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Black-hole evaporation and the equivalence principle
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This article investigates the underlying physics of Hawking radiation. It is proposed that global quan-
tum field theory on the Schwarzschild background is such that its restriction to any point of spacetime is
consistent with the field theory postulated by a freely falling observer at that point. The equivalence
principle demands that the field theory defined by freely falling observers be the same as special rela-
tivisitic (flat-spacetime) field theory in a neighborhood of the observer. A minor technical point is that
one needs to find a family of freely falling observers whose world lines form a space-filling congruence in
order to synthesize the theory. Once this is accomplished, the global field theory as dictated by the
equivalence principle predicts that a black hole experiences thermal evaporation in isolation. The main
point of this paper is to attain a physical understanding of this phenomenon with particular emphasis on
the renormalized stress-energy tensor. It is shown that this tensor is a measure of the change in the ener-

gy of the zero-point oscillations of the field theory which is formulated by inertial observers during free
fall, as compared to a global standard. An external onlooker sees the zero-point energy in a freely falling
coordinate patch decrease as it approaches the horizon. The freely falling coordinate patch was assigned
a value of zero renormalized energy due to the oscillations of the field when it was released from rest
near "infinity" in the distant past. This decrease in zero-point energy during free fall is shown to
translate to a negative energy density of the field, near the horizon, in the components of the renormal-
ized stress-energy tensor. The external onlooker interprets the zero-point energy lost during free fall as
an outgoing stream of particle-antiparticle pairs.

PACS number(s): 97.60.Lf, 04.20.Cv, 04.60.+n

I. INTRODUCTION

The evaporation of black holes via Hawking radiation
has attracted great interest in the physics literature since
it was postulated in 1974 [1]. However, it is remarkable
how many venerable theoretical particle physicists, astro-
physicists, and relativists do not understand why black
holes should radiate away their inertia, as evidenced by
numerous personal communications that I have had "in
confidence" over the years. This article is an attempt to
reach a wider range of physicists by explaining the
phenomenon rigorously in terms of well-known funda-
mental physical principles.

Furthermore, it may very well be that evaporating
black holes are astrophysically unimportant. None have
been observed to date. The only ones which might be
detectable are micro black holes, possibly created early in
the history of the Universe [2]. If these exist, they might
have decayed long ago. More massive holes formed by
self-gravitating cosmic gas and plasma are probably sur-
rounded by some remnants of the original matter distri-
bution (i.e., disks, clouds, or winds). The effects of the
black-hole —rnatter interactions would swamp and neu-
tralize the Hawking effect for these holes [3]. In light of
this, it may be that the main motivation for studying
black-hole evaporation is as a gendanken experiment to
help understand the synthesis of general relativity and
quantum field theory.

Based on the two considerations above, it is compelling
to create physically dominated explanations of Hawking's
discovery which are therefore more readily understand-

able by theorists who are not experts in the particulars of
this problem. Thus, a physically motivated analysis is
developed in this article that does not base the main con-
clusion on mathematically difficult or ambiguous steps
such as difficult renormalization calculations or obscure
methods of analytic continuation.

In this author's opinion, there are three main methods
of arriving at Hawking's result that do not involve any
major "hand-waving arguments" or assumptions at a cru-
cial stage in their development (there might be more and
I apologize to those who created them for not mentioning
their analyses).

(1) Hawking s original past-directed classical ray-
tracing argument couched in the language of scattering
from catastrophically collapsing objects [4,5].

(2) Point-separated regularization of stress-energy ten-
sors evaluated in an appropriate vacuum state [6—8 ].

(3) Analogies to the production of particles in a uni-
formly accelerating frame (Rindler space) which involves
the analytic continuation of wave functions evaluated by
noninertial observers into regions beyond their domain of
causal contact. This can be extrapolated to static ob-
servers outside the horizon to give wave functions which
have particle creation built into them [9]. However, the
method of analytic continuation is not unique and the
reason why Refs. [9,10] produce the "right" method is
subtle and involved [10—12]. The bottom line is that the
physics in this analysis results from one very slick math
step in the complex plane.

Methods l and 3 demonstrate particle creation and the
more sophisticated analysis in 2 gives the renorrnalized
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stress-energy tensor which is necessary for understanding
the complete semiclassical problem, i.e., the back reac-
tion on the metric. The following analysis is related to all
three. The mathematical calculations look very similar in
form to those in method 1, the physical explanation is re-
lated to method 3, and the final result gives a physical
and relatively simple derivation of the asymptotic (near
the horizon and at infinity) form of the renormalized
stress-energy tensor in method 2.

The physics of the problem is contained in the renor-
malized stress-energy tensor. There are many ways to
generate a finite tensor from a divergent tensor through
regularization. This article gives a physically plausible
description of why the regularized tensor in Refs. [8,13]
is physically important besides the argument that the re-
sult is well behaved in freely falling frames near the hor-
izon and self-consistently makes sense for computing the
back reaction on the metric. A physical explanation is
given for the fact that the energy density of the spacetime
vacuum, near the horizon, is negative as viewed by ob-
servers at asymptotic infinity. Unfortunately, previous
methods of computing the tensor involve the very com-
plicated, tedious mathematics of point-separated biten-
sors [see (6.3)—(6.6) of Ref. [14]] [14,15]. The problem
with such regularizations which extract a finite part from
a formally divergent quantity is that they "always contain
ambiguities which must be resolved by the application of
additional criteria, such as physical reasonableness" [6].
For example, the final result of the calculation depends
on the direction of the point separation which was used.
Davies, Fulling, and Unruh [6] conclude that "It is hard
to understand how a physical result can depend on such
an arbitrary vector field. It appears that such terms,
which evidently arise in any point-separation procedure,
must be discarded. " There are also the "usual" divergent
covariant terms which are eliminated because we want a
finite result. The procedure is vindicated since it repro-
duces standard field-theoretic results in the Bat-spacetime
limit and the final results in the black-hole case are plau-
sible. The only complaint is that, after struggling
through all of this algebra supplemented by the
aforementioned mathematical slight of hand, what has
one learned about the physics of particle creation in the
gravitational field of a black hole?

The original past-directed ray-tracing argument pro-
posed by Hawking was hard for many experts to accept
in the early years because it is difBcult to understand how
such a classical analysis can be used to describe an intrin-
sically quantum-field-theoretic problem [16]. Treated as
a mathematically well-posed scattering problem of a sca-
lar field interacting with the gravitational potential of a
catastrophically collapsing object, it is not clear what the
relevant physics of particle creation is. Hawking states a
relationship between ~R" R„~s~ (where R"' is the
Riemann curvature tensor of spacetime) and an indeter-
minancy of particle number in the field as the fundamen-
tal physics of particle creation [4]. However, the
Riemann tensor does not appear in his calculation, so it is
not clear how the physical description is compatible with
the mathematical exercise. It was the genius of Hawking
that allowed him the confidence to know that his analysis

was so sound that his conclusions must be correct. By
contrast, in the following the math and physics are tied
together at every juncture.

The main premise of this study is the equivalence prin-
ciple. At every point of spacetime, it is conjectured that
all inertial observers can accurately postulate the relativ-
istic quantum field theory of Hat spacetime on open sets
with dimensions much less than the "radii of curvature"
of spacetime (for modes with a local wavelength less than
this same distance scale). Dual spaces to local Lorentz
frames at every point of spacetime can be constructed
outside the horizon which form the very useful momen-
tum space representations of quantum field theory [17].
All of these local observers can formulate number repre-
sentations of the field through particle creation and an-
nihilation operators defined as a result of purely local
consideration. Similarly, each local freely falling ob-
server transports with him his own definition of the vacu-
um state. It is proposed in this article that the
equivalence principle demands that a global vacuum state
defined throughout the spacetime outside of the horizon
is constructed by "integrating" the local vacua along a
space-filling family of freely falling trajectories (i.e., the
restriction of the global vacuum to a point on these tra-
jectories is the vacuum state of the local freely falling ob-
server).

%hen viewed from this perspective, the reason for par-
ticle creation is that the Fock space representations of
quantum field theory on curved-spacetime backgrounds
are not really generally covariant. The entire theory is in
this formulation and it yields a consistent set of physics
in any frame. But in defining a Fock space, one must sin-
gle out the time direction in the observer's frame to
define particles and antiparticles. This essentially breaks
the invariance of the Fock space representation of the
fields under general coordinate transformation and
different observers can, in principle, detect different parti-
cle numbers in a given field state.

In this article, the aforementioned physics is demon-
strated by comparing the formulation of quantum field
theory in freely falling frames near the horizon and the
same theory as posed by static observers at asymptotic
infinity. First of all, one can foliate spacetime with a
family of world lines of freely falling observers. The wave
equation of the field in the local basis of the freely falling
observers is then constructed and solved. These local
wave functions are compared to the "global" wave func-
tions computed from the wave equation of the static ob-
servers at asymptotic infinity. These "global" solutions
separate into two categories: outgoing (propagating away
from the horizon as viewed by a static observer) and ingo-
ing quanta. The "global" outgoing solutions are not
eigenstates of the local energy operator in the freely fal-
ling frames near the horizon. They can only be
represented as a wave packet of 1ocal solutions which has
negative energy components. This last statement results
from the fact that, not only are the "global" outgoing
waves blueshifted as viewed by freely falling ingoing ob-
servers near the horizon, but it is a differential blueshift
which varies appreciably over a wavelength. The local
decomposition of the "global" solutions involving nega-
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tive energy local solutions necessarily requires (as one
passes to the number representation of the field) particles
to exist in the field state which represents the locally
defined vacuum, when interpreted by static observers.

An analysis of spacetirne "atomized" into the local
neighborhoods of freely falling observers can be exploited
to provide a quantitative physical explanation of the neg-
ative energy density of the vacuum near the horizon (the
renormalized stress-energy tensor). The renormalized
stress energy tensor of Refs. [8,18] is interpreted as a glo-
bal quantity which compares the locally evaluated ener-
gies of the zero-point oscillations of the field at different
points of spacetime. This is illustrated in the article by
noting that (for eternal black holes) infalling inertial ob-
servers whose world lines represent a foliation of space-
time can be thought of as existing near the horizon as a
result of falling freely from "infimty" (far away) after be-
ing released from rest at some time in the distant past.
This tensor is indicative of the change in the local zero-
point energy of the field theory formulated by these ob-
servers at different points along their world lines, when
these energies are compared to a global standard. To an
external static observer, the zero-point energy of the lo-
cally defined field appears to decrease in free fall.

To be more specific, when an observer is in free fall, he
is constantly redefining his quantum field theory, wave
functions, g~„,and vacuum state as viewed by a static
external observer. By contrast, the field theory as he
defines it locally always looks the same, just like fiat-
spacetime field theory in a local neighborhood. There is a
spectrum of momentum states which retains its uniform
measure, the mass gap between positive and negative en-

ergy states remains the same and there are no particles in
the local vacuum.

First, one can look at the field theory when the ob-
server is released from rest at "infinity" in the distant
past. The observer at r~~ can construct a quantum
field theory, wave functions, lim„„yi„,and there is a
natural definition of his vacuum state. This theory is the
same as the one formulated by static observers at infinity.
The wave functions which he measures are the "global"
wave functions @ (tildes are used to designate quantities
in the static frames at infinity throughout the article)
which were mentioned previously:

These wave functions are characterized by a constant en-

ergy eigenvalue co known as the redshifted energy as
viewed from asymptotic infinity in the "membrane para-
digm" [see Eq. (2.4) for a definition] [18]. Denote the
wave function associated with co as g(co) (to streamline
the discussion, we drop the other quantum numbers of
the field without loss of physical content in the
Schwarzschild geometry).

One can extrapolate to very late times as the freely fal-
ling observer approaches near the event horizon. The lo-
cal energy that he measures will be denoted by P . One
can look at a local state which appears locally as well as
globally outgoing (i.e., propagating away from the hor-
izon). The local energy Po can be related to the globally

where the "-"means asymptotically. At a given point
of spacetime, one can label these outgoing states equally
well by P or co as a consequence of (1.1). The local wave
functions have a constant value of P (not co) in a neigh-
borhood of the observer. Consider the local wave func-
tion with redshifted energy [via the inverse of (1.1)], coo,

at the point of observation (only), near the horizon. One
can designate such a wave function as

lim q)i„(coo)
r ~2M

(1.2)

(where r is the coordinate of the observer). This wave
function has a redshifted energy expectation value of
1/2coo in the local vacuum.

The "global" wave functions can be interpreted by a
freely falling observer near the horizon in the language of
his local field theory. As noted earlier, q is not an eigen-
state of the local energy operator near the horizon and
has a wave-packet representation. To define the energy
of g with respect to the local vacuum, one must compute
a quantum-mechanical average (co „)of the energy
operator over the components of the wave packet. This
wave form appears highly distorted from a plane wave to
freely falling observers near r =2M and it is found that
the redshifted energy is larger as measured locally than it
is when it is measured by a static observer at asymptotic
infinity. This is because the global outgoing solution
p(coo) appears differentially blueshifted along a wave-

length as perceived by a freely falling observer near the
horizon. The effective Lorentz y factor of the quanta in
the language of special relativity is enhanced relative to
its pointwise value by averaging over a local neighbor-
hood. In particular, this average results in a locally mea-
sured redshifted energy in the wave packet

(co~„)= ,'coocoth4n—Meso) —,'coo . (1.3)

Result (1.3) is the essence of the negative energy densi-

ty of the renormalized stress-energy tensor evaluated near
the horizon. Consider an external observer fixed relative
to the static background who assesses the situation. In
the distant past, the external observer sees the freely fal-

ling frame released from rest at "infinity" and singles out
a mode to monitor with redshifted energy coo, wave func-
tion g(coo), and zero-point energy relative to the local
freely falling vacuum of —,'coo. At a much later time, the
external observer sees that this freely falling frame is now
very near to the horizon and again he singles out the
mode with redshifted energy coo evaluated at the origin of
the freely falling tetrad via (1.1). This local mode is
designated as lim„~My„,(mo) and has a zero-point ener-

gy of —,'coo relative to the local freely falling vacuum near

the horizon. This mode is the analog of
@(coo)= lim„„&p&„(coo)when the tetrad was released
from infinity in distant past.

Although, locally, the two modes appear similarly

redshifted energy co for these modes using Schwarzschild
coordinates (r is the coordinate of the observer)

o 4M
CO

r~2M r 2M
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defined, globally they are quite different. The expectation
value of the redshifted energy of the mode y(coo) with

respect to the freely falling vacuum is larger than the
same for y„,(coo) as r ~2M as evidenced by (1.3). Define
the change in energy of the mode with redshifted energy
cop, which results from the reformulation of the local field

theory during free fa11, as ENp..

COp

P~& 2 0 8 M 0
(1.4)

The global view of the external observer indicates that
this energy must have been radiated away during free fall
and it is shown in the text that half is lost in the particle
channels and half in the antiparticle channels. Relation
(1.4) holds for all globally outgoing modes. Consequent-

ly, an external onlooker concludes that the redshifted
zero-point energy Ep of the locally de6ned field theory is

less near the horizon in the freely falling frame than it
was in the distant past, "near infinity, "

by an amount
EEp.

aE, = —y f, dN

l, m

(1.5)

It is proposed that (1.5) represents the fundamental phys-
ics of the dynamical components of the renormalized
stress-energy tensor near the horizon. All of these local
patches of infalling vacuum can be integrated to repro-
duce the renormalized stress-energy tensor of spacetime
near the horizon using (1.5).

In order to isolate the physics of particle creation in
the gravitational field of a black hole, we concentrate on
the simplest case: a scalar 6eld theory on the
Schwarzschild background. The analysis is begun by
describing the foliation of spacetime by hypersurfaces or-
thogonal to a space-filling family of timelike freely falling
trajectories. A global coordinate system is constructed in
which the "time" direction is the four-velocity of the
freely falling observers. In Sec. III the scalar wave equa-
tion in the freely falling coordinate system is derived and
then solved near the horizon. These are the wave func-
tions defined by the freely falling observers. Section IV
shows how the "global" solutions defined by static ob-
servers at infinity can be decomposed as an integral over
frequency of the local solutions found in Sec. III. The in-
verse relation is derived as well and the corresponding
transformation between the local and static frame
creation and annihilation operators is also determined.
Section V is a discussion of various stress-energy tensors
evaluated in the local vacuum state and their physical
meaning. Particular emphasis is given to what is called
the renormalized stress-energy tensor of the local vacu-
um. Section VI synthesizes the results of Sec. V to con-
struct the dynamic components of the renormalized
stress-energy tensor of spacetime near the horizon and at
asymptotic infinity. A physical description of the result
is given. For completeness, a similar discussion for fer-
mions is included in the Appendices.

II. THE FOLIATION OF SPACETIME
BY FREELY FALLING FRAMES

A. Freely falling coordinates

In order to compare field theories at different points of
spacetime, a global coordinate system is introduced in
which one can formulate the local physics so that it takes
the form of flat-space quantum field theory in a neighbor-
hood of a PFF observer. Since spacetime is curved, this
coordinate system cannot be orthonormal. For this
reason it is useful to define the orthonormal tetrad e car-
ried by an observer that falls freely in the radial direction:

Te„mp e —
V 8 jBt

e m ~2v' ~/~r

1 a
e

r BO

1 a
e

r sin8 BP

(2.1)

Note that e„is the four-velocity of the freely falling ob-
servers, a is the lapse function

1/2
2M

CX:—
r

(2.2)

In Ref. [19], it was demonstrated that the vacuum
spacetirne of a black hole can be faithfully represented by
"piecing together" the local neighborhoods of freely fal-

ling observers. This exploitation of the equivalence prin-

ciple is made mathematically rigorous in terms of com-

pletely integrable distributions and the reader is referred
to Ref. [19] for details. The freely falling frames which

are released from rest at "infinity" (denoted by r ~ co in

Schwarzschild coordinates which are used throughout
this article) in the distant past were used to accomplish
this decomposition of spacetirne. These were called the
preferred freely falling (PFF) observers. The essence of
the formalism of Ref. [19] is that the local neighborhoods
of freely falling observers can be used to form a best
linear approximation or local tangent space approxima-
tion to the manifold, then passing to the limit of arbi-
trarily high accuracy. This method reproduces the
metric of the Kerr spacetime by considering special rela-
tivistic time dilation and Lorentz contraction effects re-
stricted to these local frames.

The success of reproducing the general relativistic po-
tential in terms of special relativity in local inertial
frames suggests that it is insightful to formulate quantum
field theory in the Schwarzschild spacetime as a synthesis
of local special relativistic field theory in the freely falling
frames. Of particular interest to this paper is that the
Schwarzschild vacuum state of the field (ground state) is
defined so that its restriction to an open neighborhood of
a PFF observer is the local vacuum state of inertial ob-
servers in that subset of spacetime. This paper formu-
lates the local quantum field theory at different points of
spacetime and compares these theories in a global con-
text. The following discussion develops the tools neces-
sary to accomplish this.
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a
N — 'P

Bt

where P is the four-momentum of the trajectory [18].
The basis covectors are defined by

(2.4)

N Np

mp

—V"a

a (2.5)

The inverse transforms are

which measures the gravitational redshift between static
observers at the coordinate r and the static observers at
infinity [18]. The velocity of the observer in radial free
fall as seen by a static observer at coordinate r, V', is [20]

1/2
mpV"=+ 1 —a (2.3)
Np

The plus and minus signs are valid for globally outgoing
(propagation away from the horizon) and globally ingo-
ing trajectories, respectively. The quantity mp is the rest
mass of the freely falling observer and Np is its redshifted
energy defined by

4X —N

Np
CIX — N P

mp V"

dX~=dg,

aX'=de .

(2.11a)

(2.11b)

(2.11c)

(2.11d)

It is significant that, near the horizon, since V ~—1

for the PFF observers by (2.3), the coordinate basis is the
same as the orthonormal tetrad carried by the PFF ob-
servers to O(a ).

Using (2.5) and (2.11), one can define the useful relation

dX —dX'= dr .
1

(2.12a)

Note that the transformations in (2.1) and (2.5)—(2.7)
become undefined at the horizon as a~0. However, the
physics of interest occurs outside of the horizon, ' thus,
there is no need to extend the coordinates in (2.10) across
the horizon (which can be done).

One can define basis covectors

a
dt
a
Br

Np

—V'a a

Vr e„
e

P

(2.6)
3/2

X —X'= — +const .
3 &2M

(2. 12b)

This suggests a simple form of the freely falling coordi-
nates, X, X', 8, and P obtained by integrating (2.11)
since (2. 12a) and (2.3) imply that

a a V"

mp V' 1

N

N p
(2.7) Expanding (2.12b) in a Taylor series near the horizon

yields the asymptotic relation

GN AN —0. (2.8)

The freely falling frames which are released from rest
at "infinity" in the distant past, the PFF observers, are
defined by coo=mo in (2.1), (2.3), and (2.5)—(2.7). This
special case will be emphasized because the algebra is
slightly simpler. It should be noted that the analysis in
this article is equally valid for all radial freely falling ob-
servers with Np mp.

The four-velocity of the radial freely falling frames is a
hypersurface orthogonal vector field since

X' —X — [r —2M+c][1+O(a )], (2.12c)

where c is a constant; equivalently,

X —X —c1 0
a (r)

r ~2M 2M
(2.12d)

This relation will be used frequently in the following dis-
cussions.

The metric in the PFF coordinate system is given by
the line element

Thus, it should be possible to find a spacelike coordinate
vector field in the hypersurface, N "=const, which is also
orthogonal to e& and e&. If one defines the vector field

ds = —dX dX +(V") dX'dX'

+r d8 +r sin 8dg

and the volume measure is

(2.13)

COp

V
8

exp ' (2.9) &—g =&2Mr'"sin8. (2.14)

then [E, , eo ]=0 and one has the useful global orthogonal
coordinate frame B. Local momentum

=-= a
Ep=ep =—

BX

Np

= a

ay
'

E

rn0
Vre

aX

(2.10a)

(2.10b)

(2.10c)

(2.10d)

2 clr p
—t

' 1/2
m, +%'ir

1 —a
N

(2.15)

where m, is the rest mass of the quanta and %' is a con-

One can write the radial velocity of a particle or group
velocity of a wave as measured in the static frames at a
coordinate, r, for a general trajectory as in (2.3):
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stant of geodesic motion representing the total angular
momentum [20]. This relation allows one to use (2.5) to
find the locally evaluated momentum in compact nota-
tion:

1 (+—gg ~qr &) +m, p=O .
g

(3.2)

where the semicolon signifies covariant differentiation.
In a coordinate system this can be expressed as

COp

P = a [1—VV"]co,
mp

(2.16a) Using (2.13), this can be expanded in the freely falling
coordinate system as

COpP~= a [ V —V"]co,
mp

(2.16b)

P =—1
Gap

mp

'2
2

[V—V"]co . (2.16c)

First, consider globally outgoing waves and particles
where V&0. By (2.16b), all of these trajectories appear
locally outgoing, i.e., PI'&0. These are the modes with
the interesting physics which is linked to particle creation
in the gravitational field of the black hole. In a freely in-

falling frame near the horizon, all globally outgoing
modes are locally ultrarelativistic, in particular,

2cop
P =Pl'= a co .

mp
(2.17)

p'-ap,
p&-ap .

(2.18a)

(2.18b)

There is no differential blueshift in the asymptotic zone
near the horizon for these waves.

III. THE LOCAL WAVE EQUATION

In this section, the scalar wave equation, which a freely
falling observer would use to formulate a quantum field
theory, is derived. This is naturally accomplished in the
freely falling coordinate system of Sec. II since B/BX is
the four-velocity of these observers.

Not only are these waves blueshifted in the freely falling
frames, but for modes with co equal to a constant, the gra-
dient in the blueshift is unbounded as the freely falling
observer approaches the horizon.

For globally ingoing waves one takes the minus sign in
(2.15). In this case, by (2.16b), the waves still appear lo-
cally outgoing if

~
V~ &

~

V"~ and are locally ingoing other-
wise. The globally ingoing waves have local momenta
that do not scale with lapse function near the horizon by
(2.3) and (2.15):

B + r B 3 &2M B

(BXo) 2M (BXi)2 2 r3~2

+5 1 B 2 1 B

2 +2Mr

1 B 1 B+—cot8 qr+ y=0 .
r B8 r sin 8 B$

(3.3)

The quantum number n labels the local energy eigenval-
ue. Using (3.4), one gets an equation for the "radial func-
tion" q„:

B r B

(BX')' " 2M (BX')' "

3v'2M B 5 1 B

2r ~ BX 2 &2Mr BX'

1(1+1)+m, y„=O. (3.5)

B. The solution space

One can examine the solutions to (3.5) when the PFF
observer is near the horizon. First of all, when
P' »1/4M, the "radial" wave equation reduces to its fiat
space form as r~2M. Thus, we know that, in a local
neighborhood of the observer, these solutions will appear
to be plane waves

(y~„)„-exp[iP„"X„],P' &&
1

4M ' (3.6)

The coeScients are left in terms of the Schwarzschild
coordinate r since the equation will only be looked at in
the limit r =2M[1+0(a )]. As is customarily done, we
separate the angular dependence out of the solution in
the form of spherical harmonics Yi (8,$):

(3.4)

A. The scalar wave equation

Covariantly written, the wave equation is

+m, y=O, (3.1)

where the local momentum P" is a constant in (3.6). To
define the local neighborhood where (3.6) is valid, first
signify the coordinates of the PFF observer as (X,X ').
Then (3.6) is valid on any open set V defined by

&=[X',X', 8,))[(X'—X')—(X' —X')I «4M, 0&8&m, 0&)&2@] . (3.7a)

Sometimes it will be important to look at an open set in which (3.6) is valid and is outside of the horizon, V+. To gen-
erate, V+ (3.7a) is modified using (2.12c),

V =IX,X', 8,$~~(X —X ) —(X'—X')~ «4M, X' —X &c,0&8&m, 0&/&2m] . (3.7b)
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Now one can consider the case when P —1/M and
P' —1/M. First, for globally outgoing solutions, this im-
plies by (2. 17) that

co-O.'M (3.8)

Thus, as +~0 these modes have an arbitrarily small
effect on any global phenomenon. Also, in a realistic
massive case m, »1/M, so the first derivative terms in
(3.5) will always be negligible. (We are intentionally
avoiding the case of black holes where the radius of cur-
vature near the horizon is on the order of an electron
Compton wavelength. Particle production in this case
would not proceed via the Hawking effect for the most
part. This would no longer be a discussion of the serni-
classical Hawking eftect but would require a knowledge
of quantum gravity. No theory of quantum gravity is es-
tablished at this time. It is implicit in the text that one is
nowhere near this Planck limit. Some details of the
modifications due to this effect are noted in Ref. [13).)
One concludes that (3.6) will faithfully represent the glo-
bally outgoing solutions in the co phase space when re-
stricted to a neighborhood of a freely falling observer lo-
cated at r ~2M.

The restriction of the local wave function to the open
set V+ is denoted by u (X,X', H, P) for the globally out-
going solutions

"m floe)m v~

(ip,„,)„—F„(X,X')
r 2M

Xexp[i[(Pp)„X+(P, )„X'][1+0(a)]I,

Pp, Pi ~const+0(a ),
(3.11a)

(3.11b)

where F (Xp X~ ) is a slowly varying function (i.e., vary-
ing on distance scales on the order of M). Rearranging
(3.11a) and using (2.3), (2.15), and (2.16), one gets

(g„,.)„—F„(X,X')
r —-2M

r

2
(X +X')[1+O(a )] ' .Xexp 'i

(3.1 lc)

This issue will have to be side stepped again in the next
section. The justification of the choice of normalization
in (3.9) is that it might be guessed by the equivalence
principle. A PFF observer approximates his situation by
just choosing standard Oat-space functions to order o. .

To analyze the globally ingoing case (including when
P' —1/M), note that P and P' do not experience the
effects of a differential blueshift near the horizon as dis-
cussed in (2.18). Thus, there exists a solution to (3.5) near
the horizon of the form

—exp[i[P ],„(X"—X')], (3.9)
Applying (2.1 1)

(jp(„,)„t — F„(r=2M )
r ——.2.M

where the fact that P =P' for ultrarelativistic local
quanta was used in the exponent of (3.9). [By (3.8) most
of the co phase space satisfies the ultrarelativistic criterion
for globally outgoing modes. ] The normalization used in
(3.9) is a tricky issue and essentially (3.9) is written for
later mathematical simplicity and these are treated as un-
normalized states. Normalization is a global considera-
tion and this analysis is local in nature. The reason that
one needs to be cautious in choosing a normalization con-
stant for y~„is that many treatments put the math of
particle production into a multiplicative factor which is
energy dependent, in front of the wave function (see Ref.
[10] for an example and, in the case of accelerating ob-
servers, see Ref. [21]). There is also the question of what
is the appropriate base manifold for the normalization.
The Klein-Gordon inner product between states a and b
1s

(a, b ) = i f a—* 6& g"'d'x-
T= o BT BT

(3.10)

where t/ —g' ' is the volume measure of the hypersurface
orthogonal to 0/BT for some global time coordinate T.
The problem with normalizing y1„is whether to perform
the integration only over the space external to the hor-
izon, X' —X ) c in (2.12c), or over all of X'. Such issues
involve analytic continuation, making the discussion too
mathematical and physically obscure for our purposes.

X exp [i ai(P„)v[1+ 0(a ) ]], (3.11d)

where co(P„)is a constant defined via the inverse to (2.16)
and v is the advanced coordinate

v =:t+r

r*:--r+2M in+2 .

(3.12a)

(3.12b)

As in (3.9), we write the restriction to V+, u, as

1 1
u,„=(j„,. ),„~z, = exp[iaaf(P —)v ] .

&Z~+2P,P„"
(3.13)

Summarizing, the local solutions for P'»1/4M are
characterized by P and P ', a constant in a neighborhood
V, about the PFF observers near the horizon. This is a
manifestation of the approximate translational symmetry
on V which is an axiom of special relativity [22]. Note
that, since P is a constant for globally outgoing solu-
tions, (2.17) implies that co is not constant in local time
for the local solution (3.9) when viewed by a PFF ob-
server near the horizon.

When P' —1/M or less, the waves vary negligibly in

time and space as viewed by PFF observers near the hole
on the dynamical time and distance scales of interest.
For example, such an observer would pass inside of the
horizon in a local time interval AX ((M, and in this
time interval he would detect only a small fraction of one
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oscillation of the wave. As an aside, it should be noted
that the concept of a wave with a wavelength larger than
the dimensions of the inertial coordinate patch can be
well defined. It is commonly argued in the discussion of
Hawking radiation that an inertial observer cannot detect
modes with a wavelength larger than M because, due to
curvature, the dimensions of an inertial coordinate patch
is of order M and his detector is therefore too small [4].
However, electrical engineers detect 60-cps signals and
their detectors are not 2000 miles long. Similarly, mi-
crowave engineers working at ultrahigh frequencies
(UHF's) detect waves with scalar network analyzers
which are much smaller than 4 ft.

Finally, the local solutions in the PFF frames can be
thought of as having positive frequencies defined relative
to the timelike vector field c)/c)X . This vector field is an
ingoing principal null geodesic as seen from static infinity
to order a [20]. Thus, these solutions are similar to
Unruh's solutions which have positive frequencies defined
relative to the null generators of the past horizon (princi-
pal null congruences) [9]. The reader familiar with the
particulars of Hawking radiation will immediately realize
that particle creation with a blackbody spectrum must
follow from these wave functions. What has been done in
this section is to physically motivate Unruh's construct
and remove the physically unfamiliar notion of defining
positive and negative frequencies relative to a null and
not a timelike vector.

l h)U

Fpi (r, 8,$, t) — Ylm(8, $)
r 2M 2n 2cor

u=t —r* . (4.2)

Note the equivalence of (3.13) and (4.1b). These solutions
are characterized by co=const. The following restrictions
to the generic open set V+ defined in (3.7b) are

lQI iQ

u. Y&.(8,4)=—q».. I&, ——

&2ir+2co„,r

lN iU

u„Y, (8,y)=p, „„.~v &K.+2co„.r

Yi (8,$),

(4.3a)

Y, (8,y).

(4.3b)

Since we are mainly interested in zero-point energies,
the wave functions which were chosen in (4.3) are not the
scattering states often implemented in the discussion of
Hawking radiation. The scattering states incorporate the
reflection and transmission of the waves in the curvature
potential. The scattering states are defined by [5]

purely ingoing as r ~2M . (4.1b)

The coordinate v is defined in (3.12) and u is the retarded
coordinate

IV. THE LOCAL FOURIER DECOMPOSITION
OF THE STATIC FRAME WAVE FUNCTIONS

X( l, I,co/x ) = — R I (co /r ) Y& ( 8, p )e
217 2col'

(4.4a)
In this section, the wave functions as formulated by

static observers at asymptotic infinity are decomposed as
an integral of the local wave functions discussed in the
last section. An inverse relation is derived as well as the
Bogoliubov transformation between the two sets of parti-
cle creation and annihilation operators.

A. The global wave functions

The global wave functions g I (r, 8, P, t ) defined by the
static observers at infinity have the well-known asymptot-
ic form near the horizon [4]:

e le)Q

q, (r, 8,y, t) — Y, (8,y)
&M 2n2cor.

purely outgoing as r ~2M, (4.1a)

Ri(co/r) —+e' " +A&(co)e ™~,r" + —ao,—(4.4b)

R, (~/r)~S, (~)e '""*, r*~~, (4.4c)

1 —
i Al(co)/ = F81(co)i (4.4cl)

A very useful representation of (4. 1) is the WKB-type
approximation which was shown in Ref. [17] to be very
accurate near the horizon:

where A&(co) is the reflection coefficient in the curvature
potential for a wave emanating from the asymptotic re-
gion near the horizon. Similarly, 81(co) is the transmis-
sion coefficient of a wave launched from asymptotic
infinity toward the hole. They are related by the unitari-
ty condition [5]

O'1m~("~ 8, 4, t) — — exp i fP"dX„Yi (8,P)
r~2M 2~ 2coy'

exp i f (P dX P—'dX') Y& (8,P—) .
2 tr 2cor

(4.5)

The vector P" is the four-momentum of the wave which
is chosen to be evaluated in the PFF coordinate system
near the horizon in the second step in (4.5). When co is a
constant, (2.16) and (2.17) show that P and P' are func-
tions in the globally outgoing case evaluated near the

horizon. Integrating (4.5) using (2.17), (2.16), (2.15), and
(2.3) reproduces the exponent in (4.1) to order a . Rela-
tion (4.5) is invaluable for evaluating the local observ-
ables, in the PFF frames, of the "global" wave functions.

To compute the Fourier transform of (4.1), one needs
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the "global" wave functions expressed in local coordi-
nates. To accomplish this, first use (4.2) and (2.7) to ex-
press the retarded coordinate as

du =(1—V')a [dX + V"dX'] .

Near the horizon

du — 2a [dX —dX'] .
r~2M

Employing (2.12d) to eliminate the lapse function,
—4M

du d[X' —X —c]-2M X —X —c1 0

(4.6a)

(4.6b)

(4.6c)

or

X —X —c1 0
u — —4M ln

r~2M 4M
(4.6d)

Thus, using (4.6d) in (4.1), near the horizon

q, (X',X', (9,y)
r

1 X' —X —c
exp ~ —i 4M' ln

r 2M V 2~% 2~y' 4M

x Y( (8,$) . (4.7)

B. The local Fourier decomposition

It should be noted that the wave functions in (4.1) and
(4.7) are undefined inside of the horizon because the coor-
dinates u and v diverge at the horizon.

(A, /2)+ —=X ' —X(+ & 0,
(A, /2) —=X' —X ' &0,

A, = (A /2)++ (k/2) =X' —X+,

(4.10a)

(4.10b)

(4. 10c)

and (X,X ') are the coordinates of the PFF observer.
To solve for the half-wavelengths, one must evaluate

(x',x' )

(x',x' )—m= P dX".
(x',x')

(4.10d)

(4.10e)

Looking at (4.10d) and (4.10e) in a hypersurface orthogo-
nal to a/aX (i.e., X a constant), one finds that, for this
observer, (2.17) and (2.12) imply that, near the horizon,

To find the wavelength of y ~ as measured by a PFF
observer, one can use (4.5). (Since the interesting modes
are the globally outgoing ones, the arrows are dropped in
the remaining discussion to streamline notation. Also,
since the angular dependence is the same in both frames,
the Yl 's are dropped from the wave functions. The y
and y are just the "radial" and "time" dependence of
the "global" and local wave functions, respectively. )

When the phase changes by 2m in the exponential, one
wave oscillation is complete. Thus, one can find the local
wavelength by solving for the half-wavelength ahead of
the PFF observer (A, /2)+ and for the half-wavelength
behind the PFF observer (((,/2)

The main mathematical step in this article is the ex-
pression of the "global" wave function y as a Fourier in-
tegral with respect to the local wave functions y&„near
the horizon. The Fourier decomposition of the globally
ingoing case is trivial by (3.13) and (4.1b):

=f 5(co co')&—P/co((P„,)( (p(~z de'(P) .

A, = —,'[X ' —X 0—c]sinh 4M'

Then using (2.12d), (2.17), (4.9), and (4.11),

A—:—,
' sinh 4M'

(4.11)

(4.12)

(4.8)

The globally outgoing solutions are more interesting.
The "global" solutions are characterized by co=const.
By (2.17), this means that the local momentum of the
"global" wave varies greatly in a small neighborhood of a
PFF observer near the horizon. Thus, unlike the globally
ingoing case, the outgoing "global" wave functions can
only be represented as a packet of local wave functions.

The interesting aspect of these wave packets are the
negative energy components. This is a result of the fact
that, near the horizon, the "global" states have a very
large gradient in their locally measured energy. A way of
quantifying the magnitude of the differential blueshift is
with the ratio % defined by

Thus, for m-1/I or less, one expects a large negative
energy contribution to the wave packet which represents

to a PFF observer near the horizon.
Therefore, we are looking for an expansion of y near

the horizon, u, of the form

u—:g, ~&
= f (A, u +8 ut )dP . (4. 13)

The following abbreviations are implicit:

=@(~ )

and

u —=u(P ) =(p„,(P )i~
[(a/ax') p'[x [(a/ax') pa[~

P P0 0 (4.9) p PO

where k is the wavelength of the quanta. This quantity
tells one the degree of the energy change in one wave-
length of oscillation of the quanta. When A —1, one ex-
pects the negative energy modes to contribute
significantly to the Fourier integral [23].

One could compute the coefficients in (4.13) by using
(4.1), (3.9), and the inner product in (3.10). However, as
mentioned in the discussion of normalization following
(3.10), we do not want to introduce an ambiguity associ-
ated with choosing the "right" manifold to integrate
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over. Instead, the form of u„ in (3.9} suggests using
Fourier integral techniques. To get the desired quanti-
ties, one needs the inversion theorem, but to be rigorous
this requires integrating over spacetime variables which
range from —oo to oo [24]. To motivate this idea, one
can write (4.7) as

z=[X'—X —c]—A .

Then the Fourier transform of R ., F,(P ), is

(4.15)

values of X' and X satisfying X' —X —c (0. So, to be
able to integrate from —~ to Oo, one can change vari-
ables

—R (X,X'),1

v 2 lr+2ci)m
(4.14a) F .(P}= lim f R .(z)e

A~ co —A 21r
(4.16a)

0X' —X —cR .(X,X')=exp i4Mco .ln (4.14b)
and the inversion theorem then gives the quantities of in-
terest in (4.1 3):

The function R ~ is not defined for X' —X & c and for
the sake of physical clarity it is desirable to not get in-
volved in a discussion of how to extend the function to

R = F Pe''

Combining (4.16b), (3.9), and (4.14), one has

(4.16b)

Pf F (P)e ' '+" ' 2p 2m.ru +
v 2m+2co .r 0 2~ /2n 2' .r

X F —P e' '+"'
2p 2n.ru

0 27r
(4.17)

Xe P r(1+!4M~
—2~Ma)

ie

2'lr+Pm corn'

(4.18a)

Computing the Fourier transform of (4.14b) in (4.16a)
and substituting into (4.17), the coefficients in (4.13) are
found to be

2n.Mao
ie I4M

2'ir+Pm corn'

manipulated if the wave functions are normalized. How-
ever, as discussed before in relation to (3.10), it is ambigu-
ous to define a normalization for this problem.

The "global" wave functions with the normalizations
in (4.3) are normalized on the manifold outside of the
horizon on a t =const hypersurface [5]. De Witt argues
this result by looking at very broad wave packets in the
asymptotic regions where they originate in the very dis-
tant past. He then claims that if they are substituted into
(3.10) and the integral is approximated in the limit of
infinitely broad packets, one gets the appropriate normal-
ization [5]

Xe P r(1+t4M, ) . (4.18b)

Direct substitution of (4.18) in (4.13) regains qr ~ upon in-
tegration. This validates the use of the inversion theorem
in (4.16).

C. Inverting the Fourier decomposition

The expressions (4.13} and (4.18) contain information
on the inverse transformation for y as well as the Bogo-
liubov transformation relating creation and annihilation
operators. In order to obtain a rigorously derived result,
one must introduce some mathematical abstraction.
Quantum-field-theoretic expressions are most naturally

I

( pl „pl' ' „}( pl „pl' ' „}5ll'8 '8(~ ~k }

(4.19a)

(4.19b)

Implicit in this normalization argument is that any global
outgoing wave observed by a PFF observer at (X,X ')
can be thought of as originating at very large negative
values of X in the region where X' —X c.

One still does not have any idea whether the y&, are
normalized. This problem can be circumvented by look-
ing at a larger manifold M:

M= [Xo,X', |),fl —~ &X'& ~, —~ &X'& ~,0&8&m.,0&)&2m.
I . (4.20a)

The region outside the horizon M+ is given by

M+ = IX,X', O, plX')X +c,0&8&m.,0&)&2m. ] .

(4.20b)

The ambiguities of analytic continuation arguments (such

as the future and past histories of the PFF observers and
the hole} are avoided by saying that the manifold M is
merely a mathematical construct of convenience. There
may or may not be a physical significance to the space
M —M+.

Consider the normalizable function P defined on M
[see (2.14) for the origin of the normalization factor]:



1298 BRIAN PUNSLY 46

(x —x0 1

m

(X,X', 0,$)=F, (8,$)
(2M )

' r v'2m+ 2P

and y on the set V+ or u is the restriction of P to
V+:

1/4

(4.21a) 0'm
r ~2M m (4.22b)

By (3.10) on an X =const hypersurface in M,

&y .y„&=&(P —P„),
&(t'. y'„&= —~(P. —P„).

(4.21b)

(4.21c) =,f "(Ay, +a (4.23a)

Recall that u ~ is valid only on Y+. We extend u ~ to
all of M as P ~ by using (4.13) and (4.18),

is not a solution of the free-particle wave equation,
(3.3), it is merely a mathematical construct. By (3.9),
(3.7b), and (4.21a) for any s) 0 there exists an open set
V+ such that

and one has
1/4

((). lv =e. lv =~. . (4.23b)

m 2M

1/4

u l(e. (4.22a)

So, one can say that P is a good approximation to u

The extended function P may or may not be physical,
but for this analysis it does not matter. P ~ is merely a
mathematical construct of convenience. In this new
language (4. 13) becomes

2M
1/4

A

1/4
2M +B

T

1/4

dP (4.23c)

If one uses (4.18), (4.21), and (4.23a) in (3.10), then, on
any X =const hypersurface in M,

4 =f d [4 &0 0 & 0&0 0&] (4.30a)

(4.24a)

(4.24b)

The 5-function representation

5(x ) = f P '*'"dP
2' 0

(4.25)

&y. ,y. , &=A . , (4.27a)

(4.27b)

One can use the symmetry of the inner product in (3.10)
to establish

is useful in deriving (4.24).
Since the (t 's have a 5-function normalization on

spacelike hypersurfaces in M, the expansion (4.23a) can
be written as

4 = f, dP. [~.&~. ,4 & O'. &~'. ,~.-&],

where inner products are taken on X =const hypersur-
faces. Using (4.23a), one can make the identifications

Then using (4.29a) this can be put in the useful form

=f den [A*,P, B,P, J
—.

0
(4.30b)

Finally, one can get the inverse to (4.13) by restricting the
expression (4.30b) which is valid on all of M to the subset
V+:

u = den [A' .g Brp —]l~ (4.31)

This is the desired result. There is no further need for the
abstract extended manifold M. The remainder of the dis-
cussion is restricted to M+.

D. The Bogoliubov transformation

The local and "global" representations of the field are
compared on V+ in order to determine the Bogoliubov
transformation relating particle creation and annihilation
operators. The static observers at asymptotic infinity ex-
pand this field 4 in the "global" modes:

4= g dP„"I [fr, „a,„+(@,„)(a, „)t]O(P„")

Im

& A*,a*&=—
& A, a&= —&a, A & .

From (4.27) and (4.28), one finds

(4.28) +[VI ai +(%i ) (~t ) JO(

(4.32)

(4.29a)

(4.29b)

One can use (4.24) to derive an inverse relation to
(4.23a). Since the P 's have a 5-function normalization
on spacelike hypersurfaces in M, there exists an expan-
sion analogous to (4.26):

where the radial momentum P„'.is determined by the
quantum numbers I, m, and co„.. Step functions were in-

troduced to segregate the globally outgoing from globally
ingoing modes for later convenience. Near the horizon,
by (2.6) and (2.7),

(4.33)
r ~2M
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and de„canbe substituted into (4.32) as the differential
in the integrand for asymptotic expressions. The opera-

tors (ai „)and (aI „)create modes from the vacuum
defined by the static observers at infinity, IO„),that are
outgoing with quantum numbers I, m, and m„and ingo-
ing with quantum numbers I, m, and co„,respectively.

Similarly, a& „anda& „annihilate the static vacuum:

a,.„,lo„&=o,

~,.„,lo„&=0 .

(4.34a)

(4.34b)

XO(P P )j (4.35)

where (2.7) was used to produce the step functions in the
expression required to segregate the solutions into the
globally outgoing and globally ingoing subsets. The
operators a& „and a& „createparticles out of the local
vacuum of the PFF observers, lo„,), with quantum
numbers l, m, and P„which are globally outgoing and in-

going, respectively. Also,

a, „fo...&=o,

aI
„

I OI., & =O .

(4.36a)

(4.36b)

Now, both representations of the field must agree on

Analogously, the PFF observers describe the same field
in terms of local modes

io.= X f dP'[[Am. aimn+VIm. aimn]e(P' —P')
I, m

+—f+ ['PImn Imn +'PImn Imn ]

V. THE STRESS-ENERGY TENSOR
OF THE FREELY FALLING VACUUM

A. The vacuum stress-energy tensor:
A local evaluation

The globally interesting coordinates for analyzing the
stress-energy tensor are the Schwarzschild coordinates.
In particular, the components T«, T,„,and T,„arethe
dynamical components of Hawking radiation. On the
other hand, computation in the local vacuum states is
most naturally accomplished in a freely falling frame.
Thus, we need the transformations

(o...lr„lo...)=&o...lr Io...&
—2v"&o..lro, lo..&

+( v")'& o...I r„lo...), (5.1a)

«...Ir„,lo...) = —~-'v"&OI..IT~I0I..&

+~-'[1+(v")']&o...lr„lo...&

—u V"(Oi„I
T

I Oi„), (5.1b)

In this section, the dynamic components of the stress-
energy tensor of the freely falling vacuum state is evalu-
ated, near the horizon, by different observers. One is
then led naturally to the concept of the renormalized
stress-energy tensor of the vacuum state transported by a
PFF observer. In this discussion, being local in nature,
there is no reference to scattering in the curvature poten-
tial. Thus, the physics of particle creation is easier to see
and the "global" wave functions of (4.1) are appropriate.

A..lv, =+'Iv, (4.37)

By (4.1), (3.13), and (4.37) for the globally ingoing modes,

aI „=f dP„QP„/co„5[co(P„)—con. ]aI „,(4.38)
0

where co(P„)is a constant defined via the inverse to
(2.16). If one replaces p by the approximation u in
(4.35) and expands u as in (4.31), then substitution into
(4.37) yields

(0„,IT„„I0„,) =a (v") (0„,IT lo„,)
—2a-'v"(O...lr„lo...)

+a '&O„.lr 10„,) .

Near the horizon, one has

(0„,I T„fo„,& =a (0„,I T,„lo„,)

=a'&O...lr„„lo...& .

(5.1c)

(5.2)

a =f [A' .a —8' .a ]dP
0

a ~
= —8 .a +A .a~ dP

0

(4.39a)

(4.39b) T,I, =4.,4.„,'g, b[g' 4 ,4 „—+—m,4 ] . . . (5.3)

The stress-energy tensor of a scalar field, 4, in curved
spacetime is

where the arrows and I and m quantum numbers are
dropped in the discussion of the outgoing modes as be-
fore. Similarly, if one substitutes the expansion for y
(4.13), into (4.32) and collects terms in (4.37),

a =f [ A a +B' D~ ]de ~, ' (4.39c)
0

a =f [8 .a + A *,a, ]de ~ . (4.39d)
0

(r„,)i„=—T„(y,q ) . (5.4)

To find (Oi, lr«(IP, y )loi„)one can substitute the
expansion NI„of(4.35) into (5.3) and (5.1a):

The stress-energy tensor evaluated by a PFF observer
is computed using local wave functions, denoted by

1 0 0 2 2 dPn
&OI., IT„(q.,q. )loi., &lv,=, , y f" [(Po)'+2v"(P„P~)+(v")(P~) ]16~ r

(5.5)
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There is a generally covariant measure in the momentum
space in analogy with special relativity as a consequence
of (2.1) and (2.5):

dP~ dP"
P CO

From (2.6), one has

~=P + V"P

Combining (5.7), (5.6), and (5.5) yields

(5.6)

(5.7)

&ol-IT (v' m )loi-&lv, =
2 p X f

1'm

(5.8)

It is not a coincidence that one has the same result for
the static observers at infinity in their vacuum state:

(o„T„(f,@ )lo„&= ', , y f" dP" .—(5 9)
877 r Im

~ 2

In (5.9), the notation T„,(@,y ) signifies the stress-
energy tensor evaluated by static observers at asymptotic
infinity as a result of using the "global" wave functions.
The computation is done by inserting the expression
(4.32) for 4 into (5.3) and (S.la).

One should note that, by (5.2), the values of

(O...IT„(V.q )IOi..&lv,

&o..lT„,(q, q )lo...&l

have been determined by (5.8) as well.

B. The stress-energy tensor
of the local vacuum evaluated in the static frames

The stress-energy tensor of the local vacuum carried by
a PFF observer as measured in the static frames at
asymptotic infinity, (O„,IT„,(@,p )lo„,&, is calcu-
lated near the horizon. This computation requires using
the field representation 4 of (4.32) in (5.3). However, this
must be modified so that the creation and annihilation
operators can act on the states belonging to the local
number representation of the field. Thus, the Bogoliubov
transformation, (4.39a) and (4.39b), must be used to reex-
press these operators for the globally outgoing states.
The ingoing states are trivial by (4.38). To utilize (5.1),
the calculation is performed in the local basis using the
simplifying form of g in (4.S):

1 dP" ~ dP" ~

(oi„lToo(y, q& )loi„& —
2 2 g f [Po(co )] + f coth(4mMai )[Po(co, )]r~2M 16~ r I P P„)0 COm

&o...T„(q.,q. )lo...&

r~2M 16' r Im

dp'
Pp Chemi P Chemi

r

dp ~

+ coth 47TM c0 Pp N P& coP„)0 ~m'

(5.10a)

(5.10b)

1
dP" ~ dP" ~

(oi„lTpp(y,y )loi„& —
~ 2 g f [P (co )] + f coth(4aM' )[P (co ~ ))

r~2M 16' r i P, m' r 0 ~m'

(5.10c)

The notation P„(co ) means to evaluate the local momentum P„from P" and co ~ using (2.1) and ai, =const which

typifies one of the wave functions of the static observers. Combining (5.la) and (5.10) yields

(O„,IT„(y,y )lo„,& I&
=

2 g f codP "+f cocoth(4rrMco)dP"
+ 16m. r P„(0 (5.11)

Divergent results such as the one in (5.11) are ambiguous in quantum field theory. One way to regularize this quanti-

ty is to compute the normal-ordered operator with respect to the static observers at asymptotic infinity (i.e., normal or-
der the a and a ):

&o...l:T„„(g., ,y. , ):o...&=&O...IT„.(q „q,)lo...&
—&O„IT„„(q.,q. , )lo„&. (5.12a)

By (5.9) and (5.11) the normal-ordered expectation value is

&o I:T (-,,—,):lo &I
= ~ dp "=

8m r Im e

(5.12b)
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where the last approximate equality follows from (2.6)
and (2.7) evaluated as et~0, as discussed in (4.33).

This result relates to Hawking's original calculation
[4]. The number operator in the static frames N(co .) is

Define JV(co .) as

JV(co )=—,
' lim [a„.a .+a a„].

Cd i~ 6)m n

(S.ISa)

Ã(co ) =a a (5.13)
The two operators will have the same expectation values
for any state vector A:

Computing the expectation value of N in the freely falling
vacuum state, using (4.39a) and (4.39b), yields

& o...l&(~. ) lo...&
= y f "dP„la„.

Im

(5.14a)

& o...lE(~., )lo...&

Thus, as seen from static infinity, there exists particles in
the local vacuum. This is exactly the same result which
Hawking found [4]. It can be shown that the energy den-
sity of these particles is the origin of the stress energy of
the normal-ordered operator (5.12b). To understand this,
Hawking's remark that the result is divergent is noted.
Using (4.18) this is seen explicitly by expanding (5.14a) as

lim
~m' ~n' Im

X5(co .—co„)
&q,g„&

871.Mco„
e

8nMco
lm

& Alg(co, )lA &=& AlJV(co, )lA & .

Thus, using (4.39a), (4.39b), (4.19), and (5.15a),

& Oloc l&(corn')lOloc &
= »m X 8 ~

1

~n' Im

(5.15b)

(5.16)

1
lim

e8 M —IIm e

or, using (4.25),

—i 4M(co, —co, )p m' n'

0 P„
(5.14b)

Thus, (5.16) allows (5.12b) to be rewritten as

& o...l:T„(q.„q., ):
l o...& I

&o„,lN(~ )lo„,&

&o„,lx( ) o„,&= y . (s.14c)4~~ 8~M~

dN 1 1

T 4tTM e8
Im

(5.14d)

The singular function 5(0) commonly results in quantum
mechanics from the fact that infinite plane waves have an
infinite norm [the 5-function normalization in (4.19)].
When the 5 function of zero argument occurs, it can be
reinterpreted as corresponding to a time rate of change of
a quantity with respect to a time coordinate w [25]:

One can interpret (5.12a) as the energy density of the
Hawking pairs in the local vacuum as seen by observers
at static infinity at any instant of time [i.e., one can con-
struct sharply peaked wave packets about each co with
unit norm and substitute into (5.17a)]. The wave-packet
interpretation of (5.17a) is equivalent to using the discrete
representation of phase space defined in (5.26d). In that
notation, one picks a spread in the energy which is small
and centered on each discrete value of cok. It follows
from (5.16), (5.26d), and (5.12b) that

There is an ambiguity in this case in that one does not
know how the relevant time coordinate ~ is defined. The
infinite value of g in (5.14b) results from the value of

., gr ~ & discussed in (4.19). At any point r ~ 2M there
exists an infinite amount of support for p ~ between r and
2M [this is the asymptotic zone of wave origin referred to
in Ref. [5] in relation to (4.19).] To an observer at asymp-
totic infinity, there always exists a PFF frame at r [how-
ever, it is the frame carried by a different freely falling ob-
server for each value of time coordinate t]. Thus, as he
looks at the local vacuum at the fixed point r, he will see
the outgoing mode tp ~ passing through the local coordi-
nate patch about r for all times t due to the infinite sup-
port of tp . He concludes that there are an infinite total
number of particles in the local vacuum at r.

Hawking interpreted the fact that an infinite number of
particles exist in the vacuum analogously to (5.14d). Par-
ticles are created continuously for an infinite amount of
time [4]. He resolves the issue by constructing wave
packets with a finite norm. A different tactic will be im-
plemented here. An operator will be defined that
separates out the effect of the norm of y ~ from 1V.

& o...l:T„(q.„q., ):lo...& l

1 y y & olo l+I (k )lolo &~k8' I
(5.17b)

C. The renormalized stress-energy tensor

The renormalized stress-energy tensor of the freely fal-
ling vacuum is given by

& o...lT„.lo...&„„=—& o...lT„„(~..~ )lo...&

—
& o...lT„.(~.„~., )lo...& .

(5.18)

When these local vacuum expectation values are pieced
together in the global spacetime in the next section, one
will get the dynamical components of the renormalized
stress-energy tensor of spacetime discussed in Refs. [8,
18]. From (5.8), (5.11), and (5.18), one finds
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1 co dM

8~r
&

m;e —1

(5.19)

g~„,.(X,X ';X',X,P„)Y„„=g„„„,(5.20)

where P„is the locally measured energy and (X',X ) are
the coordinates at which the wave function is evaluated.
Near the horizon on the open set Y+, these modes are
characterized by

As it stands, the relation is infinite since there is an equal
contribution in each channel (I, m ). However, when
(5.19) is utilized in piecing together spacetime to form
( T,„,, )„,.„ofthe global spacetime, the effects of refiection
from the curvature potential get integrated into this ex-
pression. This will yield a finite result. If the scattering
states of (4.4) were used in the analysis instead of those in
(4.1), then these effects would already be built into a finite
expression analogous to (5.19).

It is important to physically understand why (5.18) is
the fundamental quantity representing the stress-energy
tensor, globally, as opposed to another regularized tensor
such as (5.12). First of all, it singles out the local vacuum
as the only relevant vacuum state, as expected by the
equivalence principle. Relation (5.18) can be thought of
as being computed from local fields with a globally
defined zero-point energy subtracted off (the second
term). As such, it is a global measure which compares
the vacuum energy density of the local field description at
diA'erent points of spacetime.

One can be more specific about the physical nature of
the tensor in (5.18). First, let us understand why the
quantity in (5.19) is negative in terms of a qualitative
description of (5.18) via the equivalence principle. Con-
sider an observer who falls freely from r ))2M to very
close to the horizon, a &(1. As the observer falls, he for-
mulates a quantum scalar field theory. At each point of
his world line (X,X '), he defines his local wave function

floe a

as seen by this freely falling observer. This observer also
defines particle creation and annihilation operators and a
local vacuum state which obey the usual relationship

a,.„(X',X ') ~O...(X',X ') ) =0,
a„„„(X,X ') ~O,„,.(X,X ') ) =0 .

(5.22a)

(5.22b)

CO~I ( P~I ):~
CX Pyl ~ (5.23)

Thus, redshifted energy is lost during free fall from the
local zero-point oscillations as viewed globally. Clearly,
(5.8} and (5.9) imply that the local vacuum state is losing
energy during free fall in order to be consistent with
(5.23). This can be thought of as the source of Hawking
radiation.

Taking the limit at r ~ ~ of (5.18), one has

lim (0,„,T„,O„,)„,.„=0. .
y.~ ~

(5.24)

All of the time that a PFF observer is in free fall, his local
physics looks exactly the same in his local neighborhood
as defined via (5.20) —(5.22). But this is not the case as
viewed by an external observer.

The tensor in (5.18) is actually a measurement of the
zero-point stress energy of the local fields defined in
(5.20) —(5.22) at different points of spacetime, compared
to a global standard. Now (5.8) and (5.9) tell us that the
redshifted energy density of the zero-point oscillations of
the field relative to the local vacuum is constant during
free fall. Globally, this is not the whole story since ~0„,. )
changes during free fall. First, it can be established that,
in a global sense, the redshifted energy of the local zero-
point oscillations decreases during free fall. When the lo-
cal observer computes his zero-point energy, he has, for
all X during free fall, the same energy spectrum as given
by (5.21f) and the same uniform measure in the momen-
turn space which is dual to his local Lorentz frame. By
(2.17), the redshifted energy in a local mode, g„,de-
creases for each term in the zero-point energy corre-
sponding to a globally outgoing mode near the horizon
according to

~,„„.(X',X';X',X',P„},, =u„,
P,", =const on 'V+,

/P„' ~ m, , c' .

(5.21a)

(5.21b)

(5.21c)

Thus, the standard for the global comparison of the local-
ly evaluated zero-point energy is the zero-point energy
computed using the wave functions of a static observer at
asymptotic infinity. Equations (5.23) and (5.18) show
why

—exp[+i (P,, X P„'X' }j, —
&K+2P,', " (5.21d)

P,", ~,&,
=const,

]P,",
/

~ m,, c' .

(5.21e)

(5.21f)

This is not always easy to see from (3.3) since the coordi-
nate X' is not well behaved as r~ ~. These wave func-
tions appear to be just like Hat-space wave functions on V

In general, one can construct an open neighborhood
Y(X ",X ') about the observer at any point in free fall
where

y„,(X,X ', X',X,P„")~q,

lim ( O~„,~ T„~O~, )„„(0.
y- —~ y -t

However, as evidenced by (5.8) and (5.9), summing the
energies in (5.23) is not the complete story since it does
not contain any information as to how the local vacuum
state evolves during free fall. Another reason why (5.23)
is not in itself the essence of (5.19) is because the wave
functions of the observers at asymptotic infinity look like
wave packets to PFF observers near the horizon. Thus,
there is no one-to-one identification of local and global
wave functions. To proceed beyond this qualitative argu-
ment, one needs to average over this wave packet in order
to reveal the physics in (5.19) more precisely. This
motivates an analysis of the vacuum expectation value of
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the Hamiltonian. The discussion of (5.23) is made to
show that the underlying physics is gravitational redshift-
ing.

Consider a local mode with a redshifted energy co„de-
rived from the local momentum of a PFF observer at
(X,X '). At the point (X,X '), co„—= coo [see (2.16)]:

Making these substitutions into (5.26c) yields

Eo=-,' g X ~k(Pf) = X X Ek . (5.26e)
Im k Im k

Thus, the zero-point redshifted energy in the mode
defined in (5.25), E„,is, as expected,

co„[P„"(X,X ')] =coo . (5.25) En —
~ cop . (5.26f)

One can compute the expectation value of the energy of
this mode with respect to the local vacuum by introduc-
ing the Hamiltonian operator defined by a PFF observer,
H:

H= —,
' g f (at „at„+at„at„)P„dPt'. (5.26a)

Im

The eigenvalues of this operator are locally measured en-
ergies. To get the redshifted zero-point energy Ep of the
local modes with respect to the local vacuum, one must
introduce the local momentum operator P' in the local
number representation

,' g f (at —„att„+at„at„)Pt'dPr, (5.26b)
Im

Now contrast this situation with the "global" mode
with redshifted energy co .=cop. The local observer can
compute the expectation value of the redshifted energy of
this mode in the local vacuum state (co ) by means of
the Hamiltonian operator defined by the observers at
static infinity, H:

H(g„)=,' g f—co„[at„at„+at„.at „)dP„"
lm

(5.27)

As this stands, H suffers from the same problems as the
number operator in (5.13), arising from the infinite
plane-wave normalization. This is resolved as in (5.15) by
introducing a new operator:

and utilizing (5.7) yields

E,= & O...iH iO...)+ V"& O...iud O...) . (5.26c)
, 4 g f ~ [atmn 'atmn +atm'n'atmm'

~m' ~n' Im

To evaluate Ep, one needs to deal with normalization is-
sues which manifest themselves as (Ot„~a a ~Ot„)
=5(0). Relying on the equivalence principle, this issue is
resolved as in flat spacetime (see Ref. [22]). The phase
space is discretized into cells (one dimensional), b,P„.
The following modifications occur [22]:

+ Imm' Imn'

+a
tm n'a tmm ')dPm '

(5.28a)

fdpt'~ g hp„, 5(pr pt' )~—
n n

a„~hP„a„. (5.26d)

For any state vector A,

& ~ /II/ ~ ) =
& ~ /8/ ~ ) .

Then, using (4.39a), (4.39b), (5.28a), and (5.28b),

(5.28b)

(0„,}H(tP )~O„,) — lim —g f coth(4mMco )co 5(~ co„)dP"—
r ~2M cg, co, 2 I I'„&0

+
& g cil 5(co co„~)dP

P &0
Im

(5.29a)

Implementing discrete notation as in (5 26d) in the phase space of the static observers at infinity, (5.29a) becomes

—,
' y y ~,[coth(4vrMco )Q(p", )+Q( —P", )] .

Im m' Im m'
(5.29b)

A mode y ~ contributes an amount (co .) to the expecta-
tion value of the redshifted energy of the "global'* solu-
tions in the freely falling vacuum near the horizon.
When co .=cop, for the interesting globally outgoing solu-
tions,

(co ~ ) =
—,'coocoth(4vrMcoo) . (5.29c)

This energy is larger than the redshifted zero-point ener-
gy, (5.16f},of the local solution of (5.25). This difference
in energies is the vacuum expectation of the normal-

ordered oPerator H, (Ot„~:H:~O&„),where normal or-
dering is with respect to the PFF observer. Denoting the
normal-ordered energies as (:co .:), (5.26f) and (5.29c),
implies

COp

8aM mo
e

(5.29d)

The result (5.29d) is a consequence of the differential
blueshifting of the "global" solution in a neighborhood of
the local observer at (X,X ' ). Energy-momentum
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operators are differential operators and therefore connect
nearby points of spacetime . The results (5.29c) and
(5.29d) represent an average value that takes into account
the increase in locally evaluated energy and momentum
due to blueshifting at points nearby to (X,X ').

From (5.29) and (5.26f), one can see that
(0„,l T„l 0„,)„„,defined by (5.18), is a global measure
of the redshifted energy momentum of the local zero-

point oscillations of the field in the PFF frames. If one
considers the observers near the horizon to have fallen
from r ))2M in the very distant past, then one can make
the following observation. During free fall, by (5.23) or
by comparing (5.26f) to (5.29c) [which is essentially
(5.19)], the total redshifted energy of their zero-point os-
cillations decreases as viewed by an external, static ob-
server. In particular,

lim [(0„,l T„[y„,(X,X ';X,X'),y„,(X,X ';X,X')]lO„,)
(X,X )~(X,X )

lim (O„,lT„[y„,(X„,X'„;X,X'),y„,(X„,X'„;X,X')] lO„,) ] (0 .
r(X,X )~ oo

(5.30)

Asymptotically, near the horizon, (5.30) is illustrated ex-
plicitly by (5.19). This statement was repeated in
different forms throughout this section because this result
is very significant since it was demonstrated in Ref. [19]
that the Schwarzschild spacetime can be faithfully
represented as the local neighborhoods of PFF observers
pieced together in a trivial way.

VI. THE PHYSICS OF EVAPORATION

—4nMco„,,

4 M 0'm'
m'

+

4n.M co

e
4n Mco

e —e

—4aM co

-(—)l
0'm' IV+ 4~M~

e —e

Thus, one finds

(6.2b)

(6.3a)

It was established in Sec. V that the redshifted energy
of the zero-point oscillations in a freely falling frame de-
creases during free fall as viewed by an external, static
onlooker. Consequently, the renormalized stress energy
of the freely falling vacuum decreases during free fall
from zero at r~ ~ to negative values near the horizon.
In this section it is illustrated how this effect is the
essence of Hawking radiation.

The freely falling vacuum is "tied" to the set of freely
falling observers. Since the energy density of the vacu-
um, near the horizon, is negative in a global context and
it is flowing towards the hole with the PFF observers [see
(5.1)], this is equivalent to an outgoing flux of positive en-

ergy (Hawking radiation). To understand the global
phenomenon, it is necessary to piece together the local
vacuum in a manner which must take into account the
curvature potential.

A. Pair creation

It was determined that the energy density of the local
vacuum decrease during free fall. One can show that the
energy is radiated away in globally outgoing pairs. Con-
sider (4.13), the positive frequency (defined locally) part

4aM'
e —e

(6.3b)

lim P(g'+'/y )=
r~2M

4m Mao
e

4vrMco, —4m.Ma)
e —e

(6.4a)

There is also a conditional probability P(y', /y ) of the
particle existing as a local negative energy state:

lim P(y' '/y )=~
r 2M

—4m M co
(6.4b)

The positive sign in the probability (6.4b) arises by rein-

terpreting the negative energy solutions in terms of an-
tiparticles in the customary way [23].

Clearly when the PFF frame was released from infinity
in the distant past, it was true that

Again, one is faced with the problem of interpreting the
infinite plane-wave representation and its norm. As be-
fore, this is accomplished by making a norm-invariant
statement. For each particle in the mode y, there is a
conditional probability P(g'+'/y ) of the particle exist-
ing as a local positive frequency quanta:

q'+, 'l~ = "A,u dP
+ p

Similarly, the negative frequency part y' ' is

yI.—,'l,, = J "a,u'dP. .

(6.1a)

(6.1b)

(6.Sa)

(6.5b)

The solution appeared to have all of its support in the lo-
cal positive frequency modes:

4vrMco
e —e

—4 M, &m'
m'

Direct integration yields
4m Mcu

e
(6.2a)

lim P(@'+'/@ )=1,
r —+ oo

lim P(cp ~ /y ~ )=0 .
r —+ co

(6.6a)

(6.6b)
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Combining (6.4) and (6.6), one has

lim P(@'+'ly, )
—lim P(y'+. 'Itp .)

f~2M r~ oo

= lim P(y' . 'Iy .) —lim P(p' . 'Iy .)
r ~2M r~ oo

8~Mao
e

(6.7)

This means that the probability that a particle is created
(as viewed by a static observer), as the local vacuum falls
inward from infinity, is equally likely in the particle chan-
nels and antiparticle channels.

A question of interpretation arises at this juncture. Do
these expressions imply that there are outgoing pairs or is
there a negative energy particle flux, w & 0, propagating
toward the singularity which is balanced by an outgoing
flux of Hawking radiation to infinity [29]? To answer
this, one can examine the mathematical steps leading to
(5.19). Firstly, since the negative energy of the vacuum in

(5.19) is tied to the infalling motion of the PFF frames,
one expects an outgoing redshifted energy flux. Proceed-
ing as in the derivation of (5.19), Eqs. (5.1b), (5.10), and
(5.18) imply

(6.8a)

4a M'

2 2 m 4m.Mao
7T r Im e —e

—4aM' co d co (6.8b)

is in the form of locally positive energy modes. Similarly,
the expression in square brackets is P(y' ~ 'Iy . ) in
(6.4a). Also, (4.39b) shows that a global particle creation
operator has an amplitude —B ~ of annihilating a local
positive energy state. However, anticipating an interest
in non-Hermitian fields, this can be reinterpreted as is
done for the Dirac field by calling a the creation opera-
tor for a negative energy state. In a complex field theory,

This outward flow of energy near the horizon is partially
reflected and partially transmitted through the curvature
potential as discussed in (4 4). Using the conservation of
redshifted energy flux S" [18],

S"=—f T, tI gd8dp, —

one can find the energy flux at infinity, (6.16). Duly
motivated, a spectral analysis of (6.8a) in terms of contri-
butions from positive and negative local frequency chan-
nels is initiated.

If one inspects the steps used to generate (6.8a), the
nonvanishing part of (5.18) comes from only the second
(globally outgoing) terms in (5.10a)-(5.10c). The decom-
position of the energy flux in (5.10) is analogous to that in
(6.4). To see this, note the role of the Bogoliubov trans-
formation, (4.39b), in deriving the second term in (5.10).
The amplitude for a global particle creation operator to
be a creation operator for local positive energy modes is
given by A .. Thus, one finds in deriving (5.10) that a
portion of the energy flux

such as the spin- —,
' field discussed in Appendix A, a

would be replaced by d in expression (4.39b) [explicitly,
see the complex conjugate of (A22a}], where d is the an-
nihilation operator for antiparticles. In formulating
Dirac field theory, d is initially interpreted as a creation
operator for negative energy states and then is reinter-
preted in terms of antiparticles [23]. Similar results hold
for complex scalar fields. Thus, to elucidate the physics
of complex fields, there is an amplitude —B ~ that a
global particle creation operator is a creation operator for
local negative energy states. The consistency of this in-
terpretation is demonstrated by the amount of energy flux
in (5.10), which is carried in the local negative energy
channels,

1 ~ ~ e

r Im

—4m.Mao

—4mMco COm ~d COm ~,

(6.8c)

and this quantity in square brackets is also P(q' ~ 'Iy . )

in (6.4b).
The progression from (5.10) to (6.8a) is analogous to

that from (6.4) to (6.7). The renormalized (physical) ener-

gy flux has two contributions near the horizon. Firstly,
in the positive local energy channels there is a flux

4?IMao

2 2 m 4mMco
1 CO d CO

6m Im e
—4n.M co

(6.8d)

The second term in square brackets is the renormaliza-
tion term which subtracts out the momentum flux due to
the oscillations of the local field in the globally outgoing
modes. Similarly, an equal portion of the flux in (6.8a) is
transmitted through the local negative energy channels,
(6.8c). Applying these results to (6.15) implies that equal
amounts of energy flux reach infinity through the local
positive and negative energy channels defined by PFF ob-
servers near the horizon. This seems most naturally in-
terpreted as pair creation globally since P and w have
the same sign outside of the horizon by (2.16a).

Contrast this with the concept of negative energy ingo-
ing modes pairing off with outgoing positive energy flux
near the horizon. By (2.16a), outside of the horizon, the
negative energy local components would be of negative
energy globally as mell, w (0. Even in Boulware's col-
lapsing shell model, the ingoing solution has w &0 and,
since the shell is outside of the horizon until the final
stages of evaporation, P (0 in the region between the
horizon and the shell [29]. The splitting of energy be-
tween a w &0 ingoing wave and a w )0 outgoing wave
makes the interaction appear local in nature. (One
should note the motivation of Boulware to put this
scenario in perspective. He believed it was shown in
Refs. [11,28] that an eternal black hole does not radiate.
Thus, Ref. [29) was an attempt to show that the energy
flux develops as a result of the collapse, originating near
the horizon. However, it is apparent from Ref. [8] and
this article that the collapse need not be considered in or-
der to understand black-hole radiance. }

Another attempt to elucidate the physics using nega-
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tive energy waves was presented by Hawking [4]. He
proposed that positive-negative energy virtual pairs can
be created from the vacuum. The negative energy
partners tunnel through the horizon where their locally
evaluated energy is positive and they can exist as real
quanta. The positive energy partners are radiated to
infinity. This scenario is not equivalent to the treatment
of the negative energy states just presented. If there is a
local process of virtual pair creation near the horizon,
then the equivalence principle demands that a consistent
picture emerge in the PFF frames. It was shown in this
analysis that local negative energy modes contribute to
the Hawking flux, so far so good. However, P is ultrare-
lativistic for the relevant outgoing modes. Thus, how do
local vacuum fluctuations produce local modes of such
high energy consistently with the uncertainty principle~

In the present pair creation interpretation, the interac-
tion is a global phenomenon without an unambiguous lo-
cal interpretation. In fact, it is necessary to acknowledge
the free-fall history of the PFF frames which transport
the local vacuua. In essence, this analysis is a set of ax-
ioms for defining the vacuum of a field theory on a curved
spacetime background via the equivalence principle. The
result on a Schwarzschild background is that the vacuum
state is dynamic by nature. There does not seem to be a
local explanation such as virtual pairs separating near the
horizon within the framework of this calculation.

It should be noted that a separate issue from the focus
of this article is how the energy is transferred from inside
the horizon to outside (the entire analysis was chosen to
be outside the horizon for reasons which were stressed in
the Introduction). As mentioned previously, this topic is
looked at by Boulware and Hawking in Refs. [29,4], re-
spectively. The analysis here does not preclude any of
the possible means of energy flow inside of the horizon,
whether it be carried by w & 0 particles or by the gravita-
tional field spontaneously decaying into Hawking parti-
cles (which seems plausible from the insights of York in

Ref. [30]). It is quite likely that there is no unique inter-
pretation of the physical situation inside of the horizon.
If this energy flux is carried by w &0 particles inside of
the horizon, due to their large local negative energy out-
side of the horizon (these are not antiparticles, they do
not propagate outside of the horizon) they can only exist
very close to the horizon and for a very short time. Thus,
it seems clear that these are not the same as the P'& 0
modes which were discussed in terms of the spectrum of
Hawking radiation since they are not restricted to the
horizon.

In summary, the result (6.7) verifies Hawking's conjec-
ture that energy is spontaneously created from the gravi-
tational field in the form of particle-antiparticle pairs.
Strictly speaking, this discussion has been developed with
Hermitian fields for simplicity. Thus, the particles are
their own antiparticles. However, by separating the posi-
tive and negative frequencies, the physics of a complex
scalar field has been elucidated. Pair creation is more
applicable for this theory and it is easily verified that (6.7)
is the essence of Hawking radiation for complex fields.
This is also true for fermions as discussed in the Appen-
dices.

r 2M
1

(6.9)

The renormalized stress-energy tensor of spacetime
near the horizon is

lim ( T„,)„,„=(0„,~ T„„~O„,)„„+( T„,)„,.
r ~2M

(6.10)

In general,

( T„,)„„=(0„,i T„„i0„,)„„+( T„,)„,d, (6.11)

where ( T„,)„,d is the stress-energy tensor of the radiated
stream of Hawking pairs. The decomposition in (6.11) is

only obvious in the two asymptotic zones.
Using (4.4d), (6.9), and (6.10),

i Bi ( cd ) i
co d ci)

( T,„)„,„—— y (21+1)fr~2M 8~ p'

(6.12)

The reflected pairs form a highly relativistic stream so
the energy density in the static basis satisfies

lim (T„)„,r= lim (T,„)„,~2 .
r~2M r~2M

Thus, in analogy with (6.12),

(6.13)

(6.14)

The asymptotic form of ( T„„)„„follows (5.2). Equations
(6.12) and (6.14) reproduce the results of Ref. [8] which
were based on a regularized stress-energy tensor derived

B. The renormalized stress-energy tensor of spacetime

The previous description of (0„,~ T„„~O„,)„„ofthe
freely falling vacuum can be synthesized with the folia-
tion of spacetime by PFF frames to find the renormalized
stress-energy tensor of spacetime, (T„„)„„.The infall of
the negative energy of the local vacuum is equivalent to
an outflow of particle-antiparticle pairs as discussed in
Sec. VIA. The question of whether this is an inflow of
negative energy due to vacuum polarization as opposed
to radiated particles is not well defined.

These pairs are generated during free fall, but predom-
inantly the eftect occurs as +~0, near the horizon. The
pairs have an amplitude to reflect from and be transmit-
ted through the curvature potential of spacetime. As in
(4.4), the reflection coefficient is designated as A&(co) (it is

independent of the azimuthal quantum number). Thus,
near the horizon there are two components of the radial
momentum flux: one results from the bulk motion of the
negative energy density of the freely falling vacuum; the
other is the ingoing flux of the reflected pairs. Based on
the discussion of the origin of the pairs in (6.7) and the
explicit form of (5.19), energy conservation requires that
the momentum flux of the reflected pairs, ( T„„)„„,
satisfies
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by using point-separation techniques.
One should note that, if the scattering states of {4.4)

were used as the set of basis functions defined by the stat-
ic observers at asymptotic infinity, then one would have
derived (6.12) and (6.14) instead of (5.19) in the discussion
of (O„.IT„„IO„,)„„.

For the sake of completeness, this same technique can
be used to compute lim„„(T„)„„.By (5.24), the red-
shifted energy density of the PFF vacuum vanishes as
r~~ (as does the infall velocity, V"). This simplifies
(6.11) to be

pv ~ren & Ttsv ~trans &

f—+ 00
(6.15)

—1 —1 0 0
1 0 0
0 0 0
0 0 0

1
X

0

where ( T„„)„,„,is the stress-energy tensor of the radiat-
ed pairs which have been transmitted through the curva-
ture potential. Using (5.19), (4.4d), and the conservation
of energy,

( T„")„„—g (21+1)""r- 8~ r

F81(co) i co dco
X

e I —1

teresting physics). These modes appear ultrarelativistic
as viewed by PFF observers near the horizon. The spin
operator on a spacelike hypersurface is (s;Jk is the com-

pletely antisymmetric tensor)

~; =
4

&g"'e;,k [r' )'"] .

The helicity operator is

P
A, =—S.

(A3)

{A4a)

Near the horizon P'=P' and P '=P "; thus, in both
frames the helicity operator is the same as r ~2M,

o, 0
A =—

0 cr,
(A4b)

The eigenvectors of the helicity operator are

u& u
& p p

0 ' 0 (A5a)

where

1 0
u) —p, u (Asb)

The subscript +1 refers to the helicity. In analogy to fiat
space, a local solution of the Dirac equation is (see Ap-
pendix B)

APPENDIX A: SPIN-2 EVAPORATION

(6.16) („) &i~ ~~ 4) -u.x.
~+ ~'2mr

(A6a)

For the sake of completeness, the spin- —,
' Geld in the

Schwarzschild geometry is studied. This appendix is a
sketch of the steps paralleled in the text for the scalar
field.

1. Local representation of Dirac algebra

The Dirac matrices satisfy

(Al)
(A6b)

cr is the helicity and A, is the sign of the local energy
(a=0, 1). The function P& is the appropriate spin-
weighted spherical harmonic, chosen to have the same
normalization as the spherical harmonics used in the
main body of the work [17]. The normalization is given
by its fiat-spacetime value [23]

p
' 1/2

m, c +AP

2XP' v'2

0 —I (A2a)

A convenient representation for local computation is
therefore

I 0
p~

co.,P '

mc +A~P
~

u 0'
u ark,

r ~2~ c0'gPq

The helicity states are boosted into the form

(A6c)

0

r —0

1

0 7

pr —o' 0
=v'r /2M

0 o'
—o' 0 (A2b)

(A2c)

where the u are defined in (A5b). Thus,

1
0 p+(P ' & 0)=v+(—P' & 0),
0

(A6d)

0 o.

r sin8
(A2d)

2. Helicity representation of the field

To streamline the discussion, the analysis is restricted
to the globally outgoing modes (as these contain the in-

0
=p (P')0)=v (P'&0),1

—1

1

0 —:v+(P') 0)=@+(P'&0),
0

(A6e)

(A6f)
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0 :—v (P')0)=p (P'&0) .1

1

(A6g)

and (All), a normalization analogous to (4.19) for the
physically interesting states (co )0, P ")0 or co & 0,
P "&0) is

Define the positive energy wave functions as

(A".'). lv = 1

+ 2 2' r

X exp [ iP—
( X X—' ) ], (A7a)

Ng=a

In analogy with (A7),

Pi (9,d})
[P'i+„'.(P ")0) ],'t-2M v'2~r [X'—X'—c]' '

(A12)

and, similarly, the negative energy wave function is

(1}/'1 „),l~ = — —'Yi (8,$)v, exp[iP (x —x')] .
+ 2 2nr

X —X —ei 0

Xexp i4Mco„.ln
4M

(A13a)

The field is defined by

e= y y f" dP„'[(qI.'„').(b,.„).
(a) lm

(A7b) 5'i' (O, tb)
[0', „'(P" 0)],'.-2M v'2~r [X'—X0—c]'/'

X exp - —i 4M'„

+(1}/'i „),(di „),], (AS)

where the globally ingoing states can be trivially incor-
porated into the notation.

X —X —c1 0
Xln

4M

(A13b)

3. Global representation of the field

In analogy with (A6a), the "global" solutions satisfy
[17]

The representation of the Dirac field as viewed by static
observers at asymptotic infinity is

+= gQ f dPa [(lima')a(bima )a
a lm

(A9)

The helicity states p z are the same as in (A6). To find

the normalization, one notes that, on a t =const hyper-
surface,

+(f'i „'),(di „),] .

4. The local Fourier decomposition

(A14)

&41 6&=f 41r"0 d&"
(A10a)

To streamline the notation, the l and m quantum num-
bers are dropped in the expressions. In analogy with
(4.14), one can write

where d X ' ' is the volume element of a t =const hyper-
surface: (Q'+'), = —R (X,X'),

2'trr
(A15a)

dX' '=8't/g' 'dr 'ded((} .

The unit normal is

a8'=
(g tt)1/2

and the volume measure in the hypersurface is

(A10b}

(A10c)

R (X,X')

expji4Mco ln[(X' —X —c)/4M]]
=Pa ~m'

[X1 XO ]1/2

(A15b)

&gt31=+g„„r2sine. (Alod)

r'=~ '[r' —(v")'r'1 (Al la)

In the local representation of the r matrices of (A2):

Proceeding in direct analogy to (4.14)—(4.18), we find,
noting that

1Lt, (
—P)=v, (P),

V" 0
0 —V"

1 0

0 —V" 0

0
y v a (A11b) 2nMco

iP c —t4Mca
/I =(1 i } —e P

(A16a)

The relevant inner products of the helicity states in the
static frames are tabulated in (A26). Using (A26), (A10), X4M'" " -'r(-,'+14M~, ), (A16b}
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—2mMco —iP c —i 4M'
e PB =. (i —1)

2m P

X4M I ( —,'+i4Mco .} . (A16c)

By setting

6. The Bogoliubov transformation

(A21}

5. Inverting the Fourier decomposition

As in (4.21), one can define a normalized spinor valued
function on the abstract manifold M:

(e(,.+„)).(x',x', e, y)
—iP(X —X )

as in (4.37), one finds

b =f [A* .b +B* .d ]dP

d ~
= f [A dt +B b„]dP

0

(A22a)

(A22b)

= P( (8,$)p, , (A17a)
(2M )'~ r +2mV2.

&()P'+')„((ll'„+')& =5, 5(P —P„),
&(+' ').,(+(„')&=5.„5(P—P„),
and

' 1f4

(q(+))
I

(ql(+))

(A17b)

(A17c)

(A17d)

The spinor valued function (P'+. '), is extended as in
(4.23a):

()P'+. '), =f [ A ()P'+'), +B .()Il( '), ]dP (A18a)
0

7. The stress-energy tensor

The stress-energy tensor for the Dirac field is [26]

T„.= [P—r„vA'+4r,v„4

(v„4}r—A (v.4)r—„4] (A23)

where V, is the covariant derivative defined in (Bl) and
(B2). The connection terms in (B7) are such that their
contributions to the stress-energy tensor vanish in the
calculations of the dynamic components, T00 T0p and

Tpp 0

By direct substitution, one finds, in analogy with (5.8),
and

' 1/4

((p(+ )
) (A18b)

&O„,IT„(f,f )lo„,&l
= — ', , y f" cgdP"

4m' r Im

(A24}

&(~'. '). , (4'„-.'), &=5.,5( ..—„.) . (A18d)

One can show by direct integration that the useful nor-
malization exists on spacelike hypersurfaces in M:

& ((P'+')„()ll'„+')(,& =5,b5(co —co„.), (A18c)

and

&o.lT„(y.,y. )lo„&=— ', , y f" ~dP".
Kr lm

(A25)
Rewriting (Alga) as

(+'+') =/ f "[(+'+') &(+'+') (+'+')
&

b 0

+(~(.-'), &(~(.-))„(4'.+. '), &]dP. ,

(A19a)

Note that these zero-point energies are negative.
Using (A16} and (A22), one can calculate in parallel

with (5.10) to find a result such as (5.11). The result is
complicated by the spin sums, which are tabulated for
r =2M.

one establishes from (A18a) and (A19a) that

&(~'.+'), , (4'.").&
= A..5.,

&(~'.-'},, (~'.. '). & =B..5,
Using the symmetries of the inner product,

& (4(.. ) )., (~(.+) ), & =B...5.,

(A19b)

(A19c)

(A19d)

—a, P'&0,
I +XII +=

—a, P")0,
P—7 'YtP —

4 P r&0

—4, P'&0,
V+/ f V+—

7

(A26a)

(A26b)

(A26c)

—~mm ~ab . (A19e) ~—X 'Vf& —=
—4, P "&0,
—a, P "&0. (A26d)

Then, expanding ((P(+ '), as in (A19a), one can use (A19d)
and (A19e) to find the inverse of (A16a):

(y(+)).I,=f des [A' (g ~ ), +B (g ~ ), ]I

(A20)

One also needs [27]

I ( —,
' + iy )I ( —,

' —iy ) =
COSSET/

(A27)

to facilitate the calculation analogous to (5.10) and (5.11):
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&o&.„.lT„(q,g )lo...~l~ = — ', , y f codP "+f cutanh(4mMco)dP"
4a r p "&p

(A28)

1 /'~ cadre
2 2 J ~ esnMco+ 1tm

(A29)

As in the scalar case, this represents the energy density of
the Hawking pairs. This interpretation is a consequence
of the expectation value of the number operator which is
of the same form as (5.16):

Normal ordering this result with respect to the static ob-
servers at infinity as in (5.12) yields

&o...l:T„(q., q. ):lo...&Iv.

M
CO

r2V1

1=—coteco&,6)

r
Vf

CO =
CO

r

1
CO

=
CO

r

V"
g

CO

r

(85a)

(85b)

(85c)

(85d)

(BSe)

&o...lA(~„,)lo...) =
871.M ~

e f71 +
(A30)

1
CO —

CO
8

(9 (BSf)

Finally, the renormalized stress-energy tensor of the
Dirac field in the freely falling vacuum is

&o IT loloc tt loc ren V+ 2 2 ~ m 877.M~+ l2' r Im m,, e +1

If one defines the spinor connection as

I „=S',b, , (86)

APPENDIX B: THE DIRAC EQUATION
IN THE FREELY FALLING FRAMES

then from (85), (83), and (A2) one finds that
(A31)

I p=0,
0 cr,iM

„2Vr o {}

(87a)

(87b)

v A =(a,+is'~, , )q,

vA =a,1(
—t qs "~.„, (Bl)

(82)

where S'" is the generator of local Lorentz transforma-
tions

The covariant derivative of a spinor in curved space is
defined by [28] +o

I
r —i V'o'

I
r —i V "cJ

—i V"CJ'

+o.

—i V'a

o 1

o, 0
+—cot0 0 o.,

(87c)

(87d)

['r r ] (83)

and co,b, is the connection.
To calculate the connection, one can apply the struc-

ture equations of the method of moving frames to the
orthonormal tetrads carried by PFF observers. In partic-
ular,

The Dirac equation is

t(r'a, ,q+ r'r, ,q) ~q=o, —

p 2 „p cotOy
, „r+—[I'"r r']+-

r V r r

(89)

dCO —
CO g R, CO

CO p
—

CO p&CO

where ca are the basis covectors of (2.5). One finds

(84a)

(84b)

For ultrarelativistic outgoing modes (i.e., P ))1/4M),
the Dirac equation near the horizon reduces to its Aat-

space form with high accuracy. This justifies the ex-
ponential behavior in (A6a).
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