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In this paper we use Born-order quark-exchange diagrams in a nonrelativistic potential model
to describe low-energy scattering of qq mesons. A formalism for evaluating quark Born diagrams
is developed, and as a first application we consider meson-meson scattering in channels in which

qq annihilation is thought to be unimportant. In particular our results are relevant to I = 2 xx
and I = 1 K'K elastic scattering. Simple rules for the Born diagrams are given, which allow the
evaluation of scattering amplitudes in terms of external meson wave functions by inspection. These
techniques are applied to systems having identical quarks, and m+x+, K+K+, and p+p+ elastic
scattering phase shifts, cross sections, and equivalent potentials are derived as examples. The S-
wave I = 2 xm phase shift for a Gaussian qq wave function with conventional quark model parameters
a„mv, and PsHo is found to be in good agreement with experiment and with Weinberg s PCAC
(partial conservation of axial-vector current) result. At higher energies the predicted difFerential
cross sections have the characteristic diffractive features of an exponential t peak at small angles and
vacuum quantum number exchange. The phase of the predicted amplitude however differs from the
experimental diffractive amplitude, so these quark Born diagrams cannot be directly identified with
the "Pomeron" of diffractive scattering phenomenology.

PACS number(s): 13.75.Lb, 12.40.gq

I. INTRODUCTION

Even a cursory investigation reveals that hadron scat-
tering at low energies is a very complicated process. Ex-
perimental studies have shown that important contribu-
tions can arise from s-channel resonance production, t-
channel resonance exchange, and nonresonant scattering.
Theoretical attempts to describe experimental results for
hadron scattering have used a wide variety of methods,
ranging from the application of general principles such as
analyticity and dispersion relations to detailed dynami-
cal models involving meson exchange, quark and gluon
exchange, and most recently lattice gauge theory. In-
deed, the literature on hadron scattering is so extensive
that we must restrict our introduction to a brief discus-
sion of research which appears most closely related to the
perturbative techniques we have developed.

One reason for the diKculty of describing hadron scat-
tering is the strength of the strong interaction at low en-
ergies, which as a meson-baryon effective interaction ap-
pears to be nonperturbatively large. Perhaps the most fa-
miliar example of such large couplings is the pion-nucleon
effective coupling constant, which was estimated to be

15 in pion-exchange models of the nuclear interaction
[1] in the 1950s. Although this leads one to doubt the
validity of perturbative calculations involving effective
hadron fields, soft-pion amplitudes including the $'-wave
xx scattering lengths have been successfully described us-

ing PCAC (partial conservation of axial-vector current)
[2]. In part, because of the strength of the strong interac-
tion, analytic continuation approaches are at present the
most accurate techniques available for relating meson-
meson scattering amplitudes; in particular, the recent
work of Au, Morgan, and Pennington [3] has been very.
successful in relating various reactions involving mx sys-
tems. Unfortunately, this approach does not provide a
detailed dynamical model of the mechanism underlying
hadron scattering.

As there is clear evidence for one-pion exchange in the
t distributions of many strong processes, meson-exchange
models of strong forces have been developed for several
systems, the most familiar being the nucleon-nucleon sys-
tem [4]. These models have attributed the strong repul-
sive core of the nucleon-nucleon interaction to exchange
of vector mesons such as the u(783). This now appears
incorrect; a 0-parity transformation applied to vector
exchange predicts an attractive core for the nucleon-
antinucleon interaction and corresponding deeply bound
states [5], and such states have not been seen experi-
mentally at pp facilities such as the CERN Low Energy
Antiproton Ring (LEAR). A plausible explanation for
the failure of these predictions is that vector-meson ex-
change is actually unimportant, since the correspond-
ing forces would have a range of only 0.2 fm, much
smaller than the 2-fm separation required for two dis-
tinct nucleons [6]. Meson-exchange models presumably
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are parametrizations of ot;her mechanisms, which should
be more evident at the quark and gluon level.

Although the development of the quark model and
QCD made hadron scattering a more well defined prob-
lem, the difficulty of calculating scattering amplitudes
of multiquark systems has delayed progress in the de-
scription of low-energy hadron scattering in terms of fun-
damental QCD constituents. The technique most often
used is the resonating group method, and more recently
there have been several variational studies; both meth-
ods require considerable theoretical effort when applied
to hadron scattering problems. Because of its funda-
mental importance to nuclear physics, the two-nucleon
system has been the subject of many investigations us-

ing six-quark wave functions; the extensive literature on
this subject has recently been reviewed by Shimizu [7].
Calculations published by Liberman [8] in 197? (using
the nonrelativistic quark potential model) and DeTar [9]
(using the bag model) in 1978 found the dominant short-
distance repulsive core from the interaction of quark
wave functions without requiring vector-meson exchange.
More recent work by Maltman and Isgur [10] in the non-

relativistic quark potential model further concluded that
the intermediate-range attraction could be explained as a
spatial distortion of the three-quark clusters rather than
as an effect of pion exchange. Liberman, Shimizu, Malt-

man, and Isgur all conclude that the dominant repulsive
core is due to the color-magnetic (spin-spin) component
of one-gluon exchange, which is then followed by quark
exchange to restore color-singlet states. In this paper we

shall assume that the same mechanism dominates non-

resonant meson-meson scattering, and find that it gives
a good descript, ion of I = 2 x~ scattering.

Meson-meson scattering has received rather less atten-
tion than the nucleon-nucleon interaction, presumably
because the scattering amplitudes are less well estab-
lished experimentally, and in many channels are compli-
cated by resonance production. In early work on meson-
meson scattering 3aH'e and Low [11] introduced a "P
matrix" formalism for calculating hadron scattering am-
plitudes using bag-model wave functions; this formalism
was applied to experimental meson-meson phase shifts
to infer the location of P-matrix poles. A direct calcu-
lation of meson-meson scattering amplitudes from bag-
model wave functions using the P-matrix formalism how-

ever has not been published. In the high-energy regime,
meson-meson scattering in perturbative QCD has been
studied by Brodsky, Lepage, and collaborators [12] us-

ing a light-cone formalism. The "constituent interchange
model" they employ assumes that high energy scatter-
ing is dominated by quark-exchange diagrams. Meson-
meson scattering at low energies using a nonrelativistic
quark model description has been studied by &einstein
and Isgur [13, 14]. They used a variational approach
to optimize a q q wave function in a Coulomb-plus-
linear potential with a hyperfine term, and projected
the q q state onto free qq wave functions to estimate
a relative two-meson wave function; this gives an equiv-
alent meson-meson potential. These potentials appar-
ently have an underestimated range, so %einstein and
Isgur adjust their overall ranges and normalizations. This

ad hoc two-parameter scaling leads to scattering ampli-
tudes which are in good agreement with experimental
meson-meson phase shifts and inelasticities in the exotic
channels of the pseudoscalar-pseudoscalar sector. (These
channels are presumably free of complications due to
s-channel resonances. ) To date results have been pub-
lished only for the S-wave pseudoscalar-pseudoscalar sec-
tor with u, d, and s quarks and antiquarks. Although
this variational approach gives a reasonable description
of meson-meson scattering amplitudes, it requires con-
siderable effort in the variational calculation of the mul-

tiquark ground state. As a variational method, its ap-
plications are limited to the lowest-lying meson-meson
states in each sector of Hilbert space. One may also ob-

ject to the rather arbitrary projection of this four-quark
wave function onto two free mesons to obtain an approx-
imate two-meson wave function, and to the scaling of the
meson-meson potentials. Although this scaling is neces-

sary to obtain agreement with experiment, it nonetheless
represents a reinterpretation of results which, as derived,
are in disagreement with experiment.

In this paper we also discuss meson-meson scatter-
ing in the cont, ext of the nonrelativist, ic quark poten-
tial model. In particular, we investigate the attractive
possibility that results similar to the scaled variational
potentials of Weinstein and Isgur can be obtained from
Born-order quark scattering diagrams. There is much

circumstantial evidence that high-order diagrams are rel-

atively unimportant in hadron spectroscopy and in low-

energy scattering and decays (excluding uu ~ dd mix-

ing). In spectroscopy, if higher-order diagrams were im-

portant one would expect resonances to be complicated
mixtures in flavor space. Such higher-order flavor mixing
is known to be relatively unimportant in experimentally
well-established hadrons, with the exception of the pseu-
doscalar states rl(549) and g'(957). The complete mixing
of u and d quark states to produce isospin eigenstates
is in contrast evidence that the effects of higher-order
uu ~ dd mixing diagrams are large relative to the u-d
quark mass difference.

Motivated by this evidence for low-order QCD domi-
nance and by the conclusions of studies of the nucleon-
nucleon interaction, we calculate meson-meson scattering
amplitudes given the simplest perturbative process: A
single interaction through one-gluon exchange or the con-
fining potential is followed by rearrangement into color-
singlet final states. This is essentially the "constituent
interchange" mechanism [12]augmented by one-gluon ex-
change. Although this is a simple mechanism, the pres-
ence of four interacting fermions with spin, Aavor, and
color degrees of freedom, four asymptotic meson wave
functions and a crossing relation between the initial and
final bases makes this a rather intricate scattering prob-
lem. We attempt to simplify the calculations by develop-
ing a diagrammatic representation, which should be use-
ful in fut, ure applications to other processes. We do not
consider production of s-channel resonances or t-channel
meson exchange, or any other processes which involve qq

pair creation or annihilation; these effects are beyond the
scope of the present work and will be considered in future
studies. Although such annihilation effects presumably
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are important in kinematical regimes which allow reso-
nance production, one can study nonannihilation hadron
scattering in isolation by specializing to channels such as
I = 2 xx and pp and I = 1 I~ I~, for which qq pair annihi-
lation and light s-channel resonances are not expected to
be important. We shall see that, at least in the I = 2 xx
channel for which accurate experimental phase shifts ex-
ist, the quark Born diagrams give an accurate description
of the dominant S-wave scattering amplitude. We also
show how these quark and gluon matrix elements can be
related to meson-meson potentials near threshold. Qur
determination of nuclear forces from quark line diagrams
is very similar in concept to the previous work of Gardner
and Moniz [15]. A study of the phase shifts produced by
our ver and I~I~ potentials suggests that the Weinstein-
Isgur "rescaling" is a compensation for relativistic effects
in the scattering amplitude which are lost in the extrac-
tion of potentials near threshold. We find that a large
rescaling is required only in the highly relativistic xx
system. At higher energies we find similarities between
our predicted differential cross sections and experimental
diffractive scattering [16],although the phases of our pre-
dicted Born amplitude and the experimental high-energy
diffractive amplitude are not in agreement [17].

We anticipate that our techniques may also prove use-
ful in identifying channels in which final-state interac-
tions are especially large and lead to important effects,
such as the formation of "molecule" resonances of hadron
pairs. Such bound states of the KI& system have been
discussed at length by Weinstein and Isgur [13,14]; more
recently there have been suggestions that vector-meson
pairs may also form deuteronlike bound states as a result
of these quark-exchange potentials [18] or pion exchange
[19].

The remainder of this paper is organized as follows.
In Section II we describe the nonrelativistic quark po-
tential model we use for these calculations and the qq
momentum-space wave functions which are our asymp-
totic states. We also discuss the "post-prior" ambiguity
in the definition of HI, and derive general results for scat-
tering amplitudes, equivalent potentials, and cross sec-
tions in terms of the matrix elements of Hl between two-
meson scattering states Section. III applies this formal-
ism to the meson-meson scattering problem. This pro-
cess involves four independent HI matrix elements, and
we give a simple diagrammatic representation for each.
"Capture" and "transfer" processes each account for two
diagrams. These diagrams can be written as the product
of flavor, color, spin, and space factors, and we illustrate
the evaluation of each factor by considering a specific di-
agram in detail, following which we quote the full meson-
meson scattering amplitude. These amplitudes are eval-
uated explicitly using Gaussian external wave functions.
In Section IV we apply these results to I = 2 zm and
I = 1 I~It elastic scattering; the Gaussian wave func-
tions lead to closed-form results for differential and total
cross sections and phase shifts. In the m7t. case we com-
pare our results to the experimental S-wave phase shift,
and find good agreement over the full range of energies
for which accurate data exists. We also give predictions
for I = 1 KI~ elastic scattering and discuss the I = 2

pp case. Qur differential cross sections at high energies
show a diffractive peak at small t, which is due to the
"transfer" quark diagrams. We then give our conclusions
and acknowledgments. Following this we present details
of our calculations in five appendices. These appendices
discuss (A) meson wave functions, (B) spin matrix ele-
ments, (C) evaluation of our quark scattering diagrams
by inspection, (D) the application of our formalism to
systems having identical quarks, and (E) the determi-
nation of low-energy meson-meson equivalent potentials
near threshold from our Born diagrams.

II. QUARK BORN DIAGRAMS
IN MESON-MESON SCATTERING

A. Model Hamiltonian and states

As a first application of the Born diagram formalism
we consider scattering of two mesons A and 8 into final-
state mesons C and D. For our discussion we shall refer
to a Coulomb-plus-linear potential model with a spin-
spin hyperfine term:

A'(i) A'(j) n, 3a
2 2 ri 4

(2)

For antiquarks the color factor A'/2 is as usual replaced
by —A~T/2. We partition this Hamiltonian H into an
Hp(A, 8) = Hp(A)+Hp(8) that contains all interactions
within each initial meson and an interaction Hamiltonian
Hr(A, 8), which contains all the remaining terms and
describes A-B interactions:

H = Hp(A, 8) + Hr(A, 8),

Hp(A, 8) = Hp(A) + Hp(8) . (4)

Hp(A) for example is

h
Hp(A) = ) — 7', + ) H,~

i&A ig j
i, yGA

and HI (A, 8) is

HJ(A, B) = ).
if A,jQB

The initial state lA, 8) is by definition an eigenstate
of Hp(A, 8),
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H p(A, B) IA, B) = (E/ + EB) IA, B)

m+ +m +, IAB),
p 2

771A 2mB

H, (c, D) lc, D)=(E~+ED) lc, D)
p 2 p 2

mC+ +mD+ QQ .
2mc 2mD

and the final state IC, D) is an eigenstate of the final-
state free Hamiltonian Hp(C, D), which contains all the
quark-antiquark interaction terms within mesons C and
D:

Hp(C, D) is defined by analogy with Hp(A, B) above.
The asymptotic qq eigenstates of the various Hp Hamil-

tonians satisfy Schrodinger equations, which for meson A

as an example is

Hp(A)IA(P, A) ):Ep(A)IA(P, A) )

h) — v'+ ) (
— ' + ar;, + ' s; s r(r;;)) ~A(p A) ),

i&A
2 ~ 3"

~(2 mp 77lj
s, yQ A

where the hyperfine delta function has been suitably regularized. We write the explicit IA(P, A) ) state with center-
of-mass momentum P and polarization A as

3

IA(P, A) ) = ) b, ;)
c,c=1 8 &8

" """b(P k k) y .— @&(k k) Iqi:.)Iqg;) (10)

{P', A'
I P, A) = br, p b(P —P')

and the quarks and antiquarks are defined using Bjorken
and Drell conventions [20]:

and

(q,', , lq,',.) = b" b" b(p —p') (12)

lq;, .) = b;, t Io)

In this state c and c are quark and antiquark color labels

and {g„-}is a set of Clebsch-Gordan coefficients appro-
priate for a spin-S~ meson; as we consider only I = 0
mesons, there is no orbital angular momentum to couple
to the spin. 4g(k —k) is the qq momentum-space wave

function, and the delta function b(P —k —k) enforces in-

ternal momentum conservation on the meson wave func-
tion. These spatial wave functions are discussed in more
detail in Appendix A. The dependence of 4A(k —k) on
the relative momentum k —k only and the decoupling
of spin and momentum in boosted states result from our
use of a nonrelativistic formalism.

We normalize our meson wave functions to

independent of P. We may equivalently write a me-
son state using a composite qq-meson creation operator,
which for meson A is

CC 88

(A)
Xss

xb(P —k —k)
xCg(k —k) bkl, d'„-t . (16)

Multimeson states such as the initial IA, B) two-meson
state can then be conveniently written as

IA B) = u„p„,„, u&&p p, Io)

B. The "post-prior ambiguity"

In the previous discussion we defined Ho to be diag-
onal on the incoming state IA, B); the remaining terms
in H by definition constitute HI. We could of course
equivalently define the interaction Hamiltonian Hp using
a decomposition in which the final-state rnesons C and
D are diagonal under an Hp(C, D):

and similarly for antiquarks. The spin wave functions are
normalized to

) (A') ~ (A) —~AAr

58

These constraints in turn imply a normalization for the
momentum-space wave function 4~, which is

H = Hp(C, D) + Hr(C, D),

Hp(c, D) IC, D) = (E/ + ED) IC, D),

Hr(C, D) = ) H, ,
iEC,jgD

(18)

(20)

d k
I
4A(2k —P)

I

This appears to admit an ambiguity; one might expect
that the choice of Hr(C, D) in place of Hr(A, B) would

lead to a difFerent scattering amplitude at order Hl. This
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freedom in the decomposition H = H0+HI is well known
in atomic physics, and is known as the "post-prior ambi-
guity. " One may show that the two Born-approximation
scattering amplitudes are actually equal [21],

(C, D[ HI(A, 8) (A, 8) = (C, D~ HI(C, D) [A, 8),
(21)

provided that the external states are eigenstates of their
respective Ho free Hamiltonians. If the asymptotic states
are instead approximate forms, as in the examples we
shall consider here, one generally finds different matrix
elements for HI(A, 8) and HI(C, D). We refer to this as
a "post-prior discrepancy. " For correct Ho asymptotic
eigenstates, however, these matrix elements are equal, so
the choice of decomposition into Ho and Hl is simply
a matter of convention. This result is summarized by
equation (43.11) of Schiff [21]. In the following we shall
employ the "prior" form H = Ho(A, B) + HI(A, 8) ex-
clusively, so that our interaction describes scattering of A
constituents from 8 constituents. In the z z, ZK, and pp
elastic scattering examples we discuss in Section IV this
ambiguity is actually not present despite our use of in-
exact Gaussian wave functions. Reference to the second
set of spin matrix elements in Appendix B shows that
we would encounter a post-prior ambiguity if we used in-
exact wave functions in the calculation of nn ~ pp and

pp -+ en scattering amplitudes, for example.

C. Scattering amplitudes and matrix elements

At lowest order the scattering process AB ~ CD re-
sults from the operation of the A-B meson-meson inter-
action H~(A, 8) on the initial state ((A, 8): A single oper-
ation of HI(A, 8) transforms the (qq)~ and (qq)~ pairs
from color singlets into color octets; t, he quark from A
and antiquark from B scatter into a color-singlet meson
C = q~q~, and the remaining pair qgq~ form a color-
singlet meson D At O(HI) . this rearrangement process
alone contributes to meson-meson scattering, since rear-
rangement is necessary to form color-singlet final states.

The scattering amplitude to leading Born order in HI
is an energy-conserving delta function times the ma-
trix element of Hg between time-independent (Heisen-
berg picture) states,

Sgj —bfj 2z'i b(Ey —E,) (C, D] HI(A, B) ~A, B),
(22)

tering cross section. A particularly simple approach is to
consider 2 ~ 2 scattering of four distinguishable point-
like scalars with an interaction Hamiltonian density of
HI ——gP~ PBgc PD. The O(g) S matrix for AB ~ CD
scattering in the interaction representation is then given

by

Sg; ———i,D HI A, B A, B dt

4 (4) (—ig)
*)

( ) g2E„2E
—= —27ri b(Eg —E, ) b(py —P;) hy; . (24)

(25)

so for this 2 ~ 2 process we conclude that

Afy; =
~ /(2~)~2E )hg; .

1

n=l
(26)

The relation (25) between ig J, and Sy, differs from that
given by the Particle Data Group [22] in their equation
(Cl), due to their use of a normalization convention for
states (C2) which differs from Bjorken and Drell [20].
Our invariant amplitude M~; (17) however is identical
to the Particle Data Group Mg;, so we can use their
results for the relation between My, and the differential
and total cross sections. Specializing to the equal-mass
(elastic scattering) case with M = M4 —Mg —Mc-
MD, these relations are

1
/Wg, J' = z4s /hg, [', (27)

du 1 4n's
Ch 16'.s(s —4Mz) (s —4M )

allCl

The S matrix is also related to the invariant amplitude

~g, by

Sg, = bg, —i(2z) bl"l(Pg —P;)

and translational invariance implies that this matrix ele-
ment may in turn be written as a momentum-space delta
function times a state-dependent quantity hy;,

(C, Di HI(A, B) iA, B) = b(Pg —P;) hj, , (23)

1
0

[~~;[' ct
16xs(s —4M ) &~ 4M-"l

4~'s
fhy, [-' Ch .

(s 4M ) —(s —4M~)
(29)

where P; = PA+P~ and Py ——P~+PD. The "physics"
of the Born-order scattering amplitude is contained in
hy;, and the remainder of the paper is concerned with
the calculation of this matrix element and its relation to
scat tering observables.

Several approaches may be followed in relating the
AB ~ CD Hamiltonian matrix element hj, to the scat-

The matrix element hy; in these relations is to be evalu-
ated in the c.m. frame.

Finally, an equivalent potential V which gives rise to
the same differential cross section near threshold can be
found by comparing the Born approximation for equal-
mass scattering,
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(30)
On expanding the fields in creation and annihilation op-
erators and taking the nonrelativistic limit, we find the
Hamiltonian matrix element

ff;(0) = —— d z V(x) e
4x

(where q = P, —P~) to the differential cross section
(27). Close to threshold we may take s = 4M in (27),
which leads to the important result

V(x) = d q hg, (q )
e'~'" . (32)

To generate a V(r) this formalism implicitly assumes
that hg, depends on kinematics only through l = —q s,
which is not valid in general; there may be depen-
dence on the Mandelstam variable s as well. This s
dependence cannot arise from nonrelativistic scattering
through a pure potential, and implies the existence of gra-
dient terms in a more general potential operator V(x, T);
see Barnes and Ghandour [23] and Appendix E for the
derivation of such nonlocal potentials from the scattering
amplitude.

The relations (27)—(32) between Hamiltonian matrix
elements, cross sections, and equivalent potentials may
be unfamiliar, so we will demonstrate that they lead to
known results in the familiar case of Coulomb scatter-
ing. Consider low-energy scattering of distinguishable,
equal-mass leptons through a Coulomb potential, with
the Hamiltonian

( lq(k's'), l2(K'5')~ HI
~

l&(ks), l2(KS))

g(~) (~) y(~) '(2) b(k'+ K' —k —K)

= hy; b(Pg —P;), (35)

so there is only nonflip scattering near threshold, and

6, =. '
27r2 q 2 (36)

Substitution of this hy, into (27) gives the differential
cross section

do'

dQ

E a2 2

=m sfhg;f ) (37)

which has the nonrelativistic limit

do'
lim. '. ~ dn

rn'"0.
(38)

This is the Rutherford cross section for the scattering of
equal-mass distinguishable particles with charge —e and
mass m, so we have recovered the correct nonrelativistic
result. The potential between leptons which we recover
from hg; in the nonrelativistic limit is

1II
8m

where

1d'~ d'V l (x) l (y),
lx —y I

(33) V(x) = d q hg;(q) e' '" = d q
e'q'" = —,

27l q P

(39)

p(x) = —e[g~, (x)tg~, (x) + g~, (x)tg~„(x)] . (34) which is the Coulomb potential as expected.

III. DETAILED EVALUATION OF QUARK BORN DIAGRAMS

A. Quark diagrams and their component factors

We shall now apply the formalism of the previous section, which relates HI matrix elements to scattering observables,
to the meson-meson scattering problem. There are four Born diagrams which contribute to the O(HI) scattering
amplitude for AB ~ CD:

capturei—

I

I

I

I

I

I

I

I

I

L

(40)
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capture2—

A

T
I

I

I

I

I

L

(41)

transfer ~— (42)

D

A

transfer2— (43)

In these diagrams the dashed line between fermion
lines i and j represents the complete interaction H;z (2),
which includes the confining term as well as one-gluon-
exchange contributions. In a more general process one
would first draw all independent quark line diagrams, and
then "decorate" each line diagram with all possible inter-
actions between A constituents and B constituents. In
the meson-meson scattering problem we consider, there
is only one quark line diagram, and the four independent
scattering diagrams result from the four distinct decora-
tions of the line diagram with A-B interactions.

In our meson-meson scattering problem we refer to the
first two as "capture" diagrams because the interacting
quark-antiquark pair scatter into the same final hadron.
In contrast, the quark-quark and antiquark-antiquark
interaction diagrams necessarily scatter the interacting
constituents into different final hadrons; as the interact-

ing constituents transfer momentum but remain in dif-
ferent hadrons, we call these "transfer" diagrams. We
shall see that these sets of diagrams lead to very differ-
ent momentum dependences, so this is a physically useful

categorization.
The hI, matrix element corresponding to each diagram

is the product of four factors, which are (1) an overall
phase S called the "signature" which arises from the an-
ticommutation of fermion operators, (2) a flavor factor
Isa o (3) a color factor I, i „(4)a spin matrix element
I,p ,„, and (5) a spatial . overlap integral I,p „
~Ii (pargicuiar diagram) = &Iflavor Icoior Ispin Ispace ~ (44)

To illustrate the evaluation of these factors we shall con-
sider the contribution of the contact spin-spin hyperfine
interaction to the "capturey" diagram in detail, following
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which we simply quote results for the other diagrams and
for more general interactions.

2. Signature

diagram captureq is

B = Phase
( ( (;, B

~ ((ebs) (d~zs(e)
~

A B ) I

) A, B ) = (b~~d~~) (bldg~) I0), (45)

The "signature" phase S = +1 results from the per-
mutation of fermion operators in the scattering matrix
element. The operator order in the initial state

I A, B )
and the adjoint final state ( C, D

~
is

= Phase 0 dDbD dc bc bc'bA d d&

«((«d«) ((e&e) Io)I = -&. (47)

and

( ~, D
I
= (oI (dDl D) (dc &c ) (46)

For a general diagram with our normalization conven-
tions the signature is simply

Recalling the operator order in Hl, the signature of the

where N~ is the number of fermion line crossings in the diagram. In our meson-meson scattering problem N~ = 3 for
all diagrams, so the signature is always —I (the crossings are indicated in the capturei diagram below):

capture~—

A

T
I

I

I

I

I

I

I

I

I

I

I

(49)

2. Elaeor factor

The quark flavor content of the initial and final mesons gives an overall contribution to the scattering amplitude,
which can be read directly from the quark line diagram; if the flavor routing specified by the diagram is allowed, the
flavor matrix element is unity, ot, herwise it is zero. Nontrivial contributions to the flavor factor only arise from the

external wave functions, which may be superpositions of flavor states such as (Iuu) —ldd))/i)t2. In our pedagogical
example we assume that the quarks are all distinguishable and the external flavor states all have a positive phase
(such as would be the case for IA) = +Iud), IB) = +Isa), IC) = +)us) and ID) = +lsd)). The flavor factor is then

simply unity:

(50)

Although there is an arbitrariness in the overall phase of states which span an SU(6) multiplet, one should note that
their relative phases are fixed by SU(6) symmetry and must be specified consistently, using for example the results of
de Swart [24].

9. Color factor

There is also a color factor I, ~, associated vrith each diagram. For capture~ the color factor can be read from the

diagram:
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b, —,/~3 bi'r'/V 3

Icojor(capture/ )

L
1/0 T
2 r'2

b,',—./~3
2'

b;,— b,,— (A', . l ( &;i;l b, ~;I bye
v&A)L2) *'

& 2 )" vS vS
1 4=-—T(a a') =--.

36 9

The other capture diagram also has a color factor of —4/9, and the transfer diagrams have color factors of +4/9.
We can now evaluate the spin and space dependence of each diagram in the Hl matrix element (23) without explicit
reference to color, since the (A/2)(A/2) color dependence of HI has been subsumed in I«~«.

g. Spin factor

As an illustration of the spin factor we again consider the diagram "capture~, " which is one matrix element of the
spin-spin hyperfine interaction Hamiltonian with the (A/2)(A/2) color factor suppressed,

HI= — ) S; Sb(r).
3

2'6 B

This Hamiltonian can be written as a local nonrelativistic current-current interaction,

1 Sere,
d z i(x) i(x)

2 3m2

where the spin current i (x ) is

d

aa'

The term which leads to the diagram "capture1 ls

(54)

Hr = — ) . S(q) S(q) b(p +p —p —p) bt, b d-t; d-—
~ g I goal

The explicit initial and final states are given by the analogues of (10) with the flavor and color degrees of freedom
suppressed. For example, the initial state is

~A, B)= ) ffff d ad ad bd bb(A —a —a)b(B —b —b)
5 88gSg

xX'"", 'X'.",.'C' (a —a) ~ (b —b) le.'".') Ie;"..')l~,', ') l~"; ') .biz (56)

An expression for the spin factor I,p,
.„,@which in this case is the matrix element of S; - S&, can be written from the

appropriate diagram by inspection. For the diagram capture1 the spin factor is

spin —gq, ~~ g~zq& Sc S sy ' ~c S sa ~easy ~ma&u &s s~ &agog (57)
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This matrix element will in general depend on the spins S~ . - . SD and the magnetic quantum numbers A~ . . AD of
the external mesons. Since the two-meson scattering amplitudes are usefully described in terms of the spins of the
mesons and the total spin of the meson pair, we combine Sg and Sg to form a state with S(. (;

——Sgtr = ScD, this
St,~~ must also be specified to determine I,p,„.For our example we specialize to the scattering of two vector mesons
in an S«& —2 state, and on taking A,o, (= A~ + A~ —Ac + AD) = +2, the spin matrix element (57) is found to be

4

1 p,„(S„„SQSg St-, SD) = I p,„(2 1111)= ((11 (
—,'-,', —,'i ) I (( (S( () (( (S(() = I/4 (58)

Values of I,&,„(S,„S~,Sg, Sc, SD) for other spins and the spin matrix elements for the other operators and diagrams
are given in Appendix B.

$. Space factor

Finally we require the spatial matrix element I,~„, To e. valuate this we begin by recalling the appropriate four-
fermion operator in HI (53) without spin, flavor, or color degrees of freedom, and derive its matrix element between
two-meson states. We then restore the momentum integrations to determine the matrix element of Hi. The captureq
Hy matrix element involves the operator

( C D
~

bt bq dqt dq ) A 8 )

d cd cd dd db —c —c bD —d —d 4~c —c 4Dd —d

d a d a d b d b b(A —a —a) b(B —b —b) 4~(a —a) 4~(b —b)

x(c, c, d, d [bt, b dt , d& ~
a, a-, b, b) . (59)

(In this and the following expressions we have suppressed all except spatial degrees of freedom, and have deleted
three-vector momentum arrows, which are understood. ) The "unscattered" lines a ~ d and b ~ d in the capture~
diagram give matrix elements of (d(a) = b(a —d) and (d~b) = b(b —d), so the quark matrix element above is

( c, c, d, d
~

bt, b dt , d —
~
a, a,-b, b ) = (—1)b(a —d) S(b —d) b(a —q) b(b —Q) b(c —q') b(c —Q') . (60)

The overall phase of (—1) in this matrix element is due to fermion operator permutations, and is the "signature"
phase we discussed previously. We choose to treat, this phase as a separate factor, so we divide it out of the definition
of the "space factor" and will restore it subsequently when we construct the full hj;.

After attaching the external momentum space wave functions and the associated momentum integrations, we use
these delta functions to evaluate eight of the momentum integrals in (59). For the captureq term this gives

( C, D
i

bt, b dt , d i A, B )/S -=b(C —q' —Q') b(A+8 —D —
q —Q)

x4&(q' —Q') 4D(8 —A —Q+ q) 4&(2q —A) 4&(8 —2Q) . (61)

This result is then used to construct the full spatial matrix element of HI, which is

(C, D ~H,
~

A, B)~S

d qd q'd d 'bq'+ ' —q — ~c —q-
(2qr)s Sqn2

xb(A + 8 —D —q —Q) 4c (q' —Q') 4D(8 —A —Q + q)

xCA(2q —A) 4~(8 —2Q) .

By inspection, —q —Q in the third delta function is constrained to equal —C by the first two delta functions, so
the third delta function actually gives external three-momentum conservation and may be removed from the internal
integrations:
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( C, D
i HI i A, B )/S = — z' b(C + D —A —B)

&gffd qd q d Qd Q q(q+Q q Q)q(C q Q)

x4~(q' —Q') 4D(B —A —Q+ (I) q32~(2q —A) 4'gy(B —2Q)
= Ispace ~(pf Pi)

On carrying out the remaining delta-function integrations we find

1,& —— '
d q' Sq(qq' —C) fd q Ss(qq —A+ 8 —C) Sg(qq —A) Ss(qq+ 8 —2C) .

(22r) 3mz

(63)

(64)

After translation we recognize the first integral as (22r)s) z times the coordinate-space wave function of meson C at
contact (see Appendix A). We can also simplify the second integral, because B = —A in the c.m. frame in which hfi
is to be evaluated. We also translate its variable of integration, which leads to our final result for the spatial factor
of the diagram captureq.

I,p„, ——— z'
a(z d k 4D(2k —A) C)di(2k+ C) kgb(2k —C) . (65)

As this derivation appears somewhat, complicated, in Appendix C we give rules which allow one to read this result
directly from the scattering diagram.

6. Fall hy; for the (tiugre2rk csjkterek

On combining the signature, flavor, color, spin, and space factors, we obtain the full hI; matrix element of the
diagram capturei.

hy;(capture&) = S Iftavor Icoior Isp&22 Ispace =. (—1) x (+1) x (-4/9) x (1/4) x Isikace

qiq f d k ss(2k —A) s~(2k+ C) ss(qk —C) .
2 m,' 2s s)'z (66)

B. Total meson-meson Born amplitude and Gaussian
approximate wave functions

The remaining three diagrams may be evaluated using
essentially identical techniques. The "captureg" diagram
gives a result quite similar to that found for "capturey, "
but instead involves the wave function of final meson D
at contact:

hy;(capture2)

hI, (transferi) = (—1) x (+1) x (+4/9) x (1/4) x I,p „
82rcr2 1

+ 27m' (22r)s

x d k 4~ 2k —A 4g 2k+

x 'k'e~ 2I'+A e~ 2I'—

(6S)

,i, f d'k sq(qk+ A) sg(qk+ C)
27m~ 22r

x4gy(2k —C) . (67)

The two "transfer" diagrams lead to a different type of
matrix element; since the scattered constituents do not
recoil into the same final meson, the overlap integrals no
longer lead to a final wave function at contact. The scat-
tering amplitude is instead the product of two two-wave-
function overlap integrals, which are "bend factors" that
describe the wave-function suppression of unscattered
quark lines. There is also a difference in the transfer-
diagram color factors, which are +4/9 rather than —4/9.
The transfer diagram matrix elements are explicitly

82ru, 1
hy, (transfer2) =+27q2'

x d k@~2k —C Cg2k —A

x d k' 4D 2k'+ C 4~ 2k'+ A

(69)

The sum af t, he four terms (66)—(69) is the full Barn
matrix element of the spin-spin Hamiltonian in (2). A
complete Born calculation will also require evaluation of
the noncontact terms in (2), which we discuss in Section
III D, and an evaluation of the overlap integrals (66)—
(69), which will evidently anly be feasible numerically.
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As this paper is largely pedagogical, we shall evalu-
ate the scat, tering overlap integrals in (66)—(69) analyti-
cally using Gaussian wave functions for illustration. One
should note that this assumption of asymptotic wave
functions which are not Ho eigenstates can lead to a
post-prior discrepancy in general, although there is no
such discrepancy in this reaction or in the other cases
discussed in detail in this paper. (Reference to Appendix
B shows that, post-prior ambiguities would be present if
we used approximate wave functions in evaluating the
"capture" contributions to the processes PP ~ VV and
VV PP, for example. ) Of course approximate wave
functions only give approximate results for the predicted
cross sections; a numerical evaluation of these matrix el-
ements and cross sections with more realistic wave func-
tions will appear in a subsequent publication. For our
Gaussian example we assume identical wave functions for
each of the four external mesons, with the parametriza-
tion (see Appendix A)

S(k —k) = /8 (
—
) exp (

——(k —k) ) . (70)

= hI, (capture2)

8am, 1 8
87me (pe)e 8/$ (

A(s —4M2)

3

8mo. , 1 Au
hI;(transfer)) = + z s exp

27mq2 2x 3 2

aIl d

8XO, s At
hI, (transfers) = + ~ s exp

(72)

(73)

The total Born matrix element, with Gaussian wave func-
tions can thus be written compactly as

The overlap integrals (66)—(69) are straightforward, and
lead to the following matrix elements (which we give as
functions of Mandelstam variables):

hI;(capture&)

hI, (Born)

Hzo,=+
27m2 (27r)s

exp —+ exp

18 A(e —4M')
I3~8

(74)

Note that the capture diagrams are purely S wave in
this approximation, whereas the transfer diagrams lead
to strong angular dependence. Although the pure S wave
result is an artifact of the Gaussian wave functions and
the delt, a-function interaction, it should nonetheless be
possible to distinguish the contributions of the different,
diagrams experimentally from their distinct angular de-
pendences. To complete t, he calculation of differential
and total cross sections we must substitute (74) into the
relations (28) and (29); this we defer to the next section,
in which we discuss ver and KK scattering and compare
our predictions to experiment.

C. Coulomb and linear potential contributions

Thus far we have only given detailed result, s for scat-
tering through the spin-spin color-hyperfine contact in-
teraction. This is in par t because the contact interac-
tion leads to a particularly simple product form for the
scattering amplitudes, which can be evaluated in closed
form given Gaussian (I(I wave functions. Another justifi-
cation for concentrating on the spin-spin contact term is
that the noncontact terms (color Coulomb and the lin-
ear confining term) are numerically unimportant in the
pseudoscalar-pseudoscalar channel [25]. In other chan-
nels such as vector-vector, however, this is found not to
be the case, and the noncontact interactions give impor-
tant contributions. We will evaluate these contributions
numerically in future work; for the present we simply
cite the results we find when we generalize our four spa-
tial matrix elements to a noncontact interaction, These
are

Ispace(capture &) = d a d c C)~(2a —A) C~(2a —A —2C) V(~a —c ~) 4&(2c —C) 4D(2a —2A —C) (75)

Ispace(capture2) d a d d 4~(2a —A) C&B(2a —A —2C) V(~a —d —A —C~) 4&(2a —C) C&D(2d+ C)

(76)

I,p, (transfers) = d a d b i)~(2a —A) 4B(2b + A) V(~a —b —A —C ~) 4&(2b + 2A + C) ipL) (2a —2A —C),

(77)

and

I,p„,(transfers) = d a d b C&~(2a —A) 4@(2b+ A) V(~a —b —A —C~) C)&(2a —C) 4D(2b+ C), (78)
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where V(~p ~) is the Fourier transform of the spatial in-

teraction,
8nn, 1 At Au

hI;(Born) = + '
exp —+ exp9m' 2tr 3 2 2

1
V(~p () = d z e'p "v(r) .

(2n )s (79)

As an example of the application of these formulas, the
spin-spin contact interaction corresponds to (83)

San,
v(r) = — ' b(x ),m

for which V((p () is

(80)
where ( = s —4M~. One may use this full hyperfine
Born hj, and the relations (28)—(29) to obtain the dif-
ferential and total cross sections in closed form in the
Gaussian-wave-function approximation. The differential
cross section is

1 8~@,
t'(lr I) =

(2 )3
(81)

On substituting this V into (75)—(78) and replacing the
signature, spin, and color factors, we recover the contact
spin-spin matrix elements (66)—(69).

For a long-range interaction such as the linear con-
fining term these spatial overlap integrals are individu-
ally infrared divergent, and these infrared-divergent parts
cancel when we construct color-singlet scattering ampli-
tudes. For this reason it will be appropriate in a numeri-
cal study to evaluate a complete color-singlet amplitude.
Singlet amplitudes are sums of the four spatial matrix el-

ements (75)—(78) with appropriate color coefficients. The
color Coulomb interaction itself gives the interaction

V(IX I) = -2 ', (82)

evidently the corresponding Coulomb integrals (75)—(78)
should also be evaluated carefully near p = 0.

IV. APPLICATION TO m+m+

AND K+K+ SCATTERING

The matrix element (74) for the scattering of distin-
guishable S wave tIq vector mesons in the Srot ——2 chan-
nel was derived in the previous section as a pedagogical
example. A more familiar channel, for which experimen-
tal data exists, is I = 2 xx elastic scattering; the cor-
responding Hamiltonian matrix element can be obtained
from (74) in the Gaussian-wave-function approximation
after a few minor modifications. We will also briefly con-
sider I = 1 I~ Ix scattering, as this channel leads to the
same analytic results. First, as discussed in Appendix
D, the presence of identical quarks and antiquarks leads
to additional scattering diagrams that symmetrize the
scattering amplitude in t and u; since the scattering am-
plitude for a contact interaction happens to be symmetric
in t and u for distinguishable quarks, the contribution of
the new diagrams equals the previous hy;, so the net ef-
fect of having identical quarks and antiquarks is simply
to multiply hy; by a factor of 2. Second, the spin factors
for pseudoscalar-pseudoscalar scattering in S' wave are
—3/8 and +3/8 for "capture" and "transfer" diagrams
respectively, whereas for St, t-

——2 vector-vector scatter-
ing they were both +1/4. The flavor and color factors
are unchanged. These modifications lead to the I = 2 xx
"x+x+" and I = 1 Ii A' "A'+A'+" scattering amplitude

8d 4KQ~ s
dt 81%(

exp —+ exp

- 2

(84)

-A(/2
—A(

(85)

In this expression the first contribution comes from the
transfer diagrams squared, the second from transfer-
capture interference, and the final two are from the cap-
ture diagrams. This cross section is shown in Figure I
with parameters appropriate for I = 2 xx scattering;
we have taken M = 0.138 GeV, a, = 0.6, m&

——0.33
GeV and PsHQ —0.337 GeV, corresponding to A = 2.20
GeV s. The values of o., and m& are conventional for
light quarks, and PsHo is taken from a fit to the S-wave
phase shift which we shall describe subsequently.

This cross section approaches a threshold limit of

10 I
t

s
t

s
f

s &
[

i s s
f

e r
f

e s
t

& &
[

& r ~

0
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a
S

a(rnb)

I I ~ a g t0

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

M (Gev)

F1G. ]. Total and S-wave I = 2 str cross sections (o, =
0.6, m~ = 0.33 GeV and fitted parameter Psno = 0.337 GeV.

On integrating this over t and multiplying by 1/2 for
identical final-st, ate mesons, we find the total identical
pseudoscalar-pseudoscalar (tr+7r+ or Ii+Ii+) cross sec-
tion,

4rrcr2s 128 2&&&s 64 e "tI (1 —e "&I )
81m4 27 3~3
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32(91+48~3) xn2M'
llm cT = cTp-

s 4M 2 2187 m
q

(86) {'O) 0!s
sin 62

fD
q

—A(/2 + + —&(/3

(
4%&

3V3

which with our sr~ parameters is 1.8 mb. This limit is
conventionally expressed as an I = 2 +7r scattering length
a2, defined by

lim o = 8~a2 .2

x~4M~
(87)

Comparison of these results gives our prediction for the
S-wave I = 2 scattering length:

2( 8 nM
9 q 3~3 m,"- (88)

[We have also restored the negative sign characteristic of
a repulsive interaction, which is implicit in the positive
hy; matrix element (83).] For our parameters M = 0.138
GeV, n, = 0.6 and m&

——0.33 GeV this is

0 059 (89)

This is clearly in satisfactory agreement with Weinberg

[2] as well as the more recent parametrization of Morgan
and Pennington [26); bot, h find

a2 = —0.06 . (90)

In this low-energy limit our theoretical cross section is
dominated by the capture diagrams and the capture-
transfer interference terms; since interference is impor-
tant, the relative phases and strengths of these diagrams
determine which channels have large scattering ampli-
tudes near threshold. The pseudoscalar-pseudoscalar
system has a large threshold scattering amplitude be-

cause the capture and transfer diagrams have the same
phase in this spin state. As an illustration of the im-

portance of reIative phases, if these phases were op-
posite (as is the case iit S, , = 2 vector-vector scat, —

tering) the pseudoscalar-pseudoscalar Born cross sec-
tion at threshold would be suppressed by a factor of
(91 —48~3)/(91 + 48v 3) —0.045, which is more than
an order of magnitude.

To compare with the experimental S-wave phase shift
above threshold we separate the S-wave part of our pre-
dicted I = 2 7r7r cross section (85) by integrating h~, (83)
over angles; this gives

(93)

0
I

theory
Hoogland A

Hoogland B

Although we use (92) to define the magnitude of our
phase shift, one might instead equate our purely real
Born amplitude to the leading term in [exp(2ib) —1]/2i,
so that (93) and (94) would be expressions for b2

~ rather

than sin bz . For the phase shifts we consider here the
difference between b and sin b is not particularly impor-
tant numerically.

We show this predicted sin bz (93) in Figure 2 from
threshold to M = 1.5 GeV, together with the data
of Hoogland et al. [27]. (In a recent review Ochs [28]
noted that this experiment, with 4.5 x 10 events, had
the best statistics of previous mm studies, so we shall use
the two sets of phase shifts quoted by Hoogland et aL as
our experimental values. ) The agreement between our
prediction (93) and the data in Figure 2 is evidently
very good. The theoretical curve is for M = 0.138
GeV, n, /mz = 0.6/(0. 33 GeV)2 = 5.51 GeV ~ (from
quark-modeI phenomenology) and uses a fitted value of

psHo = I/2VA = 0.337 GeV. The fitted psHo is re-
assuringly close to the standard quark-model value of
psHo = 0.3 GeV. This psHo is the averages of fits to
the "method A" and "method B" data sets of Hoogland
et a/. , which gave very similar values. (In fitting the data
we minimized the linear moduli P,. ~b'(theor) —b'(expt)

~

rather than their squares. ) We chose to fix o., and mz at
conventional values because the optimum parameter set
(o', /m&, psHp) = (4.48 GeV, 0.385 GeV) difFered lit-

tle from the conventional n, /mz = 5.51 GeV, and the
two sets gave similar predictions for the S-wave phase
shift. Since psHo is less well established in quark model
phenomenology we fitted this parameter to the data. It
would be very useful to extend the experimental measure-
ments of I = 2 m'x scattering to higher energies to test the
predicted phase shift, which has an extrernurn near 1.5
GeV; this is the highest energy for which there have been
accurate measurements, and the data shows no clear evi-

327m, s ~((, 4A( ~((3
Os = 1 —c + c

81m4A-"(-' 3v 3
(91)

5 (degrees)
2

-20

The S-wave I = 2 n n cross section (91) and the full cross
section (85) are shown from threshold to M = 2.0 GeV
in Figure 1; their near equality below 1.5 GeV shows that
the predicted cross section is dominantly S wave over this
energy range, as is observed experimentally [27]. The S
wave I = 2 an phase shift bz(

1 is related to (85) by(1=0) .

-30

0.5 1

M (Gev)
1.5

87' . 2 (o)0 g — Sln 62 )

which gives

(92) FIG. 2. I = '2 nz S-wave phase shift and the data. of
Hoogland et a/. far a. = 0.6, m~ = 0.33 GeV and P;Ho
(fitted)=0. 337 GeV.
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dence for this behavior. A calculation of the phase shifts

with Coulomb-plus-linear wave functions would also be

advisable as a test of their sensitivity to the wave func-

tions assumed.
The higher (even-E) partial waves allowed in I = 2

vrx scattering are also of interest, since the D-wave

phase shift has been measured by Hoogland et al. [27].
This phase shift is quite small; it is smaller than —1

from threshold to ~s = 0.8 GeV, and has increased
to only about —3' at ~s = 1.5 GeV. We may deter-
mine all the partial-wave phase shifts from the Gaus-
sian wave-function matrix element (83) using the integral

f & Pr(p) e "dIJ, = 2ir(a), where ig(z) is the modified
spherical Bessel function of the first kind. This gives, for
E even and & 2

sin 6s
——— ' ~sj e i/ ir(Ai/4)I18m~

9

(94)

with a corresponding contribution to the 8th partial-wave
cross section of

og —(28+ 1) ' e "~~ ir(A(/4)81~4 (95)

These higher partial waves have several interesting fea-
tures. The low-energy phase shifts are

p(&)

(28+ 1)!! I,' (96)

which exhibits the
~

k ~~~+' behavior characteristic of po-
tential scattering at low energies. As the invariant mass 8
is increased the 8 & 2 phase shifts all fall monotonically,
and all (including E = 0) approach the same negative
constant:

lim bz
——arcsin! '„(Eeven) .

t' cx.

( 9m"-A )
(97)

are smaller than the experimental values of Hoogland et
al. [27], provided that we use the Gaussian wave-function
parameters found in our best fit to the S-wave phase
shifts. At ~s = 1.5 GeV the predicted D wave phase-
shift is only about —0.9', whereas experimentally it is
about —O'. The D-wave is most sensitive to the large-
distance parts of the qq wave function; a broader wave
function gives increased small-angle scattering, and hence
supports a larger D-wave phase shift. Although one can
obtain a reasonable fit to the D-wave data alone with
a broader Gaussian, a single Gaussian does not allow
a good fit to both S-wave and D wave data. It m-ay

With our fitted parameters this asymptotic angle is a sur-
prisingly large —16', but these large values are predicted
at high energies which are presumably beyond the range
of validity of the model. The actual values predicted for
the D-wave phase shift by

bs
——srcsin * ~s(e "i~ is(A(/4)

I18m~

be possible to fit both with a, Coulomb-plus-linear wave

function, which falls more slowly than a Gaussian at large
distances. Alternatively, since the D-wave amplitude is

very small, it may be dominated by other effects which we

have neglected, such as the spin-independent potential or
the tensor interaction. We a}so note that the "capture
diagrams" are only pure S-wave in the Gaussian wave-

function approximation, and with Coulomb-plus-linear
wave functions will make a contribution to the D wave.
Clearly it will be an interesting exercise to calculate the
phase shifts due to these interactions with Coulomb-plus-
linear wave functions.

We have seen that below ~s = 1.5 GeV (the largest
energy for which accurate experimental phase shifts ex-
ist) the predicted and observed n'n' cross sections are
dominantly isotropic, with O'D/os experimentally 5%.
For ~s much larger than I/y A, however, the anisotropic
component becomes important, and at large 8 a strongly
peaked differential cross section is predicted. In the
small-t/s regime this cross section asymptotically ap-
proaches

do 4m+~
lim —= 'e',~-~ dl 81A

(99)

which is reminiscent of the e ' "diffractive peak" familiar
from experimental studies of hadron scattering at high
energies. The exchange of vacuum quantum numbers in
t channel often associated with diffractive scattering is
also realized here, because the e ' behavior arises from
the "transfer diagrams" in which a uu or dd pair (or ss
for li+Ii+) cross between hadrons. Of course the ex-
act exponential form is an artifact of our assumption of
Gaussian wave functions, but we expect a similar small-t
peak from more realistic Coulomb-plus-linear wave func-
tions as well.

Although the similarity of our predictions to diffrac-
tive scattering is suggestive, it would be unrealistic to
attribute diffraction to these Born-level quark diagrams.
There are two obvious problems with such an identifi-
cation. First, the "transfer" diagrams, which predict a
high-energy exponential peak in t, contribute to pp elas-
tic scattering but not to pp; the approximate equality of
these cross sections at high energies is a well-known ex-
perimental result [22]. Second, the phase of the forward
elastic scattering amplitude in pp and pp at high energies
has been determined from interference with photon ex-
change [17), and has relatively strong energy dependence.
The Born diagrams of course have an energy-independent
phase. The transition region between v/s + 1.5 GeV (for
which our I = 2 xx quark Born amplitudes are in good
agreement with experiment) and +s & 20 GeV (where
the close relation between pp and pp scattering becomes
apparent) would evidently be the interesting regime in
which to study the onset of the diffractive scattering
mechanism.

Although our Born diagrams evidently do not repro-
duce observed diffractive amplitudes, their high energy
limit may be of interest nonetheless. As we increase
s, most contributions to the Born elastic cross section
(85) decrease exponentially, leaving a residual constant
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cross section at high energies. This constant contribu-
tion arises from the e"' diA'ractive peak, which is due to
the transfer diagrams, and in x+n.+ (and I~+I~+) cor-
responds to vacuum quantum number exchange. The
high-energy limit of these cross sections is -10

4vra2
lim cr=u

81m4A
q

16xo' PsHo
81m4 (100)

5 (degrees)

-15

-20

which for our ~+a+ parameters is 0.6 mb. The ra-
tio of the high- and low-energy limits in pseudoscalar-
pseudoscalar scattering is

27 1

8(91+48~3) &M~

-25

-30
0.8 1.2 1.4 1.6

M (GeV)
1.8

2
I' psHo I

2(91+48~3) ( M )
(101) FIG. 4. I = 1 Ii Ii S-wave phase shift. Parameters n, =

0.6, mz ——0.44 GeV, PsHo = 0.337 GeV.

which is approximately 0.34 for sr+a+ with our param-
eters. This case is somewhat anomalous, however, be-
cause the I = 2 x7t cross section is predicted to increase
above threshold to a maximum value of about 7 mb near

V s = 0.9 GeV before decreasing to the high-energy limit.
These formulas also apply to I = 1 I~ K scattering

with a change of parameters. We take M = 0.495
GeV for t, he kaon mass and use an intermediate strange-
nonstrange quark mass of rn&

—0.44 GeV; e, = 0.6
and psHo = 0.337 GeV are left unchanged from the fit
to S-wave urer phase shifts. The predicted I = 1 I~I~
cross section and S-wave phase shift are shown in Fig-
ure 3 and Figure 4, respectively. The threshold value we

find for the I~+K+ cross section is 7.3 mb, and it mono-
tonically decreases with increasing I~ I~ invariant mass.
Although there have been no experimental measurements
of this cross section, variational techniques have recently
been applied to this syst, em by Weinstein [29]. Our S-
wave phase shift at moderate energies (M~Ir + 2.0 GeV)
closely resembles the prediction of Weinstein [29] in form,
but is only about half as large; this discrepancy may re-
Oect our conclusion that only pion equivalent potentials

10

8

cr(mb)

require large rescalings. (Weinstein changed the length
and magnitudes scales of his calculated I~ I~ potential,
for reasons discussed in Appendix E.) At higher energies
we find a relatively small limiting value of 0.2 mb for this
cross section; the ratio of high- and low-energy limits is
o'~/oo ——0.026, approximately an order of magnitude
smaller than for 7t. 7t. , since this ratio is predicted to be
proportional to 1/M [Eq. (101)].

The rapid decrease of elastic cross sections from val-

ues of 10—100 mb near threshold to a persistent high-

energy component of a few mb at +s 5—50 GeV is a
well-known feature of experimental meson-baryon and
baryon-baryon scattering. (See for example the IC+P
and PP elastic cross sections in the Particle Data Group
compilation [22].) Our results reproduce these general
features, albeit with a phase that is not consistent with
the observed diKractive amplitude.

We also quote the S, , = 2, I = 2 "p+p+" S-wave

phase shift due t,o the spin-spin color hyperfine term in

the Gaussian wave-function approximation. For vector-
vector scattering we actually find dominant contributions
from color Coulomb and linear confining terms, which are
discussed elsewhere[25]. For this reason these hyperfine
results do not accurately model I = 2 pp interactions
near threshold, and are only presented as a pedagogical
example for comparison with 7rvr and I~ K. Although the
p+ p+ cross section is experimentally inaccessible, it may
be possible to infer meson-meson interactions in these
higher-lying channels from invariant-mass distributions
near threshold. This possibility has been discussed by
Weinstein [29] for It A'' systems. The hyperfine contribu-
tion to the S2 I = 2 pp phase shift is

sin 6~ (pp) =-(o) 2o, s

f7l
q

—A(/2

0.8 1.2 1.4
M (GeV)

FIG. 3. Total I = 1 Ii IC cross section for a. = 0.6, mq ——

0.44 GeV a.nd P&so = 0.337 GeV.

4A(

3~3
(102)

and is much weaker than was the case for pseudoscalar-
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pseudoscalar scat tering, due to destructive capture-
transfer interference. Near threshold it corresponds to
a p+ p+ cross section of only about 1.1 mb, and because
the capture diagram contribution is largest and is attrac-
tive in this channel, one finds a weakly attractive inter-
action with a positive phase shift near threshold. With
increasing pp invariant mass, the transfer diagrams be-
come dominant, and the effective interaction becomes re-
pulsive. The crossover between these diagrams results in
a zero in the S-wave phase shift near 2.0 GeV and a very
small, highly anisotropic cross section near this energy.
At higher energies the p+ p+ cross section approaches 4/9
of the K+K+ cross section. (This factor is the relative
spin matrix element squared. )

Although we have demonstrated that numerically plau-
sible results for pseudoscalar-pseudoscalar scattering fol-
low from t, hese quark Born diagrams, these calculations
have used approximate Gaussian wave functions and for
this reason are not definitive; they are intended only as
illustrations of the method and of approximate results.
The actual evaluation of scattering amplitudes will in-
volve numerical integration of correct qq wave functions,
as well as evaluations of the Coulomb and linear contri-
butions to the scattering amplitude, which will be pre-
sented in a subsequent paper. The Coulomb and lin-
ear contributions actually are found to be small for the
pseudoscalar-pseudoscalar case, but they are important
in some vector channels [25] and hence should. not be
neglected in general.

V. CONCLUSIONS

In this paper we have developed a formalism for calcu-
lating hadron-hadron scattering amplitudes in Born ap-
proximation given an interquark Hamiltonian and exter-
nal qq wave functions. The relation between the Hamil-
tonian matrix element and differential and total cross
sections and elastic phase shifts was derived, and the
generalization of the method to identical quarks was also
developed. To simplify the calculation of the underly-
ing Hamiltonian matrix elements we presented our tech-
niques in a diagrammatic formalism, so the scattering
amplitudes can be written directly from the Born scat-
tering diagrams.

As an illustration of our techniques we treated elas-
tic I = 2 +7i and I = 1 KI~ scattering explicitly, given
Gaussian external qq wave functions and taking the color-
magnetic hyperfine component of one gluon exchange
as our scattering Hamiltonian. We derived closed-form
Born phase shifts and differential and total cross sec-
tions for these reactions. The S-wave ver phase shift
predicted with standard quark model parameters was
found to be in good agreement with data over the full
range of invariant masses for which accurate experimen-
tal measurements exist, M = 0.3 to 1.5 GeV. We also
showed how meson-meson potentials may be extracted
from our Born scattering amplitudes near threshold, and
compared our xx and KK potentials to the results of
Weinstein and Isgur. At higher energies our predicted
differential cross section showed an exponential peak at
small t,, due to the contribution of "transfer diagrams"

in which gluon exchange takes place between q-q or q-q
in different mesons (but not between q-q). This t depen-
dence and the net exchange of vacuum quantum num-
bers are reminiscent of diffractive scattering, although
the phase of the Born amplitude precludes identification
of these Born diagrams as the mechanism of diffraction.
It will be important in future work to test the sensitivity
of our results to the external qq wave functions and to
determine the Born phase shifts and cross sections with
more realistic Coulomb-plus-linear wave functions.

Our techniques are immediately applicable to other
systems in which qq annihilation and s-channel reso-
nances are not important, for example kaon-nucleon scat-
tering [31] (but not antikaon-nucleon) and two-baryon
systems. It would be particularly interesting to calcu-
late the nucleon-nucleon interaction using these straight-
forward Born-diagram techniques, to determine whether
the short-distance repulsive core can be obtained in Born
approximation. Applications to syst;ems in which anni-
hilation and resonance production is important, such as
I = 0 zz and m-nucleon scattering, will require further
development of the formalism to allow the incorporation
of other sectors of Hilbert space as intermediate states.
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APPENDIX A: MESON SPATIAL
WAVE FUNCTIONS

The complete state vector of an S'-wave qq meson with
total momentum P and spin polarization A can be writ-
ten nonrelativistically as

3

iP, A) = ) b„-) dsz d z yI",-1

c,c=1 s, s

x 4 ""(P; x, x ) i q(x);) i q(x);), (Al)

ss

(A') (A)
Xss Xss —~Ah' (A2)

where b„-/~3 and y„- are color and spin wave functions
respectively. The spin wave function is normalized to
unity:
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The complete coordinate-space wave function 4' "" can
be writ, ten as a plane wave in the c.m. momentum P
times the relative quark-antiquark wave function,

~iP X,
ili'"" (P; x, x) =

( 4'(x„,l),
where

Xlg) = X X

(A3)

(A4)

and for the equal-mass case considered in this paper

X, = (x+x)j2.
We normalize the relative wave function i'(x«l) to unity:

examples. These are defined by

A
4(k —k) = g exp ——(k —k )2

and our normalization convention gives

The corresponding spatial wave function is

2iIr(x„el) = — exp ——x. l

(A13)

(A14)

(A15)
d'~rei l@(xrei)l' = 1 (A6)

As the scattering amplitudes we calculate in this paper
are functions of momenta, it is useful to transform this
coordinate-space meson wave function into momentum
space before evaluating scattering amplitudes. The full

momentum-space wave function 4"" is related to the
coordinate-space wave function by

1

PSHQ
(A16)

so our Gaussian parameter A is related to the usual
simple-harmonic-oscillator (SHO) quark-model parame-
«r PsHo by

CI" (P;k, k) = d3, d3 — -ik x-ik x

x e""l'(P; x, x ) . (A7)

As the full coordinate-space wave function is a plane wave
in the c.m. coordinate, the full momentum-space wave
function is a c.m. momentum-conserving delta function
times a relative-momentum wave function 4:

In light quark spectroscopy psHQ is typically found to be
about 0.3 GeV, although it is not strongly constrained by
experiment; psHQ values near 0.2 GeV have been used to
describe form factors, and decays have required values
near 0.4 GeV [30]. In our calculations we treat PsHQ
and hence A as a free parameter, with the understand-
ing that realistic fitted values of PsHQ should not differ
considerably from 0.3 GeV.

4""(P;k,k) = b(P —k —k) 4(k —k) . (A8)

The relation between the relative wave functions 4'(x„,l)
and 4(k —k) follows from these results, and is

APPENDIX 8: SPIN MATRIX ELEMENTS

with the inverse relation
(A9)

The normalization quoted above for 4' also implies a nor-
malization for 4, which is

(A11)

The integral of 4(2p) over p appears in several of the
Born amplitudes; this is a special case of the Fourier re-

lations above and gives the relative spatial wave function
at contact:

esp 4(2p) = (2~)3~' ~1(O) .

In our evaluation of overlap integrals in the text we

used Gaussian wave functions for illustration in several

i'(x„,i) = d
l l

e+~I" "i'""' 4(k —k).
(2z.)si'3 2 )

(A10)

The explicit examples of spin matrix elements we con-

sidered in the text were for Sr, i ——2, S,', = 2 meson-
meson states, for which the S, S~ matrix elements were

trivially +I/4 for all (i, , j). In general the spin-spin
matrix elements are nontrivial, since we are considering
matrix elements between meson-meson states of definite

Si,~, with (S~, Sg) specified in the initial state, but with

a crossed set (SQ, SD) diagonal in the final state. This

crossing also leads to nontrivial matrix elements for the
spin identity operator I, which multiplies the Coulomb
and linear Born amplitudes. In Table I we give these
matrix elements for I and for the various spin-spin terms
S; S&, which are labeled by the initial quark and anti-
quark indices. (For example, Se S& gives the "capturei"
matrix element. ) The matrix elements are displayed
with initial spins (S~, SB) horizontally and final spins

(SQ, SLi) on the left margin of each table, and are sepa-
rated according to Srei ——2 (one channel), Si &

—1 (three
channels), and S, , = 0 (two channels). We first give the
"distinguishable quark" matrix elements, corresponding
to the quark line diagram underlying the quark and gluon
diagrams in (40)—(43), following which we give the ma-
trix elements for the "symmetrizing" quark line diagram
underlying (D4), which is also present, if both the quarks
and the ant, iquarks are identical.
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TABLE I. Matrix elements for 1 and various spin terms S; S~.

(1) Operator = I

(I,I) (1,0) (0,1)
(I,I) 0 —1/+2 +1//2
(1,0) —1/y 2 +I/2 +1/2
(0, I) +1/y 2 +1/2 +1/2

(i, i)
(0,D)

(i, i)
-1/2

-~S/2

(o,o)
—/3/2
+1/2

(2) Operator = S, Sb, capturel

(I,I)
(I,I) +1/4

(I,I)
(I,I) o

(i,o) —1/4~2
(0,I) —3/4 ~2

(i,o) (o, i)
' —1/4~2 +1/4~2

+1/8 +1/8
-3/8 -3/s

(I,I)
(0,0)

(I I)
-1/8

+3~3/8

fo, o)
—~3/8
—3/8

(3) Operator = Sq . S~, "capture2"

(I,I)
(1,1) +1/4

(I,i)
(I, i) o

(I,O) +3/4~2
(0,I) +1/4 ~2

(I,o) (o, i)
—1/4~2 +1/4~2

-3/8 -3/8
+1/8 +1/8

(i,i)
(0,0)

(I,I)
-1/S

+3~3/8

(0,0)
—~3/8
—3/8

(4) Operator = S Sy, "transfers"

(i,i)
(i, i) +1/4

(I,I)
(I,I) —1/2
(1,0) +1/4~2
(0,I) —1/4~2

(I,D) (0,I)
+1/4&2 1/4~2

1/8 +3/8
+3/8 —1/8

(I, I)
(o,o)

(i, i) (o,o)
+5/8 +~3/8

+~3/8 +3/8
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TABLE I. (Continued)

(5) Operator = Se Sl-„"transfers"

(1,1)
(1,1) +1/4

(1,1)
(1,1) +1/2
(1,o) +1/4~2
(0, 1) —1/4 ~2

(1,0) (0,1)
+1/4~2 —1/4~2

+3/8 —1/8
—1/8 +3/8

(1 1)
(0,0)

(1 1) (o o)
+5/8 +~3/8

+~3/8 +3/s

(6) Operator = I, symmetrizing diagram

(1,1)
(1,1)
+1

(1,1) (z, o) (o, 1)
(1,1) 0 +1/~S
(1,O) +1/~2 +1/2 +1/2
(0,1) —1/~2 +1/2 +1/2

(1,1)
(0,0)

(z, 1)
-1/2

-~3/2

(o,o)
—+3/2
+1/2

(7) Operator = S, S&, "capturei, " symmetrizing diagram

(1,1)
(1,1) +1/4

(1,1)
(z, o)
(o, z)

(1,1)
0

3/4/j
—1/4y '2

(z, o) (o, z)
+1/4~2 —1/4~2

—3/8 -3/8
+1/8 +1/8

(1,1)
(o,o)

(1,1)
—1/8

+3~3/8

(0,0)
—~3/8
-3/8

(8) Operator = S; Sq, "captureq, " symmetrizing diagram

(1,1)
(1,1) +1/4

(1,1)
(1,1) 0

(1,0) +1/4~2
(0, 1) +3/4~2

(1,0) (0, 1)
+1/4~2 —1/4~2

+1/8 +1/8
-3/s -3/8

(1,1)
(0,0)

(1,1)
—1/8

+3~3/8

(o,o)
—+3/8
-3/S
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TABLE I. (Continued).

(9) Operator = S, S~, "transfers, " symmetrizing diagram

(1,1)
(1,1) +&/4

(1,1)
(1,1) +1/2
(1 0) 1/4~2
(0,1) +1/4~2

(1,0) (0,1)
—1/4~2 +1/4~2

+3/8 —1/8
—1/8 +3/8

(1,1)
(0,0)

(1,1) (O, O)

+5/8 +~3/8
+~3/8 +3/8

(10) Operator = Sa S&, "transfer2, " symmetrizing diagram

(1,1)
(1,1) +1/4

(1,1)
(1,1) -1/2
(1,0) —1/4~2
(0,1) +1/4~2

(1,0) (0,1)
-1/4~2 +1/4~2

-1/8 +3/8
+3/8 —1/8

(1,1)
(o,o)

(1,1) (0,0)
yS/8 +QS/8

+~3/8 +3/8

APPENDIX C: DIRECT DIAGRAM
EVALUATION

In this appendix we present simple diagrammatic rules
for evaluating the spatial overlap integrals discussed in
detail in the text. As a specific example we consider the
"captureq" diagram with a contact hyperfine interaction.
Recall that this diagram

capture~

was found in (65) to give the spatial overlap integral

x c ~(2k + C)4 tr(2k —C),
(C2)

Ht(capture, ) =—
which is the matrix element of the spatial part of

' S, S~ b(r, f, ) . (C3)
mq

This interaction has already had the color degree of free-
dom (A/2)( —A /2) removed as part of the "color factor. "
The "spatial part" is defined as tlie multiplier of the spin-
spin factor S, Sb, which is (—8s'o, /3m~) &(& b).

To evaluate the spatial overlap integral for this dia-
gram by inspection, we begin by writing a product, of the
four external-meson wave functions,

4~ (a —a) @ted (b —b) 4& (c —c) 4D (d —d), (C4)

(Cl)

since the scattering amplitude will be proportional to this
expression with appropriate relations imposed between
the quark and antiquark momenta. We next substitute
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a=A —a, (C5)

b=8 —b, (C6)

c=C —c, (C7)

for momenta which are redundant due to delta-function
constraints; first we eliminate all the antiquark momenta,
since each of these is equal to the corresponding external-
meson momentum minus the quark momentum:

four antiquark momenta, a, b, t-, d, a, b, c, and d. Four of
these momentum integrations (over a, b, c, and d) are
trivial due to delta-function constraints in the external
wave functions, and two more integrations (over b and
d) also encounter delta-function constraints, due to un-
scattered lines in the matrix element. This leaves two
unconstrained momenta to integrate over, which in this
case are a and c. Qn replacing these implicit integrations
we have

d=D —d. (C8) d a d c 4~(2a —A) Cg(2a —A —2C)

Substitution into the wave-function product gives

4~(2a —A) 4B(2b —B) 4'c(2c —C) 4D(2d —D) .

(C9)

Specializing to the "capturei" diagram, there are ad-
ditional momentum const, raints due to the unscattered
lines, which are

(C10)

and

(C11)

Since we have already eliminated the antiquark momenta,
these are equivalent to

(C12)

and

4&(2c —C) 4 *&(2a —2A —C) . (C16)

This can be simplified by translating the variables of in-

tegration, c ~ c + C/2 and a ~ a + (A + C)/2, which

gives

x d a4& 2a —A4'~ 2a+ Cg 2a-

(C17)

As a final simplification, note that the integral of 4&(2c)
over c is proportional to the spatial wave function of me-
son C at contact (see Appendix A), so our result can be
written as

b= a —A+0, (C13)

respectively. On substituting these identities in the wave-
function product we obtain

4~(2a —A) 4B(2a —2A —B + 2D)

xCc(2c —C) 4D(2a —2A+ D) . (C14)

As we evaluate these integrals in the c.m. frame, we may
substitute B = —A and D = —t for the external-meson
three-momenta, which gives

4A (2a —A) kg (2a. —A —2C)

4c (2e —C) 4&D(2a —2A —C) . (C15)

In the actual scattering amplitude there are initially
eight momentum integrations over the four quark and

x d aC» 2a —A C~ 2a+C Cg 2a —C

(C18)

This is the wave-function integral for the diagram
"capture~" given at the beginning of this appendix, It re-

mains t, o restore the overall constant —8xn, /3mz which

multiplies the spin-spin Hamiltonian (C3) as well as the
factor of 1/(2n) in (63), which arises from a plane-wave
integral when the spin-spin Hamiltonian (or any of the
other interactions) is transformed into momentum space
[see equations (66-69)]. On restoring these multiplicative
constants, we find

I» « ——— '
(27r) 4&(0) d a 4D(2a —A) 4~(2a+ C) 4&B(2a —C),3m' (2~)s

(C19)

which is the result, [(65), (C2)] derived in the text.
The factorization of t, he matrix element (C16) into the

product, of two integrals (C17) results from our assump-
tion of a contact interaction. For noncontact interactions
such as the Coulomb and linear terms or a "regularized"
spin-spin interact, ion, the spatial matrix element involves
the Vourier transform of the interaction in a generalized

convolution integral, and no longer factorizes. In the case
of the capture~ diagram we have used for illustration, re-

placing the delta function in (C3) by a general function

v(r, &) leads to the spatial overlap integral

87t.a,
space = n3m
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d a d c 4~(2a —A) 4~(2a —A —2C)

x V(~a —cI) 4C (2c —C) 4D(2a —2A —C), (C20)

where V(IpI) is the Fourier transform of the spatial in-

teraction v(r, I), normalized to

V(Ip~) = dsz e'i'" v(r) .
1

(2z )s (C21)

APPENDIX D: APPLICATION
TO IDENTICAL QUARKS

The Born formalism may be applied to systems hav-

ing identical quarks and antiquarks, which leads to ad-
ditional diagrams that arise from permutations of iden-
tical particle lines in scattering. One might a priori an-
ticipate that antisymmetrization of asymptotic states is

The generalization of the other capture diagram and the
transfer diagrams to noncontact interactions is imme-
diately obvious and can also be read directly from the
scattering diagrams, with the factor of I/(2z)s being re-
placed by the Fourier transform of the potential between
the scattering constituents. The momentum argument
in V is simply the modulus of the momentum transfer
between scattering constituents. One should be careful
to avoid evaluating individual diagrams with long-range
potentials, however; for linear potentials in particular
one should only evaluate sums of diagrams which repre-
sent color-singlet scattering amplitudes, as the individual
scattering diagrams will be infrared divergent. The hj;
amplitudes for these Coulomb and linear potentials are
given explicitly in Section III D of the text.

required when identical fermions are present in differ-
ent hadrons. This is actually not required, since anti-
symmetrization (or symmetrization for bosons) is sim-

ply a bookkeeping device which prevents overcounting
of equivalent states, and ensures for example that

~ f2 fi)
is not counted as independent of Ifi fq). If the identi-
cal fermions are uniquely assigned an order in the state
vector according to their quantum numbers, the "dupli-
cate" state

~
fz fi) is never admitted as a possibility, and

the antisymmetrized state (~ fi fz) —
I fz fi))/i/2 need not

be introduced. Since we order the quarks and antiquarks
in the two-meson states according to the hadron they oc-
cupy asymptotically, we have uniquely specified the order
in which fermions occur in the state vector, and need not
antisymmetrize. This association of quarks with specific
hadrons requires that we visualize the scattering in terms
of asymptotically separate wave packets, but this pre-
sumably leads to scattering amplitudes which approach
conventional plane-wave results as the wave packets be-
come arbitrarily large.

Although identical fermions do not require explicit an-
tisymmetrization of the asymptotic wave functions in
meson-meson scattering, they do lead to additional scat-
tering diagrams. To see this in the context of our
AB -+ CD example, assume that both mesons have a
u quark but that the antiquarks are different flavors (as
in z+K+ elastic scattering). The u quark initially in
meson A can scatter into meson C or D, since both fi-

nal mesons have a u quark. In our previous example
with distinguishable quarks we defined meson C to be
the final meson with the same quark as A, which gave
a unique line diagram. With identical quarks however
both ug -+ uc and ug ~ uD scattering processes are
possible, so we have two line diagrams, one considered
previously for distinguishable quarks and a new diagram
which is obtained by exchanging the final quark lines.
For the capturei process these diagrams are

x+(A) K+(C)

capture(

I&+(B)

I

I

I

I

I

I

I

I

I

(D1)
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capture& '"

z+(A)

Ic'+ (B)

T
I

I

I

I

I

I

t

I

I

I

I~+(C)

(D2)

This new identical-quark line diagram evidently has a signature opposite to that of the first diagram, since it has
a relatively odd number of line crossings. At the one-interaction level which we consider here, however, this new
diagram actually vanishes due to a zero color factor. At first order in A A one only encounters new nonvanishing
identical-fermion contributions if both the quarks and antiquarks are identical, as in sr+a+ scattering. In this case one
has the usual line diagram, a quark-exchange diagram as in (D2) which has a zero color factor, an antiquark-exchange
diagram which also has a zero color factor (we do not show these two diagrams), and a nonzero quark-exchange plus
antiquark-exchange diagram:

capture(

z+(A)
d

T
I

I

I

I

I

I

I

I

1

t

I

L

and

z+(A)

capture&"

d
7r+(D)
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z.+ (A)

x+ (8)

T
I

I

I

I

I

I

I

I

I

l

I

(D4)

The new line diagram gives an amplitude with the same overall "signature" phase as the first diagram; this is
expected because a quark pair and an antiquark pair have been exchanged relative to the first diagram. Detailed
evaluation in the Si~k ——2 case (for a given A A interaction between initial fermions) reveals that the new diagram is
equal to the first diagram after exchange of C and D labels and momenta; for example, the "capturei" diagram (D3)
and corresponding identical quark- and antiquark-exchange diagram (D4) are

hg, (capture&) = — '
&

d k C»(2k —A) 4g(2k+ C) C)tr(2k —C)
Sirck, @c(0)
27m2 (D5)

and

h&", (capturer) = —
r & fd hdrp(2k —A) 4a(kk —C) drrr(2kd. C)27,' 2

(D6)

which evidently map into each other under exchange of C and D labels. (In the c.m. frame their momenta are related
by D = —C.) We refer to the new identical fermion diagrams as in (D4) as "symmetrizing" diagrams because they
impose Bose symmetry in the meson-meson scattering amplitude if the external mesons are identical.

APPENDIX E: MESON-MESON EQUIVALENT POTENTIALS

To study complicated hadron-hadron scattering problems with many open channels it is useful to approximate
the meson-meson scattering amplitude by low-energy equivalent potentials. This allows a straightforward numerical
study of the full system using the multichannel Schrodinger equation, which can easily incorporate physical meson
masses and can be used to search for nonperturbative effects such as hadron-hadron bound states which are not
directly accessible to our Born-order perturbative calculation. Here we shall give an explicit derivation of intermeson
potentials which are equivalent to the Hamiltonian matrix element (74) near threshold.

Note first that this is an inexact procedure. The Hamiltonian matrix element hy, is a function of both s and
t, whereas a pure potential leads only to t dependence, so we can only approximate the matrix element hg; (74)
using a potential. We will describe two methods for deriving low-energy "equivalent potentials" which give scattering
amplitudes approximately equal to hf; near threshold. The first method has the advantage of simplicity, but produces
a singular delta-function potential for our example; the second technique is more complicated, but can in principle be
used to generate nonlocal potentials which reproduce the original scattering amplitude to arbitrary accuracy. A third
method which leads to comparable numerical results in the n.n case has been discussed elsewhere by Swanson [25].

In our first technique we simply set s equal to its threshold value of 4M2, and determine the meson-meson potential
that leads to the threshold matrix element

87'o., 1 At, At 16
hy;(s = 4M, t) = + s exp —+ exp

27'"q 2 ' 3 3
(El)

Note also that these are in general "transition potentials" rather than diagonal ones, since the effect of the interaction
is to transform the incoming (A, B) meson pair into a possibly different (C, D) final pair The orde.r of the final pair is
actually important; to reproduce both rising and falling t dependences in (El) it is convenient to introduce separate
(A ~ C, B ~ D) and (A ~ D, B ~ C) potentials. In the (A ~ C) "t-channel potential" V, (rdi~), the transferred
momentum squared in t = —(A —C)2, whereas in the (A ~ D) "u-channel potential" it is u = —(A —D) . The
exponential e~'t is most easily identified with a t-channel potential,
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V, (r) (E2)

whereas the e "i = e 'i terms, which would require a singular t-channel potential, can be directly identified with

a u-channel potential,

V (r) (E3)

We divide the t-independent "capture diagram" contribu-
tion equally between these two potentials, which makes
them the same function of ~. The t-channel potential
corresponding to (El) is

VP P (r)—l(~n, e-' /'" 8

27m2 (2xg)3/2 3
(E5)

and the corresponding I = 2 7r7r (and I = 1 I~ I~) poten-
tials are

V~(&) = d q
e'~" h/, (s = 4M, t = —q ) +„+ 8vra, e " i 8'"' =

o
L

8nn, e '/" 8 bx
27m~ (27r A)s/~

(E4)

We have written the transfer-diagram Gaussian with a
coeKcient that integrates to unity, so it can be compared
directly to the capture-diagram delta function. One can
see that their contributions are comparable and interfere
destructively, so S, , = 2 vector-vector elastic scatter-
ing through the spin-spin hyperfine term is found to be
relatively weak near threshold. In a numerical study us-

ing these potentials it would of course be necessary to
replace the delta-function contribution by a finite-width
distribution such as a narrow Gaussian.

If we are studying an identical-meson system, as in
p+ p+ elastic scattering, one need only introduce a single
intermeson potential V(r) = V, (r) = V„(r), because the
u-channel contribution will automatically be introduced
by the potential scattering formalism as a crossed meson
diagram. There is in addition an overall factor of 2 in

hj, due to additional identical quark diagrams, as was

explained in Appendix D. For p+p+ with St t
—2 this

gives

q=C —A, (E7)

and a total t-channel momentum P,

P = —(A+ C) (E8)

in the Breit frame. For our equal-mass scattering prob-
lem this simply substitutes

t = —q (E9)

This pseudoscalar-pseudoscalar interaction is relatively
large because the capture and transfer diagrams con-
tribute with the same sign. The positive effective po-
tential corresponds to a repulsive interaction, consistent
with the negative I = 2 7tx phase shift observed experi-
mentally.

The second technique for generating equivalent poten-
tials in 2 ~ 2 scattering was introduced by Barnes and
Ghandour [23]. In' this approach we begin with a scatter-
ing amplitude [such as h/, (s, t)] which is a known func-
tion of 8 and t, and write it in terms of the exchanged
three-momentum q,
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and

8 = 4M'+ q' —4P . q+ 4P' (E10)

64

(E13)

The nonleading terms in the expansion of hj;, which are
proportional to P;i . .P;„,give generalized potential op-
erators with n external gradients V multiplying functions
of r. This technique, which might be termed a "local-
ity expansion, " generates the correct Breit-Fermi Hamil-
tonian at order P, Pz when applied to the one-photon-
exchange Feynman amplitude [23].

When this technique is applied to the Gaussian hy;
(74) to generate a lowest-order local potential, the "trans-
fer' diagrams give the same Gaussian potential found in

(E6) using the first method, but the "capture diagram"
delta function is replaced by a Gaussian with a different
width. The resulting local t-channel potential is thus the
sum of two Gaussians, and for the I = 2 i(x and I = 1

I~I~ systems is

4(+0+(
)

64+&PSHO

9~~m2
1 2 2 2 2

~PSHD~ + g 3PSHD~

(E12)

(For our discussion we have written this as a function
of psHo rather than A = 1/4psHo. ) The Ii. Ii. potential
has the same form and differs only in our choice of a
larger quark mass for strange-nonstrange systems. This
I = 2 vrx potential is shown in Figure 5 for our standard
light-quark parameter set o, = 0.6, m~ = 0.33 GeV, and

psHo —0.337 GeV; with these parameters the repulsive
core has a maximum value of

1500

v-(r) (Mev)

1000

I l000
00

0
00

0
0
0

0

Weinstein-Isgur V (r) [13]
Born approx. V (r) (eqn. E12)

500

0.2 0.4
r (fm)

0.8

FIG. 5. Low-energy equivalent potentials for I = 2 xx
scattering.

for s and t. One then expands this scattering amplitude
in a power series in P. The leading term is a function of
q only, which when Fourier transformed gives the corre-
sponding local potential

V(r) = f d qe'"" hg;(e 4M +q, f —q ) .

(E11)

and falls with a characteristic length scale of ic
0.5/PsHO 0.3 fm. The recent variational I = 2 nn

potential of Weinstein and Isgur [14] is also displayed in
Figure 5 for comparison, and is evidently very similar to
our result. (Of course we do not expect exact agreement
due to the systematic differences in our methods and pa-
rameters and our use of single-Gaussian external qq wave
functions. ) The Weinstein-Isgur I = 2 V (i) potential
we show in Figure 5 is their I = 2 m vr potential as de-

rived before they rescale it to give better agreement with
experimental phase shifts. This is the V„(i) in Figure
3 of reference [13]. Note also that their corresponding
I&I& and ss-ss potentials V&'(r) and V;(r ) scale in over-
all magnitude approximately as rn, which is an exact
result in our Born formalism assuming first-order scat-
tering by the color-magnetic hyperfine term.

As we have used the Born approximation to define the
equivalent, potential V()") in terms of hI;(s, t), and also
take the low-energy limit of hI; to produce a local po-
tential, we will only recover the original hj, scattering
amplitudes from V(r) in the double limit of a weak po-
tential near threshold. We have confirmed this for (E12)
by comparing the analytic S-wave phase shift from hI;
(93) to the numerically evaluated phase shift due to (E12)
in the double limit e, ~ 0 and s ~ 4M~. For the physi-
cally relevant parameters of n, = 0.6 and s & 4M2, how-
ever, there will be a discrepancy between the equivalent-
potential phase shift predicted by (E12) and the origi-
nal phase shift predicted by hg;. As the multichannel
Schrodinger equation studies of Weinstein and Isgur use
similar equivalent potentials, it is especially interesting
to test their internal consistency by comparing the origi-
nal h~; phase shift to the phase shift predicted by (E12)
for n x and K K parameters,

First we consider the less relativistic I~ A' system. We
showed the I = 1 I~K phase shift predicted by hj; in
Figure 4. Using the same parameter set we numerically
determined the phase shift predicted by the threshold-
equivalent I = 1 Ii. I4: potential (E12); this is shown to-
gether with the original hI; phase shift in Figure 6. [This
phase shift is determined by solving the nonrelativistic
two-kaon Schrodinger equation with (E12), and is dis-

played as a function of M~~ = 2v M2 + k2 .] Evidently
the equivalent potential underestimates the S-wave Ii. I~

phase shift somewhat, but is qualitatively correct and
could be used in a multichannel Schrodinger formalism
with little modification.

When we repeat this exercise for the I = 2 xx sys-
tem (in Figure 7) we find a qualitatively different result;
although the threshold-equivalent V ().) gives a phase
shift similar to hj; close to threshold, for M 0.4 GeV
it seriously underestimates the original hy; phase shift.
Apparently the pions are so relativistic that the s de-
pendence of hy; is quite important, and the low-energy
potential formalism is inaccurate at experimentally rel-
evant values of the vrx invariant mass. It appears likely
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FIG, 6, Comparison of I~ Ii phase shifts due to h&',
' and

V ' '(r); a, = 0.6, mg ——0.44 GeV, PsHp = 0.337 GeV. FIG. 7. Comparison of h&, and V (r) phase shifts.

that this is the origin of the underestimated S-wave grgr

phase shift of Weinstein and Isgur, which is quite sim-
ilar to the inaccurate phase shift our V (r) produces
(This is expected since our potentials are quite similar, as
shown in Figure 5.) This suggests that their "rescaling"
of V (r) was actually compensating for the inadequacy

of low-energy x7t. potentials in describing relativistic ver
scattering amplitudes, and this rescaling should not be
applied to less relativistic meson-meson systems such as
KA. An experimental determination of the I = 1 I~I&
phase shift would be very useful as a test of this possi-
bility.
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