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We consider how first-order phase transitions in systems having more than one conserved charge
(multicomponent systems) differ from those in systems having only one. In general, the properties of the
transition are quite different in the two cases. Perhaps most importantly the pressure varies continuous-

ly with the proportion of phases in equilibrium, and is not a constant in the mixed phase as in the exam-

ple of the gas-liquid transition in familiar one-component systems. We identify the microphysics respon-
sible for the difference. In the case that one of the conserved charges is the electric charge, a geometrical
structure in the mixed phase is expected. As an example, possible consequences are developed for the
structure of a neutron star in which the transition to quark matter in the core occurs. It is also pointed
out that the general results pertain to relativistic nuclear collisions in the so-called stopping or baryon-
rich domain where there are three conserved charges (baryon, electric, and strangeness), and impact the
expected phase transition from confined hadronic matter to quark matter as regards signals that are sup-

posedly driven by pressure. The physics discussed here is also relevant to the subnuclear gas-liquid tran-
sition that is under study in lower-energy nuclear collisions.

PACS number(s): 97.60.Jd, 05.70.Fh, 12.38.Mh, 64.60.—i

I. INTRODUCTION

The most notable features of a system that possesses a
single conserved quantity and that is in a state consisting
of two phases in equilibrium, sometimes referred to as the
mixed or coexistence phase, are the constancy of the
pressure and densities of each of the two phases and the
constant density discontinuity between them that hold at
all proportions of the phases. The transition from one
homogeneous phase to the other through the mixed
phase is referred to as a first-order phase transition. The
gas-liquid transition, in which the number of H20 mole-
cules is conserved, is the textbook example [1]. This
phase transition is used as the paradigm for many others.
However, these mell-known properties of first-order
phase transitions in simple bodies are all modified for sys-
tems possessing more than one conserved charge (mean-

ing additive attribute of the constituents or in some con-
texts the number of molecules of an independent com-
ponent). For brevity, we shall refer to a body with more
than one conserved charge as complex.

Generally, a body or system contains conserved
charges, sometimes called independent components, whose
numbers were fixed in the preparation of the body. The
preparation may have taken place in the laboratory for a
.nary mixture or in some natural process as in the for-

mation of a star. We are interested in first-order phase
transitions in such bodies and, in particular, in those that
are complex.

The essentially different character of a first-order tran-
sition in a simple body as compared with one in a com-
plex body originates in the possibility that in the latter
the conserved charges can be shared by the two phases in

equilibrium in different concentrations in each phase than

those with which the body was prepared, consistent with
the conservation laws. If this is energetically favored by
the internal forces and Fermi energies, then these degrees
of freedom will be exploited by the system. For example,
in the subsaturation nuclear liquid-vapor transition, the
number of neutrons and protons is certainly conserved by
the body at all times, and in either the pure liquid or va-

por phase the number of each, and therefore their ratio,
is fixed by the conditions of the preparation. But their
ratio can be different in the vapor and liquid regions of
the mixed phase: It is only their sum in a11 regions of the
body that is conserved. Because of the isospin symmetry
energy, it is favorable for the denser phase to become
more symmetric. Such a degree of freedom is not avail-
able to a one-component system. We can go further: It
is apparent that when the body is almost all in one phase
or the other, the added degrees of freedom are of little

importance; conservation laws impose almost as stringent
conditions as in either pure phase. So, clearly, the degree
to which the body can exploit the added freedom when in
the mixed phase is a function of the proportion of the
phases. Consequently, the energy density is not a linear
function of the proportion, as it is for a simple substance,
but varies as the proportion. Therefore the internal pres-
sure does not remain constant while the body converts
from one pure phase to the other. Of course, at each pro-
portion of phases, the pressure is common in each phase
in equilibrium. As a corollary, we may conclude also that
all other properties in the mixed phase are nonlinear
functions of the proportion. In the presence of gravity or
other external fields, the differences may be accentuated
between first-order phase transitions in systems that pos-
sess only one conserved quantity and those that have
more than one. This theme will be taken up again in Sec.
IV.
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Since many treatments of phase transitions are
modeled after the textbook example involving a single
chemical potential corresponding to a single component,
our discussion may be relevant to many astrophysical
problems, including phase transitions in the early
Universe and the condensation of galaxies and other
structures. It applies to multicomponent mixtures in
chemistry. It is also relevant to accelerator experiments
on the nuclear gas-liquid transition, where the neutron
and proton numbers are conserved, and to the expected
phase transition from confined hadronic to quark matter
in laboratory collisions at relativistic energies between
heavy nuclei, where the conserved charges are baryon,
electric, and strangeness. It also may apply to the similar
phase transition in neutron stars.

In previous studies of the transition between the
confined and deconfined phases in neutron stars, most
have treated the star as automatically charge neutral by
ignoring p equilibrium and assuming that the confined
phase is purely neutron [2]. In this approximation the
transition is described in terms of only the neutron chem-
ical potential. Several other authors have allowed for P
equilibrium, but have approximated the phase transition
by assuming that both phases in equilibrium are separate-
ly charge neutral and imposing this on the solution [3].
Both of the approximations have prevented the star from
exploiting a degree of freedom that is available to a sys-
tem with two chemical potentials. Most importantly, for
the structure of the star, in both approximations the pres-
sure is constant at all densities in the mixed phase. In the
presence of a gravitational field, this means that the two
phases will be separated by gravity, the denser sinking to
the center. As a consequence, there can be no region of
mixed phase and there is a discontinuity in the density of
the star at the phase boundary which occurs at a definite
radius, the discontinuity being that between the two
phases in equilibrium. This is the situation so far treated
in the literature [2,3]. Therefore, following a general dis-
cussion of phase transitions in complex bodies, we open
up for the first time a discussion of aspects of neutron-
star structure in which a first-order phase transition
occurs, which have not previously been considered. This
part of our paper is necessarily tentative and incomplete
since at the present time we have no estimate of the sur-
face interface energy between hadronic and quark matter
and so are not able to estimate quantitatively the
geometric structure of the mixed phase, which is an im-
portant aspect of the problem.

Our discussion of phase transitions and the mixed
phase follows the usual practice of considering the bulk
energy and neglecting finite-size effects such as surface
and Coulomb displacement energies. Whether this is val-
id in any particular example has to be examined on a
case-by-case basis. Some of the results on phase transi-
tions developed in Sec. III were anticipated and correctly
treated in Refs. [4—9], but not in the completeness or
generality derived here. We note also that some, if not all,
of the properties of phase transitions of complex bodies
that we derive from the conditions of chemical, thermal,
and mechanical equilibrium have been observed in mac-
roscopic bodies [10]. Whereas the discussion of the

treatise cited, and others on multicomponent systems, is
phenomenological in nature and eschews a discussion of
the microphysics in favor of the thermodynamic ap-
proach, we identify degrees of freedom available in the
coexistence of two phases in equilibrium in a complex
system and discuss how the internal forces exploit them,
thus causing the different behavior of the mixed phase in

a complex system as compared with a simple one.
Whether or not geometric structure or texture in the

mixed phase is energetically important on the scale of the
bulk energy, it is an interesting facet of the problem and
could be of prime importance for transport properties.
Several authors have studied the geometric structure
(blobs, rods, slabs) associated with the surface and
Coulomb energies when one phase is immersed in the
other at various proportions for the nuclear subsaturation
gas-liquid transition at zero temperature and zero net
electric charge [11,12]. In principle, this phase transition
involves two conserved charges and so should exhibit the
phenomena we discuss in this paper. However, because
of the approximation that the vapor phase has a density
that is negligibly small, the system is explicitly denied the
degree of freedom discussed in the second paragraph of
this section. We do not question here the merit of the ap-
proximation for zero- or low-temperature subnuclear
matter. We simply point out that these papers on the
geometric structure have not implemented or discussed
the physics that is the subject of this paper by reason of
the approximation made.

The plan of the paper is as follows. In Sec. II we
briefly review the properties of a first-order phase transi-
tion in a simple body, but do so without reference to a
figure of pressure as a function of volume, as is usually
done; rather, we introduce the notion of internal vari-
ables which are the solutions of the equations of motion
presumed to describe the microphysics of the state of the
body and define what a first-order phase transition means
in terms of these and the thermodynamic variables. This
is a useful preparation and contrast for a discussion of the
general case of a body possessing several conserved
charges, called a complex body, which we take up in Sec.
III. Generally, there are forces associated with the con-
served charges. We discuss the different role played by
long- and short-range forces and how they affect the
properties and possible geometric structure in the mixed
or coexistence phase in Sec. IV, with special reference to
the structure of neutron stars with quark matter cores.
Under the assumption that the bulk energy dominates
surface, Coulomb, and lattice energies, we illustrate the
general results by considering the transition in equilibri-
um from confined hadronic to quark matter that may
take place in neutron stars, if the central pressure is high
enough, in Sec. V.

II. PHASE TRANSITIONS
WITH ONE CONSERVED CHARGE

Here we recall the features of a first-order phase transi-
tion in a system that carries one conserved charge, as, for
example, the number of H20 molecules in the ease of the
gas-liquid transition. The Gibbs condition for phase equi-
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librium is that the system be in chemical, thermal, and
mechanical equilibrium, meaning that for the two phases,
we must have

where the subscripts 1,2 denote the two phases, respec-
tively, and [P; } denotes the internal variable that charac-
terize a solution to the equations of motion of the system,
exclusive of the chemical potential, in phase i at tempera-
ture T. If there are m internal variables

(2)

they satisfy the equations of motion denoted by

S ([itI},P, T)=0, j=1,. . . , m . (3)

If and only if a solution iu to Eqs. (1) exists for
[((I,}A [(tI2} does the system possesses a first-order phase
transition. The density of the charge whose chemical po-
tential is p is different in the two phases since the func-
tion p([((i},p) is a different function of p because the
internal variables [(ti} have different values in the two
phases. We call these constant densities p& and p2:

Pi=P([fi} P T) P2=P([(tI2} iLi (4)

This is true of other functions of p, , such as the energy
density. The only properties that are necessarily com-
mon to the two phases that are in equilibrium are those
indicated in Gibbs relations (1), and these are constant
for all densities or, in other words, all proportions of the
phases in the "mixed phase" that lies in the interval

p, ~ p ~p2. The pure (i.e., homogeneous) phases lie above
and below this range, respectively. The mixed phase is
some mixture of the two phases that occupy different
volumes of space. Because the densities of the conserved
charge are different and fixed in the two phases in equilib-
rium [Eqs. (4)], the phases contribute to the average den-
sity in the proportion of the phases themselves; thus,

p=(1 —X)pi+Xp2

where 0+y 1. This may seem unremarkable, but it is
the essential difference between a transition between two
phases in simple and complex systems, because in the
complex system the internal forces have the freedom to
arrange the most energetically favored charge densities in
each phase at each proportion, consistent with conserva-
tion laws, as we shall see. In contrast, as we just saw
above, for the simple system, once the Gibbs relation is
satisfied [Eqs. (1)], the density of each phase in equilibri-
um remains fixed at all proportions of the phases and
they are determined by Eqs. (4).

Since the pressure is independent of the proportion of
phases in a simple body, the phases will be separated by
any external field that distinguishes between them, such
as gravity, which distinguishes their different densities.

We now illustrate with a concrete example the transi-
tion from neutron to quark matter in a compact star and
the consequences for the structure of compact stars that

stem from treating the transition as if it occurred in a
simple body. This is the mold into which all discussions
of this phase transition have been fitted heretofore, ap-
parently unconsciously, usually by the seemingly innocu-
ous neglect of P equilibrium (i.e., by assuming a purely
neutron star) [2]. For the purpose of illustration, we
adopt, for the description of the confined hadronic phase,
the Lagrangian of Zimanyi and Moszkowski [13], solved
in the mean-field approximation, and, for the quark
matter phase, the bag model [14].Of course, none of the
general properties outlined above depend on these model
choices. To correspond with the earlier discussions of
quarks in neutron stars [2], we assume that the only
baryons present are neutrons. For the quarks we assume
that the u, d, s quarks are massless. Then both phases are
automatically charge neutral and there is only one chemi-
cal potential: that for the baryon number. We note that
this situation is arrived at through assumptions that are
seemingly innocuous, but have the effect of reducing a
complex system to a simple one, as is done in one way or
another in Ref. [2].

Later in this section, we will explore briefly a different
assumption with respect to the quarks which also reduces
the system to a simple one. There are therefore two con-
trasts that are made: (1) The effect on neutron-star struc-
ture of assumptions that approximate it as a simple sys-
tem is compared with the structure that apparently
would follow if treated as the complex system it really is.
This latter case is developed in subsequent sections, and
of course, the two conserved charges in a star, baryon and
electric, are what make a first-order phase transition
complex. (2) The other contrast, which is made entirely
in this section, will be with respect to the difference in the
conclusions one would draw as to the presence of quarks
in neutron stars, depending on how the reduction of a
complex system to a simple one is accomplished.

The pressure and neutron chemical potential at phase
equilibrium are given by the crossing of the curves in Fig.
1. The dotted line in this particular instance shows
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FIR. 1. Pressure as function of chemical potential for first-

order phase transition (solid lines). Crossing is point of phase
equilibrium. Dotted line is schematic. See text for description
of dashed lines.
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schematically the way the pressure evolves as a function
of chemical potential when there is a first-order phase
transition in a body for which one has a complete theory
or the internal variables describing the state of the body.

(In our example this is not so. We cannot solve @CD
through the con6ned-deconfined transition, and so we use
separate models for each phase. Hence, in this instance,
the dotted line is schematic. j Figure 2 shows the constan-
cy of the pressure and chemical potential and the linear
dependence of density of the energy density in the mixed
phase. The constant pressure of the mixed phase in the
presence of a gravitational 6eld has the consequence that
gravity separates the two phases, and one is left 'th 1e wi on y

e pure p ases. Said another way, the mixed phase at
one density cannot support the mixed phase at another
one since the pressure exerted by each is the same for a
simple substance in equilibrium between its t h

'
s wo p ases.

a~ st& another way, the equations of star structure as-
sure that t e pressure is a continuous function of th e

chwarzschsld radius and decreases monotonically from
the center of the star; therefore, the two equal pressure
points at the opposite ends of the mixed phase (Fig. 2) are
mapped onto the same radial point in the star. Conse-
quently, for a simple substance, there are no stable stars
with central densities falling in the range of the mixed
phase, and for those stars with central densities that lie
above t at range, the distribution of matter as f t'a unc ion
o t e radial coordinate suffers a discontinuity, fallin
from top2 p& at the radius where the pressure equals that

u y, a mg

of the phase equilibrium. These aspects are illust t d
'

ra e in
igs. an by the dashed lines. The solid lines corre-

spond to stars in P equilibrium with a first-order phase
transition in which the baryon number and electric
charge are conserved, the case that we discuss next.

All of the above discussion was based on the neglect of
P equilibrium in the Itadronic sector, as in Ref. [2]. Un-
der the assumption of equal u, d, s quark masses, the
quark phase is trivially in equilibrium and charge neutral.
Alternately, one could suppose that the assumed purely
neutron core was converted to the corresponding number
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FIG. 3. As a function of central density, the dashed line in-

terrupted by dots is the family of stars for the idealized case
having one chemical potential. Regions are n (pure neutron
stars) and n —

q (quark core and neutron matter mantle stars).
Solid curve is family of compact stars in P equilibrium (two

cheaucal potentials); stars below I are made of neutron-star
matter; those above have mixed phase cores.

of u, d quarks and that none of these weakly decayed into
strange quarks, the assumption made by Baym and Ch'an in

ey imposed the corresponding constraint that
nd =2n„, which again is trivially charge neutral, so that
the star, by approximation, again has only one chemical
potential, that for the baryon number. However, this
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FIG. 4. DDashed line is profile of an idealized star with one
c emical potential at mass limit of prev' fi . Cprevious gure. Core is pure
quark matter and exterior is pure neutron matter. Solid curve is
star at mass limit which is in P equilibrium. The core is in the
mixed phase of hadronic and quark matter. The exterior is
neutron-star matter. Dividing point is marked by m
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choice for the number of u quarks compared with d
quarks is extremely P unstable. It has the consequence
that the computed energy per added baryon, p =Be/Bp,
is very large compared with an equilibrium state, so that
the predicted phase transition is at a correspondingly
high baryon density. Said another way, the neutron
chemical potential at which the pressure in the quark
phase vanishes is a factor [(1+2 ~ )/3] ~ larger than in
the equilibrium model of massless u, d, s quarks. The
chemical potential at which the pressure curve crosses
that of the hadronic phase is correspondingly higher.
This case is also shown in Fig. 1 by the dashed lines. The
number density at which conversion of hadronic matter
begins is a very high density of 1.03 fm in this case as
compared with 0.306 fm in the equilibrium case of
u, d, s quark matter. We thus see how a seemingly inno-
cuous approximation, the neglect of P equilibrium in the
quark sector, led to a major overestimate of the transition
density in the model adopted to explore the question.

III. PHASE TRANSITIONS
WITH MORE THAN ONE CONSERVED CHARGE

Chemical potentials are used to express the conditions
of equilibrium of a system of several substances which are
composed of independent components or carry conserved
charges. In general, transformations among the sub-
stances are possible. The transformations define relations
among the chemical potentials. The conservation laws
refer to the amount of each of the independent com-
ponents or conserved charges with which the system was
initially prepared. We denote these n charges or numbers
of each of the independent components by Q
(a=a, b, . . . , n ). Then the chemical potentials of all sub-
stances can be written as a linear combination of as many
independent chemical potentials as there are conservation
laws. We ca11 these p„pb, . . . ,p„. The coefticients in the
linear combination refer to the number of the conserved
quantities that the component possesses. The numbers
need not be integers. The baryon and electric charges
possessed by quarks are fractional.

A body has two distinct phases, which we denote by
the subscripts 1 and 2, and can undergo a first-order
phase transition between them if and only if (i) the m

equations of motion for the internal structure
2), (I/I, p,„.. . ,p„. . . , T)=0, j=l, . . . , m, have two
distinct simultaneous solutions for the internal variables,

(6)

such that

where

&J(I42I i. P. 'r)=0 (~ = I

(ii) the solutions are subject to the relevant conservation
laws as discussed below; and (iii) the Gibbs conditions
can be satisfied. Note that when a comprehensive theory

of the internal structure of the body is available, the
equations of motion and all other functions of the inter-
nal and thermodynamic variables are the same functions
in the two phases. The distinction between phases is that
the internal variables I/I describing the body occupy
different regions of the internal space, which is what we
mean by the inequality (7). These internal variables,
which are solutions of the equations of motion, are, of
course, functions of the chemical potentials (and temper-
ature), but it is useful to retain their explicit appearance
so as to distinguish phases. The Gibbs condition for
phase equilibrium at fixed T when there are several con-
served charges, say, n, is

Pl a P2a I a

I ln P2n In

T] T2 T

i. ~)=p(I42I u.

(10)

.V„.~)=Q. /V ~

q (I/~I, p„.. . , p„,T)=Q /V (a=a, . . . , n) . (12)

For concreteness, let phase 1 be the low-density phase.
We could find the properties of the system in this pure
phase by choosing a volume or a density, say, q, =Q~ /V
(with all other densities having ratios equal to those es-
tablished in the preparation of the system) and solving
the set of Eqs. (8) and (11) for the m internal variables

t(t, ) and n p's at each volume, and then computing the
pressure p(IP, I,p„. . . ,p„, T) and any other quantities
of interest. There are m +n equations in that many un-

knowns.
The equality of the chemical potentials at phase equi-

librium requires a careful examination of how phase equi-

The pressure is the same function on the two sides of the
last equation, but is evaluated in different regions of the
space of internal variables, so that the left and right sides
are different functions of the chemical potentials. Clear-
ly, this equation, unlike the example of one chemical po-
tential, does not suSce to specify the pressure and chemi-
cal potentials at phase equilibrium. If there is a first-order
phase transition, the pressure as a function of one of the
chemical potentials behaves locally in the general manner
of Fig. 1. Let this one be p, . Generally, one thinks of
varying the volume V of the body by external means at a
constant temperature. This, of course, corresponds to
varying the n densities of conserved charges, Q /V,
a =a, b, . . . , n, and hence their chemical potentials,
among them p, . Of course, the ratios of the densities
(concentrations) remain unchanged while the body is in a
pure phase and is equal to the values established in the
preparation. From the theoretical and calculational
point of view, it is a matter of convenience as to which is
used as the independent variable when the body is in a
pure phase.

Let us write the n conservation laws for the charge
densities in either of the pure phases 1 or 2 as
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librium is to be found. We study first the end points of
the mixed phase, where the proportion of one or other of
the phases is very small. Then we turn to the intermedi-
ate region. Imagine that we begin with the body in phase
1, [therefore defined by the solution tP, ] of Eq. (8)] and
increase the pressure by decreasing the volume or in-
creasing the density q, . At some pressure and corre-
sponding volume V& as yet unknown, parts of the body
will begin to convert to the other phase. The body is said
to be in the mixed phase. At pressure below and just to
the point where this conversion begins, the conservation
conditions are still expressed as in the pure phase 1 by
Eq. (11)because there is vanishing amount of phase 2. At
this point these conservation conditions, the equations of
motion (8) and Gibbs condition for equilibrium pressure
expressed in Eqs. (10), provide the m +n +1 equations
that specify the volume V& (or, equivalently, the charge
density q, ,

=—Q, /V, ), the values of the n chemical poten-
tials, and the m internal variables corresponding to the
state of the body at the onset of the phase transition.
Similarly, if the mixed phase is approached from the pure
phase 2, at the point where the system is about to begin
conversion, the conservation laws as expressed in phase 2
still apply. A similar set of equations defines this bound-
ary between pure and coexistence phases. Equation (9)
replaces (8) and Eq. (12) replaces (11), and these, together
with the Gibbs condition, define the volume Vz or density

q, z
——Q, /Vz, corresponding to the upper end of the

phase coexistence region, together with the internal vari-
ables and chemical potentials at this boundary. We have
two diferent sets of equations that define the state of the
system at the extremes of the coexistence phase, respec-
tively, and their solutions V, I P],p„. . . ,p„will in gen-
eral be different. Accordingly, the chemical potentials
and pressure, though common in each phase in equilibri-
um, are different at the two ends of the coexistence re-
gion, as are the densities of the conserved charges. This
is in marked contrast to the corresponding properties of a
simple system.

It remains to describe the mixed phase at arbitrary
proportion of the two phases. Choose a volume V in the
range V, V~ Vz. Let 1 —g denote the fraction of the
volume occupied by phase 1 and y by phase 2. The con-
servation laws written above in Eqs. (11) and (12) for the
pure phases now must be written as a single equation for
each charge that involves both phases:

+yq ([Pz],p„.. . , p„,T)=Q /V (a=a, . . . , n) .

(13)

internal variables [P; ] in each phase (i =1,2), the n con-
servation laws [Eq. (13)], and the Gibbs condition [Eqs.
(10)] for the n chemical potentials and proportion y.
There are therefore 2m +n +1 simultaneous equations
that describe the state of the body in the mixed phase, in-

cluding the proportion y of phases. If a solution exists at
the chosen volume or, equivalently, densities of charges,

Q /V, a=a, . . . , n, with 0(g(1 and [P, ]W[P~], it
represents a state of the body in the mixed phase.

We emphasize that in the mixed phase Eq. (13) is the
only way of expressing the conservation laws that is con-
sistent with Gibbs phase equilibrium. To apply Eqs. (11)
and (12) separately to the volumes of each phase (1—y) V
and gV would in general ensure that the chemical poten-
tials are unequal in the two phases. Moreover, there are
n more conditions than variables.

To understand the special nature of a first-order phase
transition in a system of more than one conserved charge,
it is important to note that the ratios of the charge densi-
ties, Q /V, in the pure phases are forever fixed once the
system has been prepared with specified number of each
type of charge. However, the ratios of charges or com-
ponents may be different in each of the phases in phase
equilibrium; only the sum of charges in the two phases
[Eq. (13)] must retain the fixed values established in the
preparation. Thus we understand the role that is opened
up for the internal forces, including the Fermi energy, to
optimize the proportions of charges that the phases in
equilibrium carry, so as to minimize the free energy of
the system. In our formulation this is implicit in the
simultaneous solution of Eqs. (8}—(10) and (13}described
above. For a system with n conserved charges, there are
n —1 concentrations or degrees of freedom that the inter-
nal forces can exploit when two phases are in equilibri-
um. In particular, there is no such freedom for a system
carrying but one conserved charge or one independent
component, that is to say, a simple system. Thus as we
have noted, the two systems of equations described above
in general have different solutions, so that the pressure
does not remain constant while the body converts from
one pure phase to the other, and likewise a11 chemical po-
tentials change, though, of course, they are common to
the two phases in equilibrium at any particular propor-
tion of the phases. The common pressure and chemical
potentials vary continuously as the proportion of phases
in equilibrium changes in a complex body.

Once the 2m +n +1 equations [Eqs. (8)—(10) and (13)]
are solved simultaneously, all other additive quantities
can be computed from the rule, expressed here for the
charge density corresponding to the conservation law la-
beled a:

These reduce to the separate laws for the pure phases for
g=O or 1. As noted below, we must allow the phases in
equilibrium the freedom to satisfy these less restrictive
conditions and not impose conditions separately on each
phase in equilibrium, or else the Gibbs condition on the
equality of the chemical potentials would be violated.
The equations governing the body in the mixed phase are
the equations of motion [Eqs. (8) and (9)], of which there
are 2m, namely, m equations for the solution of the m

(14)

As a consequence of the variation of the chemical poten-
tials with proportion of the phases, all other additive
properties such as densities and energy density do so too,
but they do not necessarily vary linearly with proportion

For example, compare Eqs. (5) and (14), where in the
first of these equations the density is a fixed value in each
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a

1

(a=a, . . . , n ), (15)

a
qa(I42I~pa~ . ~pn&T)

2

have a simultaneous solution. But there are 2m +2n +1
equations in only 2m +n variables: the 2m internal vari-
ables I P, I X I PzI and the n chemical potentials

p„. . . ,p„. Much less it is possible to find a simultane-

FKJ. 5. Schematic of pressure as a function of p„pb, in the
more general case of two conserved charges. The physical pres-
sure is the curve a0 (pure phase 1), 01 (mixed phase with pro-
portion g between 0 and 1), and 1b (pure phase 2). Dotted
curves lie below foreground pressure surfaces.

phase, corresponding to the unique value of the chemical
potential at phase equilibrium, whereas in the second all
the charge densities themselves vary as the proportion of
the phases. All of these aspects of a first-order phase
transition in a body with more than one conserved charge
are at variance with those corresponding to a body with
only one. The feature that is common in both cases is the
discontinuity in the densities across the interface between
the two phases in equilibrium; this is what distinguishes a
first- from a second-order phase transition. However, the
magnitude of the discontinuity in the general case varies
with the proportion of phases in equilibrium.

From the above discussion, we see that a system would
have to be prepared with very particular concentrations
of conserved charges to evade the above behavior, if it is
possible at all. In particular, it would have to be so that
at all proportions of the phases in equilibrium, y, the
internal forces favored the particular concentrations with
which the system was prepared over any other in both
phases. The points 0 and 1 in Fig. 5 are coincident in this
circumstance. For most systems such a choice of concen-
trations does not exist, because the number of conditions
that must be satisfied exceeds the number of variables, so
that it is accidental if there is such a choice. Indeed, even
to satisfy the lesser conditions that the pressure and
chemical potentials at the extremes of the mixed phase be
equal, it would have to be so that, for the particular set of
concentrations of charges, the overdetermined set of Eqs.
(8)—(10) and the 2n equations,

ous solution for each proportion 0 & y & 1 of Eqs. (8)—(10)
and the 2n equations:

a
Qa({kij Pa . Pn T)=

(11 —yjV
(a =a, . . . , n ) . (16)

yV

The system is overdetermined at a continuous infinity of
proportions. These facts serve to emphasize the generali-
ty of properties that have been derived for complex sys-
tems.

It is perhaps instructive to have a picture in mind to il-
lustrate the general situation. In the case of one con-
served charge (such as the number of H20 molecules), the
pressure as a function of chemical potential for this
charge has the familiar form of a curve that turns in
direction, crossing itself at some pressure and chemical
potential, as in Fig. 1. The crossing point corresponds to
the equilibrium values of pressure and chemical potential
at the given temperature. Now imagine a third axis cor-
responding to an additional chemical potential as in Fig.
5. Pull the curve as an elastic sheet out into this new
direction. Of course, it need not be by parallel displace-
ment and indeed the surface so created may have convo-
lutions. The point of intersection, A, of the pressure in
the two pure phases has become a cu,rue labeled A A '; the
two phases at each point on the curve have equal chemi-
cal potentials and pressure, as required for equilibrium,
but in general they vary along the curve. However, the
entire curve does not correspond to physically accessible
states of the body, given the conservation laws. To un-
derstand this consider the pure homogeneous phases.
The conservation laws [Eqs. (11) and (12)] for each pure
phase describe a curve in the chemical potential plane
parametrized by the volume V (or, equivalently, any one
of the charge densities, the ratios being fixed in the
preparation). The projection of each of these curves onto
the pressure surface of the corresponding phase describes
a curve on each surface. Segments of these in the
maximum-pressure phases are labeled aO and lb. On
these curves the body is in the pure phases 1 and 2, re-
spectively, and satisfies the conservation laws, different
points on the curve corresponding to different volumes or
densities of a given charge. Phase equilibrium is possible
only when each of these curves crosses the curve of pres-
sure intersection, AA'. We must realize that the figure
represents the pressure surface only locally in the neigh-
borhood of a phase transition, and there may be other re-
gions of the chemical potentials where there is only one
pressure surface and only one phase. When there is a dis-
tinction of phases, the points at which the two curves
defined by the conservation laws cross the pressure inter-
section curve at 0 and 1 will not generally be coincident,
as we proved above, and they define the extremes of the
mixed phase. The proportion of phase 2 at the point 0 is
zero and at 1 it is unity. The proportion varies between
these values along the curve 01. This is the curve of
phase equilibrium. In general, the pressure and both
chemical potentials vary along it, as do the corresponding
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charge densities. Of course, at each point on the intersec-
tion curve, which corresponds to some definite propor-
tion of phases, y, all of these quantities are equal
throughout the body, as required by the conditions of
equilibrium. This construction serves to illustrate why a
first-order phase transition with more than one conserved
charge is so different from a transition with exactly one.
When there is more than one conserved charge, phase
equilibrium is possible when the pressure as a function of
the independent chemical potentials has the topology of
the generic form illustrated.

The variation of pressure with proportion of phases in

equilibrium is perhaps the most consequential difference
and may lead to structurally different compact stars, in
which the confined hadronic-to-quark rnatter phase tran-
sition occurs, than would be computed in approximations
that treat the star as a simple body having a single con-
served charge (baryon number) rather than a complex
one. All previous discussions of the phase transition in
neutron stars have been forced into this mold, usually by
treating the star as if it were purely neutron and, so, a
single-component system [2]. The variation of pressure
also impacts expectations that have been developed for
signals of the phase transition in relativistic nuclear col-
lisions in the "stopping" or "baryon-rich domain" that
have been built around the notion of a "plateau" in pres-
sure and, hence, in observables that are driven by pres-
sure.

IV. ROLE OF THE FORCE RANGE
ASSOCIATED WITH A CONSERVED CHARGE

Clearly, in any application of the general theory, a dis-
tinction exists between systems for which all charges are
associated with short-range forces and those systems for
which one or more of the forces is a long-range one since
in the first case regions occupied by one phase will not in-
teract with the other except at their boundaries, while in
the second they will interact as well through the long-
range force. We discuss an example of each.

We have designated conserved quantities by the word
charges. In some cases these are components of a mix-
ture, as in ethane-heptane, which for certain ranges of
concentration of the components possess a gas-liquid
phase transition. When there is a phase transition, the
pressure is observed to exhibit the variation through the
mixed phase discussed above [10,15]. Presumably, it is
the molecular forces that are involved in determining
that, as the proportion of the two phases changes, the en-
ergy is lowered by optimizing the ratio of the two sub-
stances in the gas and liquid, constrained, of course, by
the conservation of the total number of molecules of hep-
tane and ethane, rather than each phase in equilibrium
retaining the same ratio as in the pure phases, which is,
of course, fixed at the time of preparation of the mixture.
As explained earlier, the energy in consequence will not
be a linear function of the proportion of the phases, and
hence the pressure will vary as the proportion of phases
in equilibrium. In such a system, there are no long-range
forces, and in the bulk approximation, the two phases in
equilibrium, which, of course, occupy separate volumes,
can each be broken up, moved about, or merged, at no

cost in energy. As a weaker effect, the surface interface
energy will play a role in determining the size and shapes
of the volumes occupied by the two phases. In fact, all
regions of like phase will tend to coalesce. We will not
discuss this case further here since it does not correspond
to the circumstances of a compact star.

Let us turn now to a contrasting situation where long-
range interactions will act between regions of one phase
and the other. An example of interest is the so-called neu-
tron star. These compact objects are, of course, not pure-
ly neutron; the Fermi energy of neutrons in the denser re-
gions will exceed the energy of the proton and electron
and eventually other baryon species, and the energy will
be lowered by conversion of neutrons into protons and
hyperons. Of course, strangeness is not conserved on a
time scale much in excess of the weak-interaction scale.
Therefore the conserved quantum numbers are the
baryon number and electric charge. The star is essential-
ly charge neutral because particles contributing to net
charge couM not be bound by gravity. If in the dense in-
terior of the star the pressure surpasses that for convert-
ing hadrons to quark matter, we have a phase transition
of a substance with two conserved charges, and the gen-
eral theory described above applies if it turns out that the
bulk energy dominates the surface interface energy and
any Coulomb displacement energy.

Because of the constraint of charge neutrality, a neu-
tron star is highly isospin asymmetric. Even below the
phase-transition density, the isospin part of the strong in-
teraction has scope to reduce the isospin within the con-
straint of charge neutrality by populating hyperons of
favored isospin (opposite to the neutron) [16—18]. If the
pressure is reached somewhere at a depth in the star that
some baryons are converted to quark rnatter in equilibri-
um with the remaining baryon rnatter, the isospin com-
ponent of the strong interaction has still further scope to
reduce the isospin of the hadronic phase since now excess
(positive) charge built up in this phase can be neutralized
overall by the quark matter, which carries some of the
conserved baryon charge as well. Of course, chemical
equilibrium in the lowest-energy state of the combined
system will prescribe the limit to which this tendency can
go at each proportion of the phases. In this example it is
the isospin interaction in the hadronic phase, mediated at
least in part by the coupling of the p meson to the ha-
dronic isospin current, which is the driving force in re-
ducing the isospin asymmetry of the hadronic phase
when it is in equilibrium with the quark phase. We are,
of course, assuming that the quark matter phase does not
have an explicit isospin interaction which is repulsive for
isospin asymmetric mixture of quarks, certainly not in
the limit of asymptotic freedom, aside from the ever
present Fermi energies. In the situation just described, re-
gions of hadronic matter in equilibrium with quark
rnatter will have a net positive charge, neutralized by the
negative charge of quark matter and to a much lesser de-
gree by electrons. The reason that electrons will play a
minor role in charge neutrality, once densities are
reached where neutrality can be achieved in large part
among baryons, is that baryons alone carry that con-
served quantum number and must be present, but elec-
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trons must be present only to the extent of neutralizing
any excess positive charge not already neutralized among
particles carrying baryon charge [16—18]. So the mixed
phase of hadronic and quark matter consists of regions of
opposite electric charge. This charge will prevent the re-
gions from growing too large, and the surface energy will

act in the opposite sense in preventing them from becom-
ing too small. We expect therefore that the mixed phase
will form a Coulomb lattice, in the same sense as subsa-
turation charge-neutral matter is expected to do [11,12].
However, whereas in this latter case the size of nuclei
provides a natural length scale and the semiempirical
mass formula provides the surface energy, and whereas
the nuclear phase is dense and the gas phase is dilute and
sometimes taken to have vanishing density, none of these
applies to the hadron-quark phase transition. Both
phases are dense at supernuclear densities in the star, the
surface interface energy between them is not known or
easy to estimate, and neither phase is self-bound, certain-

ly not at the densities in the star, so that there is no first-
order guess possible for the size of the regions of hadron-
ic and quark matter phase. Thus it is not possible at this
time to compare a screening length with the structure
size to justify the treatment of each phase as uniform.

In the example just discussed, surface interface and
Coulomb energies will come into play, as described quali-

tatively above, to form a lattice of regions of one phase
immersed in the other. According to the proportion of
the two phases in equilibrium, the common pressure,
chemical potentials, and geometric structure will vary.
We expect that the outer region of the neutron star wi11

consist of hadronic matter. At some depth where the
pressure is higher, some of this will be converted to quark
matter, which will form a lattice immersed in hadronic
matter. Much deeper in the star, the roles will be re-

versed in accordance with the associated pressure. In be-

tween, other geometric phases may occur corresponding
to intermediate pressures. Perhaps, in the inner core, the
pressure will be so high as to convert all of the matter to
quark matter. The density profile of the star in this pic-
ture is continuous and in general consists of three re-

gions: the outer hadronic region, the intermediate
mixed-phase region of varying proportion of phases and

geometric texture with depth, and the interior quark
matter core. The picture that emerges is quite different

than when the degree of freedom corresponding to the
presence of the second conserved charge is suppressed,
the situation discussed in Sec. II. In such a case, where

the pressure is a constant in the coexistence phase, a large
density discontinuity occurs at the depth in the star that
separates the two phases, the denser quark phase having
sunk to the central region, both phases being assumed to
be charge neutral by fiat (Fig. 3). The extent of the
discontinuity is that between pure hadronic matter at the
density just above which conversion wi11 commence and

the density of pure quark matter at the completion of
conversion.

%'e have discussed the role of long-range forces acting
in the mixed phase between different regions occupied by
one phase or the other. These refer to forces associated
with the conserved charges and not to the external gravi-

tational field. In a star gravity plays its usual role in ac-
cordance with Einstein's equations, arranging matter ac-
cording to the relationship between energy density and
pressure and implicitly selecting the geometrical texture
of the mixed phase in accordance with its relation to the
pressure, thereby selecting the texture as a function of
depth in the star.

In the absence of information on the surface energy, we
cannot provide any details on the texture of the mixed
phase, nor can we compare sizes of structure with a
screening length. For the same reason, we cannot esti-
mate the electrostatic potential in the Coulomb lattice
and, hence, the shift in electric charge chemical poten-
tials [19]. These are outstanding problems. However, we

expect that the bulk energy which is supernuclear and of
the order of 1 GeV/fm, including as it does the mass and
Fermi energies, dominates the surface and Coulomb lat-
tice energies. If this is true and if the lattice structure
does form in the mixed phase, then we can calculate the
macroscopic structure of the star and its composition to
some accuracy without knowing the details of the texture
of the mixed phase.

V. NEUTRON-QUARK MATTER STARS:
A DIFFERENT VIEW

Having stated certain caveats in the previous section,
we now illustrate the theory developed in Sec. III for a
first-order phase transition in complex systems by treat-
ing a compact star in general P equilibrium in the uni-

form bulk approximation. It has two conserved charges:
baryon and electric. The overall charge of the star is
zero. Charge-neutral matter in equilibrium we call
neutron-star matter. We contrast the structure of a star
made from it to the fictional case of purely neutron star.
Matter which is purely neutron is not the ground state of
dense charge-neutral matter, but it is the model most
often studied in connection with the possible phase tran-
sition to quark matter in the core of a neutron star [2]. It
has only one conserved charge, the baryon number, since
charge neutrality is automatic, and so by fiat such a for-
mulation of neutron-star structure evades the interesting
physics that is engaged when the system is allowed to
seek the lowest-energy state in the mixed phase by shar-
ing the charges in proportions that are different from the
pure phases.

Ideally, one would have a single theory that describes
both phases; the confined hadronic phase and locally
deconfined quark matter phase. Presumably, this theory
is lattice QCD. However, QCD has not been solved for
finite chemical potentials, nor has a description of dense
hadronic and quark matter, the two phases in which we
are interested in, been developed as a function of baryon
density or volume at zero temperature. (Neutron stars be-
come cold on the nuclear scale within seconds of birth. )

If the phase transition is a first-order one, then in its
neighborhood the pressure as a function of the two chem-
ical potentials for the conserved charges, baryon and
electric, behaves as in Fig. 5, with p, the baryon chemi-
cal potential. %'e describe the hadronic phase by a nu-
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clear field theory and the quark phase as a free gas of
massive quarks whose vacuum energy is displaced from
that of the hadronic phase by the "bag" constant B.

We adopt as a model of the confined phase a generali-
zation of the Zimanyi-Moszkowski [13] nuclear-field-
theory Lagrangian. With the addition of the p meson,
which introduces an isospin-symmetry force, the model

describes the bulk properties of equilibrium isospin-
symmetric uniform matter rather well. We make no spe-
cial case for it as a description of the confined phase oth-
er than this normalization to measured nuclear properties
and the fact that it is a covariant theory, a fact of some
merit in a theory that is to be extrapolated to high densi-
ty. The generalized Lagrangian is

+=X "+g a™a)&a~&yl'd" ga—y,~ ,'g'p—ay—,& p"]Pa 0am—aPa .

+ —,'(a„~a"~—m2~') —i~ ~~"+—,'m2~ ~—
—,'p„„.p""+ ,'m —p„p"+. y„y (iy„a&—m

The resulting Lagrangian appears as before except that
the factor (1+g a jma ) is absent and the baryon masses
mz are replaced by effective masses:

I~a&
m~ = 1+

2mB
m& . (19)

We solve the field equations in the frequently used mean-
field approximation (Hartree) [13,16,20]. In this approxi-
mation the theory is regarded as an effective one in which
coupling constants are adjusted to properties of nuclear
rnatter or finite nuclei, but not to the vacuum interaction
between nucleons. The baryon source currents in the
Euler-Lagrange equations for the mesons are replaced by
their ground-state expectation values. The ground state
is defined as having the single-particle momentum eigen-
states of the Dirac equations filled to the top of the Fermi
sea for each baryon species in accordance with the condi-
tions of chemical equilibrium.

The equations for the mean meson fields in uniform
static matter, in which space and time derivatives can be
dropped, which we now denote by o. for the scalar meson
and mo and p03 for the tirnelike and isospin three com-
ponent of the vector and vector-isovector mesons, are

—2
&~a Ruao0—
gpss 2m'

(+,q, )

~ g~a

& m

g ~o. ' 2Jq+ I1+-
2m' 2m2

Here the sum on 8 is over the baryon species, neutrons,
protons, and all charge states of hyperons to conver-
gence. The suin on A, is over e and p, . The mesons are
the scalar, vector, and isovector, cr, m, p.

As a first step in making the problem tractable, we
transform all baryon fields by

' —1/2
Rua&1+
2mB

coo= g (2Ja+1)ka l(6n ),
Pl ~

(21)

p03 g 2 13a(2~a+1)ka 1'(6ir
& m

(22)

Taking account of the vanishing of the spacelike com-
ponents of the vector fields, the eigenvalues can be found
as

ea(ka)=g~acoo+gp po3I3a+(ka+ma )' (24)

In the above equations, I3& is the isospin projection of
baryon charge state B.

Chemical equilibrium can be imposed through the two
independent chemical potentials JM„,p, for the conserved
baryon and electron charge. Strangeness is not conserved
on any macroscopic time scale. For the baryon species 8
we have p~=b~p„—qzp„where b~ and q~ are the
baryon and electron charge (in units of e} of particles B.
The Fermi momenta for the baryons are the positive real
solutions of

ea(ka) =pa (N equations), (25}

where N is the number of different baryon species, includ-
ing their charge states, that are listed in Ref. [16]. The
lepton Fermi mornenta are the positive real solutions of

The angular brackets denote ground-state expectation.
Through the dependence of the effective mass on cr, the
first of these equations is a transcendental equation for
this field variable. The spacelike coinponents of both vec-
tor fields and all but the isospin three-component of the p
field vanish, as can be shown explicitly [16]; they do so
for the physical reasons that the ground state is isotropic
and has definite charge.

The Dirac equations for the baryons are

(iy„B" ma g—ay&co"—,'gz y&r—p"—)0'a=0 . (23)

k~ m&
X k dA:,

(k +m* )'img
(20)

(k2+m 2)1/2

(k +m )' =p =Ju
(26)
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Contact with empirical data is made in the following
way. When the above equations are solved at a chosen
value of the conserved density of baryons,

p = g(2J + 1)k /(6n ),
B

(27)

pa=0. 16 fm, B/2 = 16 MeV,

Q sy~ 32 5 MeV

K=225 MeV, m,'„/m =0.855 .

(29)

and with the conservation condition that the density of
hadronic isospin vanishes,

Q I3s(2J~+1)ks/(6n )=0,
B

there is an equilibrium state consisting of an equal num-
ber of neutrons and protons. The coupling constants are
adjusted so that the properties for this state correspond
closely to those of symmetric nuclear matter having the
saturation density, binding energy, symmetry energy,
compression modulus, and efFective nucleon mass at satu-
ration:

2JB+ 1 kz+y, f (k'+m")' 'k'dk
277

+y, f (k'+m~)~/2k~dk,
k~

0
(33)

which is the energy density, while the pressure is given by

2JB+ 1
+ —,

' g f k dk/(k +m* )'
2m'

+ —,
' g f k dk/(k +mz)'

k~

0
(34)

quoted in Eq. (11). This completes a description of the
equations that define the solution of the above Lagrang-
ian for charge-neutral matter in equilibrium, which is
called neutron-star matter.

Once the solution has been found, the equation of state
can be calculated from

The coupling constants are

(g /m ) =7.487, (g /m„) =2.615,

(gz /m ) =4.774 fm
(30)

To describe quark matter, we use a simple version of
the bag model for which the pressure, energy density, and
baryon number and charge density at T =0 are given by

In the lowest-energy state, the leptons are absent since
they are not needed to satisfy the conservation conditions
[Eqs. (27) and (28)], and their presence would only in-

crease the energy.
When the same theory is solved with the same coupling

constants but with the conservation condition of isospin
symmetry replaced by that of the condition of charge
neutrality expressed by

qz+q, =0,

+( 2 m2)l/2
+-,'mf4ln

mf

3e=B+ g p/(pI —m/)' (p/ ——'m/)
f 4~

+.(+2 m 2
)
1/2

—
—,'mf41n

mf

(35)

qH —= g(2J~ + 1)q~ kq /(6m ),
B

(31)
2 2 )3/2Pf mf

f 3iT

q, = —/k'/(36)=0,

where the first sum is over the baryons whose electric
charges are denoted by qB, Fermi momenta by kB, and
the second sum is over the leptons e and p, we get the
corresponding solution for P-stable charge-neutral matter
called neutron-star matter at the chosen baryon density
p. The solution of the above coupled equations provides
the values for

o, ~0,p03yp„ypepk„k„, k, ~kp&kp& (32)

of which there are (7+%).
Note that from Eqs. (24) —(26) the Fermi momenta de-

pend on the internal field variables o., co0, pm and the two
independent chemical potentials p„p, for conserved
baryon and electric charges, so that the expressions for
the baryon and charge density, [Eqs. (27) and (31)] in the
hadronic phase are in accordance with the dependences

(
2 2)3/2Pf mfq= gqI

f 377

where the sum f is over flavors. In this simple model of
quark matter, there are no internal variables since the
quarks are assumed to form a free Fermi gas. Pressure,
densities, etc. , are specified simply by the chemical poten-
tials. We take, for the masses, m„=md=0, m, =150
MeV, and m, =1500 MeV. Because of the long time
scale, strangeness is not conserved in a star. The quark
chemical potentials for a system in chemical equilibrium
are therefore related to those for the baryon number and
electron by

p. =p. = '(p. 2p. ) pd=p—.= '(p. +p. ) . —

Charge neutrality in this pure phase can be expressed by
q+q, =0, with q given as above and q, as defined in Eqs.
(31).

In Fig. 6 the behavior of the pressure, the energy densi-
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FIG. 6. Pressure, energy density, and chemical potentials as
function of weighted baryon density [cf. Eq. (37)] when there is
more than one conserved charge.

ty weighted according to the proportion of phases,

e=(1 y)e—H(p„,p, )+ye&(p„,p, ), (37)

and chemical potentials are shown as a function of the
weighted baryon density. The monotonic increase of
pressure in the mixed phase is in sharp contrast to the be-
havior in the description involving a single chemical po-
tential, which was shown in Fig. 2. It is interesting also
to compare the density of hadronic and quark matter in
the mixed phase in the two cases. In the present instance,
this is shown in Fig. 7. The densities are different in the
two phases in equilibrium, but only by a few percent, ex-
cept at the low-density end of the mixed phase, and they
vary with the proportion of the phases. In contrast,
when only one charge is conserved, as in Fig. 2, the densi-

ty of each phase is a constant for all proportions and the
density of the quark phase is about a factor 2 larger than

the confined hadronic phase. In a word, a first-order
phase transition in a system with more than one con-
served charge is smooth compared with one in which
there is a single charge. The populations in the star at
the mass limit are shown as a function of Schwarzschild
radius in Fig. 8. The entire core of the star out to 7.5 km
is in the mixed phase. Populations of quarks are very
high within 5 km. The quark matter phase is seen to be
negatively charged, while the hadronic matter phase is
positively charged. This has been explained in See. IV as
a consequence of the isospin-symmetry force of the
strong interaction. Their charges are almost equal and
opposite through most of the star, the lepton populations
which complete the charge neutrality being very small.

The masses of stars in the two cases were compared in
Fig. 3. Unlike the situation where the star is artificially
treated as having a single conserved charge with a conse-
quent constant pressure in the mixed phase and therefore
an absence of stable stars with central densities falling in
the range of the mixed phase, in the case with two con-
served charges, as corresponds to a star in P equilibrium,
there is no unstable range until the normal Oppenheimer
mass limit is reached. The density profile of the two
cases was compared in Fig. 4.

We have solved both models in the limit of infinite uni-
form matter. Thus we assume that all significant regions
of space occupied by either phase are large in the sense
that the volume energy is large compared with the sur-
face and Coulomb rearrangement energies associated
with the nonuniform distribution of charge in the mixed
phase. This is the spirit of beginning an investigation in
the natural hierarchy of considering first the bulk energy.
From dimensional arguments Coulomb and surface ener-

gy densities are of the same order. [The Coulomb energy
density is ec -(1/V)(p, V, )(p2 Vt )/r, 2 r, -while

e,„,r r/V -1/r -Minim. izing the sum with respect to
dimension, we find e,„,r=2ec.] We note that the volume
energy against which the importance of these finite-size
effects are to be assessed can be read from Fig. 7 and is
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FIG. 7. Baryon and energy densities of each phase as a func-
tion of weighted baryon density. The proportion of the phases
varies from pure hadronic at the low end of the mixed phase to
pure quark matter at the high end.
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FIG. 8 Composition of a hybrid star at the mass limit. Exte-
rior to about 7.6 km is neutron-star matter. Interior to this is a
mixed phase of confined hadronic and quark matter which is
overall charge neutral.
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seen to be —1 GeV/fm . We also note that the
differences in the energies densities of the two phases of
the mixed phase are nearly the same, and so we expect
the surface energy to be small. Therefore, although the
geometric texture of the mixed phase is likely to be an
important feature of the mixed phase, the energy associ-
ated with it may be small and is assumed to be so in this
paper.

VI. SUMMARY

We extended the discussion of first-order phase transi-
tions in bulk rnatter to the general case that there is more
than one conserved charge in the system, called a com-
plex system, and applied it for the first time to the possi-
ble phase transition in the core of neutron stars from had-
rons to quark matter. In this paper we neglect finite-size
effects that will be associated with the formation of
geometric structure of one phase immersed in the other.

For a complex system, the conserved charges can be
shared by the two phases in equilibrium in different con-
centrations in each phase than those with which the body
was prepared, consistent with the conservation laws, and
it will do so if there are internal forces and Fermi ener-
gies which would lower the energy. In fact, it is incorrect
to insist that the phases in equilibrium satisfy the conser-
vation laws individually, according, say, to their propor-
tion; Gibbs conditions would be violated in general, as we
showed. The condition that the phases in equilibrium
satisfy the conservation laws, not individually but only
overall, amounts to a weaker constraint. For two phases
in equilibrium, there are n —1 independent ratios of
charge densities (concentrations) that the internal forces
can optimize. How much weaker the conservation condi-
tions are in the mixed phase of a complex system com-
pared with the pure phases obviously depends on the pro-
portions of the phases in equilibrium. (At the extremes of
the mixed phase, the constraint is as strong as in the
neighboring pure phase, while it is weaker in between. )

The energy will therefore vary in a nonlinear fashion with
respect to the proportion (or density). Therefore the
pressure will Uary as the proportion and also the chemical
potentials. Of course, this freedom is not available to the
system when in a pure phase, nor is it available to a sim-

ple system, a single-component system. Compared with
first-order phase transitions in single-component systems,
such as water, the differences in properties of the mixed
phase are dramatic. The constancy of the pressure at all
proportions of phases in equilibrium in the latter case is
well known, but is peculiar to there being but one con-
served "charge. " When there is more than one, the
mixed phase has the degrees of freedom just written of
which are otherwise not available.

Finding phase equilibrium in the general case is far
from trivial. It requires solving simultaneously the equa-
tions of motion of the internal structure of the body,
[Eqs. (8) and (9)] for taboo solutions {P&], {$2{ that are
coupled by the conservation laws [Eqs. (13)] and that
satisfy the Gibbs conditions summarized in Eq. (10) for
arbitrary proportions g in the mixed phase.

Many systems in chemistry, physics, and astrophysics

that undergo phase transitions are complex in the sense
of containing more than one conserved charge. There are
many cases in the literature where a complex system has
been fitted into the mold of a simple one by approxima-
tion. The consequences in the case that we have examined
are drastic. For example, to assess whether neutron stars
are likely to have quark cores, many authors approximat-
ed both phases as the equivalent of pure neutron matter
[2]. This turns a complex system into a simple one and
has unexpected and unintended consequences, both for
the estimate of the density at which the transition is ex-
pected to occur, as well as for the structure of the result-
ing stars if the transition does occur. First, neutron
matter is /3 unstable and the corresponding quark phase
especially so. This latter fact leads to an estimate of the
density at which neutron matter converts to quark
matter, that is, —3 —4 times too high in comparison with
a calculation that takes account of the equilibrium of the
system and the conservation of the two charges of the re-
sulting problem. Thus an estimate by Baym and Chin [2]
that the transition density is at -10po and therefore like-
ly beyond the density found in neutron stars becomes

3po a density that is expected in neutron stars. Furth-
errnore, there are structural differences in the star model
that result from the treatment of the phase transition as if
it occurred in a simple body. The mixed phase in a sim-
ple body cannot exist in the presence of gravity, because
the pressure in that phase is constant. As noted, this
causes a discontinuity in the density distribution in the
star occurring at the radius where Gibbs criteria are
satisfied. Subject to the caveats discussed in Sec. IV in a
compact star in /3 equilibrium, involving as it does both
the conserved baryon and electric charge, the transition
region is smoothed out; the density distribution is con-
tinuous; only its derivative is discontinuous at the boun-
daries of the mixed phase with the pure phases. The
mixed phase occupies a finite region of the star. In our
particular example, it occupied the inner sphere of 7 km
radius.

The question naturally arises whether the differences in
star structure attributable to our handling of the conser-
vation laws compared with earlier approximations would
cause the physics of the star to be different in an observ-
able way. One cannot directly measure the density distri-
bution, for example. What our finding does imply in this
respect is that hybrid stars do not form a separate class
from neutron stars, as they would appear to do if forced
into the mold of bodies lacking the degree of freedom
available to complex bodies. This is relevant as far as
their ability to sustain fast rotation is concerned, since
the energy distribution in a hybrid star, when treated as
the complex body that it is, continuous, just as in neutron
stars. Another way in which we expect differences to
occur that are connected to observables is in viscosity,
which influences stability to fast rotation [21], and trans-
port properties, which, of course, inAuence the cooling
rate and electrical conductivity of the core, which in turn
influences the decay rate of the magnetic field on which
the observation of pulsed radiation depends. These ex-
pectations are grounded on the finite width of the mixed
phase and its expected varying topological structure
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(blobs, rods, slabs) with depth, on the one hand, and the
different transport properties of the two phases, on the
other hand [22].

One important facet of the example that we studied has
been neglected in this paper: the actual geometric struc-
tures in the mixed phase that evolve as a function of pres-
sure and their contribution to the energy density and
pressure. This involves the unsolved problem of the sur-
face energy between dense nuclear and quark matter.
For the treatment of our example to be reasonable, the
bulk matter approximation that we have used to obtain
an equation of state for each phase must be a good one.
This means two things. (1) Bulk energy dominates sur-
face and Coulomb displacement energies, the competition
between which determines the sizes and shapes of the
blobs of one phase immersed in the other. We have ar-
gued but not proved that this is so. (2) If there are pro-
portions for which the size of the objects of one phase im-
mersed in the other is too small for the (uniform) bulk ap-
proximation to be valid, the total energy must nonethe-
less be dominated by the bulk energy of the other phase.
Since this situation is likely to arise when the mixed

phase has a preponderance of one phase or the other, this
condition is likely to be satisfied by the dominant phase,
the total energy of the low-proportion phase being small

by comparison.
The outstanding problems involved in an understand-

ing of the hadron-to-quark matter phase transition in
neutron stars, aside from the description of these phases
of matter themselves, relate to the geometric structure of
the mixed phase and its evolution with the proportion of
phases. This involves the surface interface energy be-
tween the two phases and the degree to which the regions
of one phase immersed in the other are uniform or
nonuniform as a result of the Coulomb interaction.
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