjugate to 8/88. A general
nongeodesic trajectory can be parametrized by co, m, and
K, but they are no longer constants [15].

Carter's equations of geodesic motion are defined for
trajectories in Boyer-Lindquist coordinates in terms of
these parameters [16]:

In this section a foliation of spacetime outside of the
horizon by the world lines of a family of freely falling ob-
servers is described. This will provide the fundamental
mathematical machinery necessary to elucidate the phys-
ics of black-hole evaporation.

A. Classical trajectories in the Kerr spacetime

+ap~P '= —a(cuba sin 8+m )+ P,

p P "=+&R

p P ~= —boa+ +m Pa
sin 8

(2.6a)

(2.6b)

(2.6c)

To define an appropriate family of freely falling ob-
servers, one needs to classify the timelike geodesics out-
side of the horizon through Carter's equations [14].

The Kerr metric in Boyer-Lindquist coordinates is
given in terms of the mass of the hole, M, and its angular
momentum per unit mass, a:

ds = — 1 — dt +pdO+ -dr2Mr 2

p

where

P= co(r +a )—+ma,
R =P b(m, r +E) . —

(2.6d)

(2.6e)

Taking a cue from Ref. [1], the most convenient choice
for a foliation of spacetime is a set of freely falling ob-
servers defined by frames released from rest at asymptotic
infinity with no angular momentum, in the distant past:

+ (r +a )+ sin 8 sin 8dg
2Mra

p

sin 8dgdt,
P

(2.1)

o=m

mo=o

Eo=co a

(2.7a)

(2.7b)

(2.7c)

Then Carter's equations (2.6) and (2.7) give the four-
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velocity of this set of observers:

3 8
b sin 8

Qr2+a2~
p2 Br

(2.13e)

All of the other components of g„, are zero. The deter-
minant of the metric, g, is

(2.8)

where g„ is the metric in Boyer-Lindquist coordinates,
(2.1).

B. The global frame field

One can define a global frame field which is carried by
these freely falhng observers that is denoted as the pre-
ferred freely falling (PFF) frames:

g = —( V"}g&&[p +P a a sin 8],
where a is the lapse function [6]

2
2 ~slli 8

1 ( Vr)2

Asymptotically (denoted by the symbol "-"),
g ——[r +a ]sin8.

(2.14}

(2.15)

(2.16)

+r +a &2Mr 8

p Br

(r +a )(2Mr ) 8 8
Qp2 Bt BP

+r +a &2Mr 8

p Br

Eg= +P(r)a sin28E&,
a
8

where

gyp

(2.9a)

(2.9b)

(2.9c)

(2.9d)

(2.10)

The inverse metric is

g00

1 p +(V') P a sin 28
(V") p +P a a sin 8

( V')2P2a 4sin2281+
r r+ ( V")i p'

ig g~ ( V") Pa sin28

p+Paa sin8
VP 2

ggg
V"[p +P a a sin 8] ~ ~+ p

gled
= 1

a11 other g" 's are zero.

C. Global coordinates

(2.17a}

(2.17b)

(2.17c)

(2.17d)

(2.17e)

P(r) =-
r+ Qr2+ a 2y 2Mr

The basis covectors are

+ +r +a &2Mr
o) =dt+ cfr

[r +Q ]3/2
co'=dt+ ' ' dr —d(a Psin 8),

b,&2Mr

cog=dP —Q dt,
Q) —6(0 .

(2.11)

(2.12a)

(2.12b)

(2.12c)

(2.12d)

The PFF frame of (2.9) is not a coordinate frame. This
is demonstrated with the commutator algebra which can
be represented by the structure constants of the Lie alge-
bra, c„:

[E„,E„]=c„Q
a a

Cpv
=

Cup

One finds, from (2.9) and (2.18a),

(2.18a}

(2.18b)

2Mra3sin28 Pa sin28 r +a &2Mr 8
cg)= ~

+ 74 p' Br

(2.19a)

Since de) &co =0 Ep is a hypersurface orthogonal vec-
tor 6eld and the world lines of the PFF observers foliate
spacetime.

The metric in this frame is given by

(r +a )(2Mr) 8 Q
ae P

2Mra
4 sin28

r r+ Qp
(2.19b)

goo = —l

g, g=gg, =(V") Pa sin28,

g gg
=p + [ V"Pa sin28]

(2.13a)

(2.13b)

(2.13c)

(2.13d)

+r +a &2Mr 8
0

P
2 r

(2.19c)

a
0,

r r+ r +a2 2
P

2

(r2+a 2)2
(2.20)

where the asymptotic form of 0 was used in (2.19b):
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Carter's equations in (2.6) can be used to show that
there is no family of freely falling frames which can be a
coordinate frame for all 8 and P even when restricted to a
small neighborhood of the horizon. This is a significant
difference from the Schwarzschild case that will add com-
plications to the analysis in Kerr geometry. The root of
the problem is a lack of symmetry in the 8 direction
(there is no longer spherical symmetry as in the nonrotat-
ing case) and nonvanishing contributions from BISH will

occur in commutators between basis vector fields.
The frame in (2.9}is chosen to come as close to a coor-

dinate basis as possible with Eo=u„[see Eq. (3.6)]. The
dual covectors ~, co', and co are all exact differentials, so
their integrals (coordinate functions) are well defined.
The problem is with co~, since Q is a function of r and 8.
Thus, the following coordinates (x,x', x~,x ) are intro-
duced:

dx —co

dx '=co',

dx t'= 1p QH dt,—

dx'=de,

(2.21a)

(2.21b)

(2.2lc)

(2.21d)

where Qtt is the angular velocity of the horizon as viewed
from asymptotic infinity,

aQH=
T +0

(2.21e}

+O(a )dx +O(a )d8 . (2.22)

These covectors are useful near the horizon since

2r+ a
a)~ —dP QHdt+ —Qtt+ d(xo —x')

r~r+ (r+ —r-} '

a particle as viewed by a PFF observer near the horizon:

P —2a [to+QHm ], V "&0,

I' —a, V r(0

(2.27a)

(2.27b)

P' —2a [co+QHm ], V "&0, (2.27c)

I' —a V "&0 (2.27d)

III. THE LOCAL WAVE EQUATION

In order to compare the field theory formulated by
freely falling observers with the field theory defined by
observers at asymptotic infinity, it is essential that the
wave equation in the PFF basis be solved. Since (2.9} is
an anholonomic basis, the scalar wave equation is far
more complicated than it is in the Schwarzschild case.
The connection coeScients I „&are tabulated in the Ap-
pendix.

If one considers modes defined by observers at asymp-
totic infinity which are characterized by ~ and m con-
stant, then the globally outgoing modes have local mo-
menta with huge gradients in blueshift, near the horizon,
by (2.27a}, and (2.27c). These are the modes which result
in Hawking emission. The physics of this relationship be-
tween differential blueshifts and particle creation is dis-
cussed in detail in Ref. [1],particularly Sec. IV.

A phenomenon unique to the Kerr case occurs when
co+m QH &0, e &0. These are well-defined globally out-
going modes, but by (2.27a} they have a local negative en-

ergy. Such modes are referred to as superradiant [17].
These global states "dive" into the negative energy con-
tinuum of the PFF observers (a Klein paradox) [18].

a —2a.[x ' —x —C], (2.23)

In order to approximately integrate (2.22), a useful rela-
tion is derived from (2.21a) and (2.21b):

A. The scalar wave equation

The wave equation in covariant form is

Ptl f'=0, (3.1)

where

r+ —r
K=

2(r~+a )
(2.24)

where a semicolon represents covariant differentiation.
This can be expanded out in terms of partial derivatives

(3.2)

is the surface gravity of the hole and C is a constant.
Thus, (2.23) and (2.22) imply that

I co~ —x t'+ 0 ( a )=P QH t +0(a ) . —
r~l'+

D. Local momentum

There are two classes of nonspacelike trajectories
which will be differentiated in this article. Those that are
"globally outgoing, " V ")0, and those that are "globally
ingoing, " V '& 0, as viewed from asymptotic infinity:

x '-x' —C .
r~l'+

(3.3)

One can define, according to special relativity and the
equivalence principle, local energy eigenfunctions defined
by

Op ~f' s

(x ,x ') (x ,x ')
(3.4)

For this analysis, it is of interest to solve (3.2} only when
the PFF observer is near the horizon. If (x,x ') are
coordinates of the observer, then, by (2.23),

p r
V l'—

p t (2.26}

One can use (2.12) and (2.6) to express the momentum of

where the identification

aE
Bx

(3.5)
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has been made. One should note that

E x'=6'

E x'=6' ),1

Egx'=5' g,

i =0, 1,8,
i =0, 1,0,
i =0, 1,0,

(3.6a)

(3.6b)

(3.6c)

E&x'=6'&, i =0, 1,8,$ . (3.6d)

PO
EOEp+g E]E~ p+ 0 +0 1

r+
=0 . (3.7a)

It follows from (3.4) and (2.27c) that there is no term to

This signifies how close the frame in (2.9) is to being a
coordinate frame.

Our main interest is with the globally outgoing modes
which by (2.27a) are characterized by P »1/r+. By
(3.4), the wave equation in an order of magnitude scaling
1s

02
balance the 8 /Bx p term in (3.7a) unless

,p X)"

q „, —exp[i(Pox'+P, x ') ]=e' " (3.7b)

This is what one expects since the equivalence principle
implies that the local solutions should look like plane
waves near (x,x '). The form of the solution in (3.7b) is
valid on any open set V de6ned by

On this set P =const. Normally, it will not be of interest
to know the slow variation of P on V. However, its ex-
istence is acknowledged in (3.11c).

It will be of more interest to look at generic sets V+,
which are restrictions of V to the region outside of the
horizon:

V= [x',x',x', x&~~(x' —x ')' —g„(x'—x ')'~ «r', ] .

(3.8a)

V+ = [x',x', x', x&/)(x' —x ')' —g„(x'—x ')') ((r+,x' —x'& C] .

Since the coordinate x does not appear in (3.2), the equation separates and relation (3.7b) can be modified:

exp[i(Pox +Pix')]e' "~F(xo,x ', 8),

(3.8b)

(3.9)

where F(x,x ', 8) is a slowly varying function of x and x ' as well as 8 near the horizon and m is an integer

B. The angular functions

The angular dependence of the local wave functions is much more complicated than it is for their Schwarzschild
counterparts which are simply spherical harmonics. For the present purpose, it need not be determined explicitly, but
it will be shown that the angular dependence separates to a good approximation near the horizon and the angular func-
tions which result from a complete orthonormal set.

To define the angular functions, an angular equation is generated near the horizon by substituting (3.9) into (3.2) and
evaluating all of the terms at the horizon, i.e., x' —x =C or r =r+. This leaves a second-order ordinary differential

equation (ODE) with variable coefficients in the variable 8 only. Since, physically, one is only interested in the dom-
inant variation of qr», near the horizon, the exponential in (3.7b), the asymptotic expression (3.9), can be written ap-

proximately for the globally outgoing modes as

exp[i(Pox +P,x')]e' " exp[ ih(I' —(r, 8)/2(r —M) )]F(x,x', 8)~ (3.10a)
r~r+

where I (r, 8) is an arbitrary function to be chosen later to simplify the angular equation. It depends on the parame-

ters m and co(P ), which is a function of the local momentum via the inverse to (2.9) or (2.27). The angular function
R (8) is defined by (the arrows signify the globally outgoing condition)

R(8)=F(x,x ', 8}~ (3.10b)

To demonstrate the Qavor of the calculation, some typical algebraic steps which are used to transform {3.2) into the
angular equation for R (8}are given Firstly, .

" +~"H' 2 z
g +g", , q&

— Po P, +a Po — — (r +a )a sin 8I +iaP0
ax' ax' Ox' ax' .—., ' ' ' p'(r —M)

{3.11a)

—(co+mQH ) (p —a sin 8)+m, r +K+2p m QH(co+m QH )
1'~P+ P

2(co+mQH)(r +a )
a'sin'Or+ ~~P0 .g- .

p (r —M)
(3.11b)
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In deriving (3.1la), one needs to note the slow variation of P and P' on V+,

a aPo+ P) =KPO
Bx Bx

which follows from (2.9) and (2.27}.
Then, after some more similar algebra and choosing

2 2 2g
I (8 r)= —a Po+P&Pa 2cos 8+ sin 28 + (co+mQH)(4r —2aa sin 8)

Br 2p 2p

(3.11c}

(3.11d)

in order to eliminate the imaginary terms in the equation, one gets, after multiplying through with p, the desired equa-
tion

sin8 Rk (co;8) +f(co,m, m„'8)R„~(co;8)+ERk~(co;8)=0,
sin8 88

(3.12a)

where

4 2

f(co, m, m, ;8)= [co+m QH ] [p —a sin 8]— 6 m,—a cos 8+2p m QH [co+m QH ]+
(r+ r) p- (r +a }sin8

2(co+ m QH ) a . a sin8+ (r +a )a sin 8 P~P 2cos 8+ sin 28 + [co+mQH][4r —2@a sin 8]
p (r M) — 2p 2p

(3.12b)

The angular equation (3.12) is an eigenvalue equation
where the eigenvalues j:are restricted by the regularity
of R„(co;8)at 8=m and 8=0. The subscript k was add-
ed to the angular function to reflect this.

According to Sturm-Liouville theory, since sin8) 0 on
the domain 0 & 8 & n, the functions Rk form a complete
set which are chosen to be orthonormal for each pair
co(P") and m [19].

fRk (co(P");8)R k ~(co(P");8)sin8d8=5kk. . (3.13a)

The appropriate angular measure used in (3.13a) follows
from (2.16).

A similar analysis can be performed for the globally in-
going modes y. Another complete set of orthonormal
functions is obtained:

X[1+0(a )]]),
PO, P, —const+0(a ),

(3.15a)

(3.15b)

where F„k(x,x', 8) is a slowly varying function of x
and x' near the horizon (i.e., varying on distance scales
on the order of r+ ). Rearranging (3.15a), using (2.21) and
(2.27),

of (3.14b).
Similarly, the local solutions which are globally ingo-

ing near the horizon are of the form

(q ~«)„mk
—

{F „~k(x',x ', 8) I„i „O,e™']
f~f+

X(exp{i[(PO)„x +(P, )„x']

fRk (co(PI');8)R k (co(P");8)sin8d8=5kk . (3.13b)

(qadi«)„k —N„~ke™~Rk (co„;8)

—:qr„k(x, x', 8,x ), (3.14a)

C. The solution space

The restriction of the local wave function to the gener-
ic open set V+ of (3.8b) is denoted by qr„k(x, x ', 8,x ~)
for the globally outgoing modes:

(q)..). kl~ =~.e™

i(P P,)—
Xexp '

2
(x +x'}[1+0(a )] ',

(3.16)

where N„k is a normalization constant. Using (2.21)
and (2.27} again, (3.16) is

1
exp[i(P )„(x —x')],

V 2m 2P„+r +a

(3.14b)

where the fact that P =P' for globally outgoing quanta
near the horizon [see Eq. (2.27)) was used in the exponent

(k..). klv, =a.e' " Rk (~., 8)=V. k—
1 1Q~=

&2m+2(P')„+» +a

Xexp{i [co(P")„+mQH]v ],

(3.17a)

(3.17b)
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where v is the advanced coordinate:

r +ar — dr

(3.18a)

(3.18b)

IV. THE LOCAL FOURIER DECOMPOSITION
OF THE STATIONARY FRAME

%AVE FUNCTIONS

In this section, the wave functions, as formulated by
stationary observers at asymptotic infinity, are decom-
posed as generalized sums of the local wave functions dis-
cussed is the last section. An inverse relation is derived,
as well as the Bogoliubov transformation between the two
sets of particle creation and annihilation operators.

The advantage of the normalization constant imple-
mented in (3.14b) and (3.17b) will be made apparent in
the next section. For more details on the validity and the
mathematical rigor of the approximations used, as well as
more physical insight, see Sec. III of Ref. [1].

A. The global wave functions

The global wave functions q&„. I(r, 8,$, t) defined by
the stationary observers at asymptotic infinity have a
well-known asymptotic form near the horizon [20]:

&(co +mQH)u

(r 8 ry t) im(p nHt)—
y„ I r, , ~, t — SI (co„,'8)e purely outgoing as r ~r+,

+ 2~ comQH r +a
&(cu +mQH)ue im(p —QHt)

SI (co„;8)e " purely ingoing as r~r+ .
2~ co„+m QH W r +a

(4.1a)

(4.1b)

The coordinate u is the retarded coordinate

u=t —r, . (4.2)

imx( ~e SIm(~„;e)
0'nmI ~-~~ & 2+rr„co+mQ„&r'+a'

fSI~(co„;8)S«~(co„;8)sin8d8=5„. (4.3)

The functions SI (co„;8)are spheroidal harmonics which
form a complete set for each value of co„: Xexp

i(co„+mQH)
ln

K D

(4.5a)

im(p —
QHt )

(cp)„rl& =u„e SI (co„;8)=V'„ I, (4.4a)

The quantum number I is intimately related to Carter's
constant E. In fact, the angular equation defined by
these observers can be written as an eigenvalue equation
in E as was done in (3.12) [20]. A complete set of eigen-
functions exists for this equation as well, but they are not
well-studied functions like spheroidal harmonics.

These solutions are characterized by co and m equal to
a constant. The following restrictions to a generic open
set V+ are implied:

Xexp i f (P—dx P'dx')—(4.5b)

where P and P' are functions when co is a constant [see
(2.27), for example].

where D is a constant. Another useful representation,
near the horizon, is a WKB-type solutions [21];

imx~~e SIm

0'nmI &-"+ &2m +co„+m QH +r +a

1 1 t(co +mOH)u
un e

+2m' +co„+mQH V r +a

im(p —QHg)
(q)„ Il~, =u„e " S, (m„;8)=y„, ,

1 1 i(~„+m&H )U

u = e+2~ +co„+mQH +r +a2

(4.4c)

(4.4d)

B. Transformation between sets of angular functions

There will be no need to find the explicit transforma-
tion between the two sets of angular functions SI ~ and

Rk . However, the unitarity properties of the transfor-
mation will be exploited and these are explored in this
section. First, the transformation is defined using the
completeness proved in Sec. III 8:

Using (2.12), (2.21), and (2.23), a very useful expression
for the global outgoing modes can be derived in terms of
local coordinates:

SI (co„;8)=+8)k(m, co„,P„)Rk (co(P„);8),
k

SI (co„;8)=+81k(m, co„,P„)Rk (co(P„);8) .
k

(4.6a)

(4.6b)
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Substituting (3.13b) and (4.6) into (4.3) yields

g8!k( ~ ' )8!'k(~ ~ ' ) ~ll'
k

(4.7a)

Rk (co(P„);8)=+8k!.(m, co„.,P„)S! (co„.;8) .
ll

C. The local Fourier decomposition

(4.8b)

+8lk(~ ~ ' )8 I'k( ~ ' ) ~!I'
k

By unitarity,

X8kl'(~ ~ ' P )Sl'
l'

(4.7b)

(4.8a)

The main mathematical step used in deriving the re-
normalized stress-energy tensor is the expression of the
"global" wave functions of (4.4) as a Fourier integral with
respect to the locally defined wave functions, near the
horizon. The Fourier decomposition of the globally ingo-
ing case is trivial by (4.6b), (4.1b), and (3.17):

(P )„!(r, 8,$, r)I~ =g g f den(P„)5(a)(P„)—co')
k m co„.+m'Q~

' 1/2

(4.9a)

where

~l'm'km =~1'k~mm' ' (4.9b)

—(n/2v)[co„, +mQH ]
le8

2m'QPn(con +mQH )

—i[co„,+mQH ]/~ —iP„C
e

The globally outgoing solutions are physically more in-
teresting. The global solutions are characterized by
co+mQH equal to a sum of constants. By (2.27), this
means that the local momentum of the "global" wave
varies greatly and has many oscillations in a small neigh-
borhood of a PFF observer, near the horizon. Thus, un-
like the globally ingoing case, the outgoing "global" wave
functions can only be represented by a packet of local
wave functions. For a discussion of the relationship of
this large differential blueshift to particle creation, see
Sec. IV B of Ref. [1].

Dropping the arrows to streamline the notation, one
expects an expansion of the general form

(4.11b)

One can obtain an expression analogous to (4.10) for the
complete wave function Fp„!.from (4.11)and (4.6a):

'Pn'm'!'I v+

2 2f n [ nn mm kl'0''nm! 'nn' m'kl'0' n !] I'V
k m

(4.12a)

where

un I~ =f (An„.u„+B„„u„)I~dP„. (4.10)
'k!' ~ '8!' 'k

'k!' ~ '8!' 'k

(4.12b)

(4.12c)
Using the same Fourier techniques employed in Ref. [1),
one finds

D. Inverting the Fourier decomposition
(~/2z)[co„, +m OH lie3„„.= ——

2~V P„(ro„+m QH )

—i[co .+mQH]/K 1'P
H gt

(4.11a)

The expressions (4.10)-(4.12) contain certain informa-
tion on the inverse transformation to (4.12) for y„!as
well as the Bogoliubov transformation relating creation
and annihilation operators. In order to obtain a rigorous-
ly derived result, one must introduce some mathematical
abstraction as in Sec. IV C of Ref. [1].

First, an extended manifold M is introduced:

-- —Ix», 8,x I

—~ &x & ~, —~ &x & ~, —~ &x&& ~ 0&8&~] (4.13a)

The region outside of the horizon M+, is given by

M+ = Ix,x', 8,x~Ix'&x +C,0&8&m., —oo &x~& oo j .

(4.13b)

The ambiguities of analytic continuation arguments (such
as the future and past histories of the PFF observers and

I

the hole) are avoided by saying that the manifold M is
merely a mathematical construct of convenience. There
may or may not be any physical significance to the space
M —M+. To see the ambiguity of analytic continuation
arguments, compare the results of Refs [5,22] to .Refs
[23,24) in the Schwarzschild case. The metric on M is
given by the asymptotic forms in (2.17) and the volume
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measure is given by (2.16) everywhere. Physically only
the subset of M, V+, is of interest.

Consider the function p„k defined on M

Rk (CO„;0)
4. k=

v'2~+2P„'V'r'+ g'

Xexp[i[(P )„(x —x')]]e™~. (4.14)

The inner product associated with the Klein-Gordon
operator on the hypersurface orthogonal to 8/Bx is

,.,y, ., „.)=s( „.—,)s. , s, ,
; k ) — S(CO„Ci) )'S; Sl k

(4.20a)

(4.20b)

(4.21)

Since the p„k's have a S-function normalization on
spacelike hypersurfaces in M, the expansion (4.19) can be
written as

&~, b &
= i f—, II', b&g'"dx'dx&dx'

x =const
(4.15) where the inner products are taken on x =const hyper-

surfaces. Using (4.19), one can make the identifications

froin (2.16),

+g' '=(I' +a )sin8 . (4.16)

& 0nmk ~An'm'I' & ~nn'mm'kl'

&'Vnmk&Y'n'm'I') nn'mm'kl'

(4.22a)

(4.22b)

Thus, the functions in (4.14) are normalized on these hy-
persurfaces:

From the symmetry of the inner product in (4.15) and
(4.22), one finds

& y„.„,y, ,„&=s(p„'—p,')s., s„„,
&0'. k0j~k &

= s(P.' —Pj')s—;skk

(4. 17a)

(4.17b)
& It n'm'I'&4nmk & & 0nmk&4n m I &''B'nn'mm'kl' (4.23a)

p„k is not a solution of the free particle equation on M,
(3.2). It is merely a mathematical construct. By (4.14)
and (3.14) for any e) 0, there exists an open set V+ such
that

14. k
—g. klV, «. (4.18)

Direct substitution of (4.19) into (4.15) gives the normali-
zation condition on x =const hypersurfaces in M:

So one can say that p„k is a good approximation to

p„k on V+ or Ip„k is the restriction of I))„k to V+.
Recall that the expression for Fp„m. I in (4.4a) is valid

only near the horizon and on V+. One extends Ip„ I to
all of as M as p„. I by using (4.11), (4.12), and (4.14):

QO 0
4n m'I'=g 'g n [ nn'mm kl'4nmk +'Bnn'mm'kl'4'nmk ]

k m

(4.19)

~nn'mm'kl' (4.23b)

One can use (4.20) and (4.23) to find an inverse relation
to (4.19). Since the p's have a S-function normalization
on spacelike hypersurfaces in M, there exists an expan-
sion analogous to (4.21):

—((„'..I &(t)'„. , y„„„)].(4.24a)

Then, using (4.23a), this can be expressed as

4nmk y y f d~. [ &.'.'. 'kl'lt ' 'I
m' l'

Bnn mm k—l It' n'm I'] (4.'24b)

Finally, one can get the inverse to (4.12) by restricting
the expression (4.24b) to the subset V+ ..

Pnml 1V+ ~ ~ ~n'[ ~nn'mm'kl'& Pn'm'!' Bnn'mm'kl'0' n'm'I']1V++
l ' 0

This is the desired result and there is no further need to use the abstract manifold M in the remainder of the text.

(4.25)

E. The Bogoliubov transformation

The local and global representations of the field are compared on V+ in order to determine the Bogoliubov transfor-
mation which relates particle creation and annihilation operators between the two formulations of the field theory. The
stationary observers at asymptotic infinity expand the field 4 in the "global" modes:

@=XXf d ".+ g [[f'n I&nm(+(f. I )'« ~ ()']O(I'". )+I@. la. I +(f. I )'(a. I )']O( —I'"..)]
l' m'

(4.26)



46 EVAPORATION OF ROTATING BLACK HOLES AND THE. . . 1321

&—g =p sine . (4.27)

Near the horizon, by (2.6),

r2+g2
P "„—sgn( V")[co„+mQH]

f~l'+ p'
(4.28a)

Thus, when integrating inside of a sum over quantum

where the "radial" momentum P "„.is determined in (2.6)
through the quantum numbers l, m, and co„. Step func-
tions were introduced to segregate the globally outgoing
modes from the globally ingoing modes for later conveni-
ence. At this point a difference from the Schwarzschild
case arises, the sign of V ' is not necessarily the same as
P ". For the superradiant modes discussed in relation to
(2.27), co+ m QH (0, and P "is of the opposite sign to V'.
The volume measure +—g is

V g—dP '„,~(r +a )sinedco„ (4.28b)

The operators (a„.I ) and (O„'.I.} create modes from
the vacuum defined by the stationary observers at asymp-
totic infinity, ~0„),that are outgoing with quantum num-
bers l', rn', and co„. and ingoing with quantum numbers

l', m', and cu„., respectively. Similarly, if„. I and if„. .&.

annihilate the stationary vacuum:

a„, ,i, ~O„)=0,

&nmI lO„)=0 .

(4.29a)

(4.29b)

Analogously, the PFF observers describe the same field
in terms of local modes:

numbers m for each term in the sum, one can make the
following useful substitution in the integrand of the
asymptotic expressions:

Io X rt f gdP [[0 ka k+f' ka k]e[ (Pa+Pl }(P
k m

+[tP„„„„+y„„„]8[(P+P, )(P —P )]], (4.30)

a„.k IO...) =0 .

(4.31a)

(4.31b)

Both representations of the field must agree on V+..

where (3.9) and (2.12) were used to produce step func-
tions which segregate the solutions into globally outgoing
and globally ingoing subsets in terms of locally evaluated
momenta. The operators a „k and a „k creates parti-
cles out of the local vacuum of the PFF observers, ~OI„),
with quantum number E, m, and P„which are globally
outgoing and ingoing, respectively. Also, one has

(a „m I ) =g g dP„[ B„„mm'kI—a„mk
m

+ nn'mm'kl' nmk ] (4.35b)

+B ' 'kl'(a (4.36a)

nmk gg d~n'[Bnn'mm'kl'~n'm'I'
m I

Similarly, if one substitutes the expansion for y „. I. of
(4.12) into (4.26}and collects terms in (4.32),

00

anmk y y d '[ ~nn'mm'kI'~n'm'I'
m

+I..~V, =+IV, .

By (3.17), (4.1), and (4.8),

(4.32) + ~nn mm kI (~'n'm''I'') ] (4.36b)

a„., =y f "dP„'
km

po

co„.+m'QH

' 1/2

&(~(P„")—aI„}

XBI" .k (P„,co„)a„k ', (4.33)

where co(PI') is a constant by (3.15b) on V+ defined via
the inverse to (2.9):

V. THE STRESS-ENERGY TENSOR
OF THE FREELY FALLING VACUUM

In this section, the dynamic components of the stress-
energy tensor of the freely falling vacuum state are evalu-
ated, near the horizon, by different observers. One is
then led naturally to the concept of the renormalized
stress-energy tensor of the vacuum state transported by a
PFF observer. .

co(P„") — —(Po+P, ) QHm . — (4.34} A. The vacuum stress-energy tensor:
A local evaluation

If one replaces y„k by the approximation on V+,
(4.25), and inserts this expression into (4..30} and solves
(4.32), it will be found that

n'm'I' 2 g f dPn[ ~nn'm 'kl'an k Bn 'mm'kl'a nmk ]
m

(4.35a)

The globally interesting coordinates for analyzing the
stress-energy tensor are the. Boyer-Lindquist coordinates.
In particular, the dynamic components of Hawking radi-
ation are T«, T&„T„,T&„T&&, and T„,. On the other
hand, computations in the local vacuum states are most
naturally accomplished in the PFF frames. Thus, the fol-
lowing transformations are useful:
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& O...l T„lo...&
=

& o...l r~ lo...&
—2Q«...I T&loi..&+n'«i. , I r«loi. .&

& 0 ..Ir„lo...&—

+2( o...I r„l0)., &
—2n& o...l r„lo...&+ & o...l r» I o...&,

& 0&..I T&, lo...& =(o...I Telo...&
—n& o...Ir«lo...&+ & o...fr&if o...&,

'
[[&o...Ir~ fo...&+2& o...lr„ fo...&+ & o...lr„lo...&]

(S.la)

(S.lb)

—n[&0...lr~lo...&+ &o...lr„lo...&]],
T +0

(0~ I Tc,„lo~ ) —
&

[ & 0] I re 1 0~0 &+ & 0i

Iraqi

I oior, & ],t'~f+

&O...lr«lo. ..) =(O...lr«lo~ ),

Q2
[&o...lr Io...)+2&o...lr„lo...)+&o...lr„lo...&] .

(S.lc)

(S.ld)

(5.1e}

(S.1I}

The stress-energy tensor of a scalar field 4 in curved spacetime is

T,I, =4. 4.p
—

—,'g, b[g' 4.,4.d+m, 4 ] .

The stress-energy tensor evaluated by a PFF observer is computed using local wave functions and is denoted by

(5.2)

(5.3)

1 „dI'„'
&O...lr„lo...&l&.= . . . g g y f,"

[8„*, (P„,co„,)8„,„„(P„,ru„, )s, (cu„.;8)s,„„(co„.;8)8~'(r'+a') km im I
—"S'n

X[(Pp) +(P, } +2PpP, +Q m —2(Pp+Pi)nm]] . (5.4)

(T„„}&„—=T„„(cp,cI ) .

To find ( O~„l T«(cp, y) I oi„),one can substitute the expansion for 4~„, (4.30), and for Rk~ in (4.8) into (5.2) and (5.la).

From (2.6), (2.12), and (4.28a),

dp' ' dp ~ d(cp+m QH )=+
P r~r+ 7' +g co+m QH ~+m QB

(5.5)

Thus, (5.6) and (5.8b) imply that the amount of redshifted

energy of the zero-point oscillations of the local field in a
freely falling volume element at any value of global time t
1s

The plus (minus) sign corresponds to the globally outgo-
ing (ingoing) case. Applying (5.5), (5.lb), and (4.7a) to
(5.4) and collecting terms yields

(0„,I T, '(q, y)l 0„,)

dE„- g f [Si (co„;8)] dP" . —
"~-~+ 4~ (r +a ) I

(5.9)

g f [Si (co„',8)] —dP"
4~(r+a )i -- ™"r 2

(5.6)
To interpret (5.6), note that the total redshifted energy

E in a volume element V (defined at a particular value

of global t) is given by [6]

It is not a coincidence that one has the same result for the
stationary observers at infinity in their vacuum state:

dE„——d V, „„„(0„I T, '(fr, cp) Io„)

dv. ..„„ g f [Si (co„;8)]2 dP" . (5.10)—
E„=—f T, '+ gdr d8dg . — (5.7)

Look at the volume element d V transported by a PFF ob-

server:

d V=&g"'dx 'dx'dx & . (5.8a)

dV, „„„—a 2p sin8dr d8drt . (5.8b)

Asymptotically, by (2.12a), a global observer would see a
t =const slice of the volume element:

In (S.10), the notation T„„(p,y) signifies that the stress-
energy tensor evaluated by the stationary observers at
asymptotic infinity is obtained by using the "global"
wave functions. The computation is accomplished by in-
serting the expression (4.26) for 4 into (5.1a} and (5.2).
The quality of (5.9} and (5.10) is a consequence of the
equivalence principle. The physical relationship of this
result to Hawking radiation is explained in Sec. V of Ref.
[1].
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8. The stress-energy tensor of the local vacuum

evaluated in the stationary frames

The stress-energy tensor of the local vacuum transport-
ed by the PFF observers as measured in the stationary
frames at asymptotic infinity, (O(„lT„„((p,(p)lO(«&, is
calculated near the horizon. This computation requires
using the field representation 4 of (4.26) in (5.2). Howev-
er, this must be modified so that the creation and annihi-

lation operators can act on states belonging to the local
number representation of the field. Thus, the Bogoliubov
transformation, (4.35a), and (4.35b), must be used to reex-
press these operators for the globally outgoing states.
The globally ingoing states are trivial by (4.33). To utilize
(5.1), the calculation is performed in the local basis. The
algebraic manipulations are facilitated by using the gen-
eral form of y given in (4.5b):

PI'(o(., lT00(q, q)lo, &
— . . . g g[s( (co;8)]' f [Po(co, m, k)]

+ Sn [r +a2] (
' v'&o ' 0(+mQH

p p

+f coth —(co+mQH } [Po(o(,m, k)]2
V'&0 K u+m QH

(S.1 la)

dP'
(o(„lT'0$(lp, lp)lo(„& — y y [s( (co;8)] ~ f [Pom]

r r+ g~z[r~+g2] ( v'&o co+mQ&

+f coth (0(+mQ—H } [Pom ]
dP'

V&0 K co+m QH

(5.11b)

dP"
I~0((q g )IO( & 2 2 2 X 2 [S( (i8}] '' f [P0P(]

~-~+ 8n. [r +a ] ( v'&o co+m QH

+ f coth —((0+mQH } [P0P, ]
dp"

V "&0 K co+m QH

(5.11c)

PI'(o(„lT,y(g7, lp)lo„, &
— y y [s( (co;8)] f [P,m]

~-~~ 8m2[r +a2] (
' v'&o 0(+mQH

+ f coth —(0(+mQH ) [P,m]
dP "

V'&0 K co+m QH (5.11d)

P I'

(O(„IT'(yy(p, y)IO(„& —
2 2 2 g g[s(~(co;8]' f m

r r+ g~2[r2+g2] ( v'&0 0(+mQH

p f
+f coth —(0(+mQH) m

V "&0 K co+m QH
(5.lie)

r

(o...lT„(q,q)lo...& —,, y y[s( (~;8)]' f [P, ]'r~r+ g [r +g ] ( v'&0 co+mQH

cjP '
+f coth —(0(+mQIr) [P, ]

V &0 K co+mn~
(5.11f}

The local momentum P„, in the integrands of (5.11) is derived from the momentum which is measured by the observers
at stationary infinity [as indicated in the notation of (5.11a)],using (2.9) and remembering that (0 is a constant for global
modes. Also notice that the modal contributions are segregated as to whether they are global ingoing or outgoing, not
by the sign of P '.

Combining (5.1a) and (5.11),



1324 BRIAN PUNSLY 46

—2

g g[SI (co;8)]' f codP "+f cocoth —(co+mQH) dP"
+ 8 [r +a ] I v "&o v "&o K

Similar expressions can be found for the other components of (0&„~T (p, y)lO...}.
(5.12)

C. The renormalized stress-energy tensor

The renormalized stress-energy tensor of the freely falling vacuum was shown in Ref. [1] to be

( 0 „iT„„O„i)„,„=( Oi„~ T„„(y, y )
~ Oi„)—( Oi„~ T„„(@,y )

~ Oh, ) . (5.13)

The physical significance of this quantity is discussed in Secs. V and VI of Ref. [1].
Using (5.5), (5.6), (5.12), (4.28), and (5.13),

—2

(O„,~T,'(0„,)„„—,, g [S, (co;8)]'
r r+ 4~ [r +g ] I

~, ™2

exp[(2m /ic)(co+ mQH }]—1
(5.14)

In combining the terms to arrive at (5.14), one must keep
close track of the appropriate limits of integration due to
the existence of superradiant modes. It is interesting that
the superradiant modes are not segregated in (5.14), yet
they are in all of the intermediate stages. For local
modes p )m„which, from (2.6) and (2.12), implies that
co+ m QH & 0 for all modes. Therefore, the allowed limits
on integrals over P" for quantities derived from local
fields, such as (5.4), become, with the aid of (5.5),

dP" — g f "
z

d(co+ m QH ), (5.15a)

+ g f d(co+mQH),
e+ 0

(5.16a)

where the contribution

ties derived from "global" fields, such as (5.11), for glo-
bally outgoing modes are

2
dP"

2+ 2 Vl' 0

f d(co+ m QH )
+ +0 0

r +ag f dP ' — g f — d(co+mQH),
m

V "&0 r~r + m
00 p'

(5.15b)

f d(co+m(QH)
m +QHm &0

(5.16b)

For "global" modes co )m„but co+ m 00 can be nega-
tive. These are superradiant modes which have P'&0
and P &0. The allowed limits of integration for quanti-

corresponds to the superradiant globally outgoing modes.
For the globally ingoing modes, quantities involving in-

tegrands which are functions of global fields have the fol-
lowing allowed values of P "in the integration:

P -r —
me mQH 0

2 2 g f dP" — g f '
d(co+mQH)+ — g f d(co+mQH), —

l" +Q m
V &0 r~r+ m +g m&p m +0 m&0

e H e H

(5.16c)

where the term

—me m+

f —d(co+ m QH )

me+QHm &0 0
(5.16d)

is the contribution from the globally ingoing superradiant modes.
Returning to the result (5.14), by (5.7) the redshifted energy of the freely falling vacuum is negative as viewed from

stationary infinity. Since this vacuum is tied to the PFF observers as viewed from infinity, the motion of the PFF vacu-

um gives rise to an energy fiux. From (4.28), (5.5), (5.1},(5.11), (5.13},(5.15), and (5.16) one finds, in analogy with (5.14),

""r r+ 4~ p i ~, ' exp[(2m/~) co+mQH —1
(5.17}



46 EVAPORATION OF ROTATING BLACK HOLES AND THE. . . 1325

Similar expressions hold for the angular momentum
density and flux. However, the physically relevant quan-
tity is the renormalized stress-energy tensor of spacetime.
Thus, these expressions will be introduced in the more
important discussion of the next section.

VI. THE RENORMALIZED
STRESS-ENERGY TENSOR OF SPACETIME

Q7+ m QH
1 —

l A(l, m, co)l'= la(l, m, m) I' . (6.1a}

The superradiance condition is

lA(l, m, co)l )1, co(co+mQ&))0. (6.1b)

Thus, near the horizon, there are two components of the
radial momentum flux: one results from the bulk motion
of the negative energy density of the freely falling vacu-
um, (5.17), the other is the ingoing flux of the reflected
pairs. Denote the stress-energy tensor of the radiated

The energy flux associated with the infall of the freely
falling vacuum, (5.17), was interpreted spectrally as out-
going radiation of particle-antiparticle pairs in Sec. VI A
of Ref. [1]. Using this insight, the previous calculation of
(O», lT&„lo», )„„ofthe freely falling vacuum can be
synthesized with the foliation of spacetime by PFF
frames to find the renormalized stress-energy tensor of
spacetime, ( T )„„.

These pairs are generated during free fall, but the
predominant effect occurs as u~0, near the horizon.
The pairs have an amplitude to reflect from and be
transmitted through the curvature potential of spacetime.
The reflection coefficient is designated as A (l, m, co) and
the transmission coefficient is 8(l, m, co). One has the re-
lationship [17]

stream of Hawking radiation which has scattered off of
the curvature potential by (T„„)„d.The renormalized
stress energy of spacetime can be defined in the asymptot-
ic zones

& T„„&„„=(o...l T„,lo...&„„+(T„,&,., (6.2)

S"=—f T, 1/ gd8—dg . (6.3)

By conservation of energy and the physical origin of the
pairs, (5.17), (6.1), and (6.3) imply that the energy flux of
the reflected pairs, ( T, ")„f,satisfies

&T,")„, —
p~f + 47/ p

xggf "[S, (~;8)]'lA(l, m, ~)l'
m

me

co dN

exp[(2n. /a. )(co+m QH ) ]—1

(6.4)

By (6.2), the renormalized stress-energy tensor of
spacetime near the horizon is

lim ( T„„)„„=(0„,l T„,l 0„,) + ( T„„)„,.I'~f+

Inserting (5.17) and (6.4) into (6.5) yields

(6.5)

A. The asymptotic zone near the horizon

To analyze the propagation of the pairs, it is con-
venient to introduce the conserved, integrated radial
component of the redshifted energy flux, S":[6]

(,')„„—— g g f [S, (co;8)] [1—lA(l, m, co)l ] (6.6)

The reflected pairs form a highly relativistic stream by (2.27). So, by evaluating (5.1) and (5.2) near the horizon, one
finds that

»m &T, ')...=— Q 2p22, lim (T,") „,.(r +a )r
(6.7)

Thus, (6.4), (6.7), and (5.14) inserted into (6.5) produces the desired result
—2

(T,')„„— g g [Si (co;8}] [1—lA(l, m, co)l~]
r r+ 4+[r~+a~] i ~, ' ' '

exp[(2m. /a}(co+mQH)] —1

Similarly, one can compute from (5.1), (5.11), (5.13), and (6.5),

(6.8a)

(T&")„,„—— g g f [S, (co;8}] [1—lA(l, m, co)l ]
r r+ 4 p i ~r exp[(2n /a )(co+m QH ) ]—1

(6.8b)

—2

( p')„„— g g f [Si (a);8)] [1—lA(l, m, a)l ]
r+ 4 [r +a ] i ~

' '
exp 2n/a' co+mQH) —1

(6.8c)

r +a [co+QHm]de
g g f [S, (co;8)] [1—lA(l, m, co l]

(6.8d)
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QHa
, g g f [s,.(~;e)]'[1—I~(l, m, ~)l']

4n. (r +a ) I ~e ' '
exp[(2nla)(ro+mQH)] —1

—2

(T„')„„— y g f [s,.(~;e)]'[1—I~(l, m, ~)l']
r+ 4 b, I, '

exp[(2n/v')(co+mQH)] —1

0
(T,~)„„——

2 g g f [Sq (ro;e}] [1—IA(l, m, co)l ]""r-r+ 4~2', ~, ' ' ' '
exp[(2m. /~)(co+ m QH ) ]—1

nHa '
Tt ren r r y 2 2 g gf [slm(~'e)] [1 l~(l m ~}l 1"+ 4m r +a ~ ~ ~e ' '

exp[(2n'/a. )(ro+mQH)] —1

(6.8e)

(6.8f)

(6.8g)

(6.8h)

B. The asymptotic form near stationary infinity

To compute ( T„)„„near stationary infinity from (6.5),
first note that (5.13) implies

' 1/2
2Mm,p" — a —m, + +0 1

2
(6.13a}

& o...l T„.lo...&„„—0
f~oo

(6.9) 1+ +02M 1

f~oo r T
2

(6.13b)

and, therefore, by (6.2),

(6.10)

where ( T„„),„,„, is the stress-energy tensor of the radiat-
ed pairs which have been transmitted through the curva-
ture potential. To find ( T„)„,„„one can use (6.6), (6.8),
and energy conservation through r =const, t =const sur-
faces in each asymptotic zone. In analogy to (6.13), one
must also introduce the conserved, integrated radial red-
shifted angular momentum Aux L ":

Thus, for massless quanta (these modes carry off most of
the black-hole energy, except possibly for microblack
holes), V "~1 in (6.12). This constraint on V" is a conse-
quence of angular momentum conservation. Since m and
K are constant in each modal contribution to (6.12) all of
the way from the horizon to asymptotic infinity, and the
effective lever arm increases without bound, the norm of
the linear momenta in the plane orthogonal to e, must go
to zero as 1/r in the radiated stream.

L"=f T&'"t/ gdedp . — (6.11)
APPENDIX: THE CONNECTION IN THE PFF BASIS

Combining these facts, a straightforward calculation of
the stress-energy tensor of a stream of radiated particles
yields [16]

0
V'r sin 8

Since the PFF frame in (2.9) is anholonomic and is not
orthonormal, there is no expected symmetry in the con-
nection coeScients I „&z. To find the connection, the
general equation is implemented [16]:

I „pr ,'(g„p—r—+g„~p gpss „+c„pr+c„„p cd„) . (A—l}

The metric is found in (2.13) and the structure constants
in (2.19). The nonzero connection coefficients are listed:

0
r~ ao 4+r

V'

—m

r 2sin29

m 0
coV'r sin 8

roii=r&oi=riio= 2(g&i },o ~

p&y ~py& ~~~ I y]p

(A2)

(A3)

where L is the spectral luminosity

(6.12a)

rog, =2rN, =(ge, ) o

(A4)

(A5)

[s, (co;e)] [1—IA(l, m co)l']L=T T dec
2m. /a(co+ QH )

m e H

(6.12b)

and the composition symbol "o"in (6.12a) means that the
matrix is to be considered inside of the generalized sum
in (6.12b).

From (2.6),

r„,= —r~, = —r,= —r,~=r, =-,'c„, ,

—r„,=r,=r,„=-,'(g„), ,

r„,=-,'(g„},,

r„,=r„,=-,'(g„), ,

e I ~&i
= —

P~~~ =
—,c,z~,

(A6)

(A7)

(As)

(A9)

(A10)



EVAPORATION OF ROTATING BLACK HOLES AND THE. . . 1327

I'iso=«ie}. e 2(&se},~

~(gpss}, 1 ~

T tet ~sit z(gt0) e '

(Al 1}

(A12}

(A13}

el e eel 2 (g ee)

(A14)

(A15}

(A16)
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