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We describe a natural particle-physics basis for late-time phase transitions in the Universe. Such a
transition can seed the formation of large-scale structure while leaving a minimal imprint upon the mi-
crowave background anisotropy. The key ingredient is an ultralight pseudo Nambu-Goldstone boson
with an astronomically large (-kpc —Mpc) Compton wavelength. We analyze the cosmological signa-
tures of and constraints upon a wide class of scenarios which do not involve domain walls. In addition
to seeding structure, coherent ultralight bosons may also provide unclustered dark matter in a spatially
flat universe, Q&-—1.
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I. INTRODUCTION

In a few remarkable instances, modern particle physics
theory has predicted the existence of new phenomena on
macroscopic distance scales. One well-known example is
the axion, a hypothetical pseudo Nambu Goldstone bo-
son (PNGB) associated with the Peccei-Quinn symmetry,
introduced to solve the strong CP problem [1]. Axions
arise when a global U(1)p& symmetry is spontaneously
broken by the vacuum expectation value of a complex

ia /f
scalar at the scale f„(4)=f, e ', at this scale, the ax-
ion, the angular field a around the infinitely degenerate
minimum of the potential, is a massless Nambu-
Goldstone boson. QCD instantons explicitly break the
global symmetry at the scale f„-100MeV, generating
the axion mass m, =O(m f If, ). Since its couplings
and mass are suppressed by inverse powers of f„the ax-
ion is very light and very weakly interacting. Neverthe-
less, it can play an important role in astrophysics and
cosmology; indeed, astrophysical and cosmological argu-
ments constrain the global symmetry-breaking scale to lie
in a narrow window around f, —10' —10' GeV. Thus,
the axion mass m, —10 eV (10' GeVIf, ), and its
Compton wavelength is macroscopic, A,, —(f, /10' GeV)
cm. Although motivated by the strong CP problem, the
axion is a particular instance of a more general
phenomenon, and it portends an important lesson: the
physical world may contain many new phenomena in the
far infrared which are not directly accessible in the labo-
ratory, but which may play an important role in the de-
velopment of the early Universe.

Axions may be generalized to include familons and

Majorons [2], as well as more exotic objects [3]. Recent-
ly, a class of PNGB's closely related to familons (called
"schizons"), with masses of order m&—-mt„;,„If, has
been analyzed in some detail [4]. If one associates
m &„;,„with a hypothetical neutrino mass, m -0.01—1

eV, and f -MoUT —
Mp&

—10' —10' GeV, one arrives at
a cosmologically interesting scale for the boson Compton
wavelength, A,&-f /m, —1 Kpc to 1 Mpc. This natural-

ly leads to the idea of a "late-time phase transition
(LTPT)," i.e., a vacuum rearrangement occurring at the
very low temperature T, —m, which may generate
structure on a correspondingly large scale [5]. If it
occurs after decoupling of the cosmic background radia-
tion at Td„-—0.3 eV, such a late transition opens the pos-
sibility of forming large-scale structure without imprint-
ing an excessive angular anisotropy 5T/T on the 3 K mi-
crowave background. It was originally proposed that
"soft" domain walls, with a thickness of order
m

&

' —f Im „would form in discrete symmetry breaking
at T, -m, and generate nonlinear density fluctuations,
while (it was hoped) avoiding direct imprinting of the
walls upon the background radiation [5].

The idea of a late-time phase transition is, we believe,
more general than the particular realizations that have
been suggested. However, it is in need of specific detailed
models and further theoretical refinement before it can be
assessed and tested. Preliminary numerical analysis has
suggested that soft domain walls of ultralight PNGB's
may remain potentially problematic, since it has been ar-
gued that at least one large wall ultimately extends across
our Hubble volume [6], leading to unacceptably large mi-
crowave background fluctuations [7]. It is unclear, how-
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ever, whether these simulations are ultimately definitive;

they do not necessarily have the resolution to see the for-
mation of small structures, such as "vacuum bags, "
which Widrow and others have argued may provide an
attractive mechanism for the formation of accretion
centers [8]. Moreover, it is conceivable that one might
still arrive at a viable soft-domain-wall scenario with suit-
able modifications, e.g., if the walls are subject to strong
friction due to the surrounding medium, or if they divide
regions of differing neutrino mass [9]. In this paper, we
will not consider domain-wall scenarios further.

Recently, Press, Ryden, and Spergel (PRS) have con-
sidered an alternative possibility of a second-order late-
time phase transition and its consequences for large-scale
structure [10], without invoking domain walls. In their
model, nonlinear fluctuations in an evolving soft-boson
field directly generate large-scale structure (and voids) on
scales -30h ' Mpc. In addition, the coherent oscilla-
tions of the field provide dark matter with critical density
Q&=l. The soft bosons are nonrelativistic, but their
Cornpton wavelength is so large that they do not cluster
on galaxy or cluster scales, in agreement with the fact
that the inferred density of matter clustered on these
scales is only Q=0. 1-0.2. In this model, the dark
matter in galaxies and clusters is thus purely baryonic;
this is marginally consistent with limits on the baryon
density Qb from big-bang nucleosynthesis. If viable, this
scenario is attractive, since it brings together a variety of
cosmological problems and solves them in one model.
Yet, an important issue is whether such a model is
reasonable from the viewpoint of particle physics.

Our only rational guideline in thinking about
ultralow-mass particles is the principle of "naturalness. "
This is a well-defined operational principle in theoretical
elementary particle physics, first stated by 't Hooft [11].
In this regard, small mass scales must be "protected" by
symmetries, such that when the small masses are set to
zero they cannot be generated in any order of perturba-
tion theory, owing to the restrictive symmetry. We will
not enter here into a general or complete discussion of
this mechanism, and how to ensure its implementation,
since the literature of particle theory is infused with this
principle (see, e.g., Refs. [4,12] for a more lengthy discus-
sion of naturalness in the schizon models and in thermal
physics of soft bosons). In its strongest form, the princi-
ple of naturalness requires that small mass scales (or large
hierarchies) must appear as a consequence of some plausi-
ble mechanism (in addition to being protected once they
appear). While the cosmological implications depend
upon dynamics and are generally insensitive to whether
or not a given model Lagrangian has been fine tuned, the
form of any given low-energy effective Lagrangian, and
its finite-temperature corrections [12], will be strongly
influenced by the symmetries of the interactions of the
full theory. Let us summarize the constraint of natural-
ness in the present context.

As mentioned above, there can exist a general class of
PNGB's ("schizons" [4]), with masses m, -mr„;,„If„
where the decay constant f, is naturally associated with
the GUT or Planck scale, f, —10' —10'9 GeV. Here, the
small schizon mass is protected by fermionic chiral sym-

II. MODELS

Above, we argued that an ultralight boson mass scale
naturally arises only in models which implement sym-
rnetries in an appropriate way. In this section, we review
two classes of toy models with the desired properties:
neutrino schizon models and a hidden axion model.

Consider first the low-energy effective Lagrangian
which contains a neutrino field v:

+vz I,y" B„v&+movt vie'~~I+H. c. , (2.1)

rnetries or additional discrete symmetries and is therefore
technically natural. That is, when certain fermion mass

terms are set to zero in the Lagrangian, the schizon mass

goes to zero; the fermion mass terms will not be generat-
ed in any order of perturbation theory. Farnilons or
schizons are really not significantly less compelling than
axions; indeed, if one accepts the existence of axions, then
it would seem undemocratic of nature not to supply
PNGB brethren such as familons or schizons.

From this perspective, the "soft-boson" model of PRS,
while cosmologically interesting, is highly unnatural.
The Lagrangian is that of a self-interacting complex sca-
lar field with potential V(P P)=A,(P P

—u ) and the
scale v =10' GeV. The mass term for the scalar field,
m&=2kir2v, is fine tuned to be of order m& ——2X10
eV =(30 kpc) ' by fixing the self-coupling constant to be
X=10 ' . Moreover, the field is assumed to have nor-
mal strength interactions with other particles. In any
quantum-field-theoretic version of the model, these in-

teractions would lead to an uncontrollable quadratic
divergence of the mass term (and a logarithmic diver-

gence of the self-coupling). Thus, to maintain the small
mass term one must fine tune the theory in each order of
perturbation theory. Also, even if one is willing to accept
the unnatural fine tuning of the Lagrangian, the initial
condition imposed on the field, P, /u 510, is ad hoc
and fine tuned. Nevertheless, given the interesting

cosmological consequences of the PRS scenario, we feel it
is worth pursuing more plausible particle-physics models
which can incorporate its attractive features.

Thus, in this paper we attempt to "naturalize" and arn-

plify the proposal of a late-time phase transition. We will

largely dispense with domain walls and instead follow the
route of PRS without, however, invoking unnatural fine

tunings of parameters or of initial conditions. In Sec. II,
we exploit the aforementioned properties of PNGB's to
construct a class of well-defined LTPT models which are
acceptable from the point of view of naturalness. In Sec.
III, we abstract the general features of these models and
discuss the resulting cosmological scenarios in detail. We
follow with the conclusion, in which we also speculate on
other possible consequences of an ultralight PNGB field
which became dynamical at recent epochs. In the forth-
coming second paper of this series (hereafter, paper II),
we study structure formation arising from the dynamics
of a light PNGB field under a wider variety of initial con-
ditions, and we explore concomitant constraints from the
microwave-background anisotropy.
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VL, e VL, vR e VR, P P+2cxf . (2.2)

Such a theory has several important and well-known
properties. (1) It can be embedded in a fully renormaliz-
able theory in which a U(1)-invariant complex field devel-

ops a vacuum expectation value, (4) =f /&2, and P is
then the residual Nambu-Goldstone boson; (2) X is itself
renormalizable for a small cutoff A, up to suppressed
counterterms of order A/f; (3) P will be identically mass-
less unless terms are introduced which explicitly break
the chiral symmetry; (4) P satisfies "Adler decoupling, "
i.e., we may replace v everywhere by v':

where v[z L) are, respectively, right- and left-handed pro-
jections, vlR il=(1+?' )v/2. The term proportional to
mo can arise from a Yukawa coupling gVI v~4+H. c. ,

where the complex scalar field 4 has a nonzero vacuum
expectation value, (4) =fe'~~ /&2, and mo: gf—l&2.
This is a familiar chiral Lagrangian, possessing the con-
tinuous chiral symmetry

symmetry limit. However, just adding the mass term for
lt) has one special property: it breaks the symmetry only
in the mass term of P and the decoupling theorem will
still hold.

What kind of deeper structure might give rise to such a
mass term for P? In the case of QCD, the proton and
neutron are analogues of the v field and the pion is the
analogue of P. The deeper structure that breaks the
chiral symmetry there is the presence of light-quark
masses, which are not chirally invariant. This leads to
the nonzero pion mass, and a small non-chiral-invariant
contribution to the nucleon mass (the o term). We can
make an analogy to this situation in the present case by
adding an explicit neutrino mass term to the Lagrangian
that breaks the chiral symmetry. The low-energy La-
grangian then becomes

, a„y-a~y+v, i&~ a„v, +vR l) a„v„

+ ( m ovi vR e ' +evL vR +H. c. )

i P/2f
Vl —

VL e
—i P/2f (2.3) +K cos +8 (2.7)

We thus see that P disappears in the mass term but cou-
ples derivatively to the neutrino as 8"Pv 'y y„v' If.
Therefore, for small P momentum q„,P emission or ab-

sorption amplitudes will tend to zero. As a consequence
of this decoupling theorem, l)) will not mediate a long-
range I/r force (we note, however, that the decoupling
theorem can be violated when the symmetry is broken by
a non-chiral-invariant mass term).

Let us now consider explicitly breaking the symmetry.
To the Lagrangian of (2.1) we may add a small mass term
of unknown origin. Usually this comes from some deeper
symmetry breaking in the theory which breaks the con-
tinuous U(1) down to a discrete subgroup Zlv. For exam-

ple, let us break U(l) ~Z2. This implies that
P~P+nn f remains an invariance. So we now have

=X+K cos +82
(2.4)

The physical mass of p is determined by shifting lI) to a
local minimum and then expanding the cosine to quadra-
tic order in P. We obtain

m~=2K If
and the quartic interaction term A,P /4!, where

A. =16K If

(2.5)

(2.6)

The limit ~~0 is the symmetry limit of the theory in
which we recover the full continuous U(1) chiral symme-
try. Therefore, ~ can be naturally small in the technical
sense; radiative corrections from the full theory, or even
for the effective theory, will only multiplicatively renor-
malize a, since when re=0 the symmetry prevents these
effects from generating a nonzero K (hence, small Kb„,
produces a small ~„„„,&;„d~ ~b„, in perturbation
theory). Of course, as we stated above, the mass term
comes from some deeper structure in the theory, and
when we take the symmetry limit we know that this
deeper symmetry-breaking structure has also gone to its

moeA
+1 loop 2

cos
8m

(2.8)

We can freely view this as the origin of the scale
K -Qmoe A. Thus far, this is a neutrino version of the
schizon model of Hill and Ross [4]. We note, however,
that we have ignored the possible effects of CP violation,
which can lead to induced Yukawa couplings of P to vv,
and thus to new long-range forces between neutrinos of
quasigravitational strength [4,13]; a more general model
should allow for a CP phase on the e term as discussed
below.

In this theory we see that the induced scalar mass will

be of order

m~ —moe(A /f ) —moe . (2.9)

The mass for P can now be technically naturally small

since we can tune the symmetry-breaking parameter e to
be arbitrarily tiny for large mo, e.g. , the observed neutri-

no mass is m„—mo —1 eV, while m&
—(100 Mpc) ' if

e-10 eV. The symmetry guarantees that radiative
corrections will not change this result.

This theory will generally have a late-time phase tran-
sition at a temperature of the order of the neutrino mass,
T-mo —1 eV [12]. However, having to input the small

parameter e is still not completely satisfactory. Prefer-
able is a scheme in which the scale of —100 Mpc is gen-

Notice that the U(1) symmetry is now broken here to the
trivial center by the neutrino mass terms as well as the
cosine term, and therefore only the residual discrete sym-
metry P~ P+ 2n ~f remains as an invariance. (As a
consequence, the argument of the PNGB potential is now

Plf instead of 2/If. )

Now, if ~—+0 we must also set a~0 to recover the true
symmetry limit. However, a nonzero ~ will always be in-
duced at one loop by the presence of a nonzero e and mo
[4]. With a cutoff A &f, we find the induced term
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crated by a strongly natural mechanism that involves
only the putative scales of particle physics, such as
m „-1eV and MGUT or Mp&, in concert with some addi-
tiona1 symmetry principle.

In the Lagrangian of Eq. (2.7), we observed the appear-
ance of a ("large" ) quadratically divergent contribution
to the induced mass of P, Eq. (2.8) Can we somehow
reduce the degree of divergence of this induced terms
Yes, in fact residual symmetries can readily control this.
Consider first the following schizon Lagrangian invariant
under a residual Z2 discrete symmetry:

,'a„-ya y+Vi~~a„v+giq~a~

+(m +ee'&'f+~)v~v,

+(m, —ee'~'f+~)g, q„+H.c. , (2.10)

where the allowed CP-violating phase P is arbitrary. The
continuous U(1) chiral symmetry is broken down to a re-
sidual Z2 discrete symmetry

v~y, y~v, P~P+n'f . (2.11)

If one now computes the induced P mass term, one ob-
serves that the A term of Eq. (2.8) cancels. The leading
contribution is now only log divergent:

moe A 2P
ln cos +2P (2.12)

Sa mo
+1 loop

The P mass scale that is now induced is of order

m&-moe/f . (2.13)

In this case, if e-mo —m„, we retrieve the desired result
that m&-m, /f, so that an ultralight schizon emerges
without inputting a tiny mass scale.

These models can be easily generalized to further
soften the contribution of fermion loops and eliminate the
cutoff dependence in the induced P mass altogether.
Consider the ZN-invariant chiral theory of N neutrinos:

1 N —1

a„ya~y+ y—v,.i@~a„vj
j=0

+(m +ee'~ + ~J ')v v +H. c.0 jL jR (2.14)

(Hereafter, we suppress possible CP-violating phases P.)

The U(1) chiral symmetry is broken to a residual Zz
discrete symmetry

vj~vj+„vx —, vo, P~P+2nj f/X
The one-loop correction is now

N —1 M. A2
ln

p 16m. M.

where

(2.15)

(2.16)

2mjM =m +e +2m icos +J 0 0 f (2.17)

This respects the discrete symmetry. For N & 2, the sum

QJMJ is independent of P; thus, the P-dependent term is

independent of the cutoff A, and for N & 2 we can write

4

V((t) ) = —g lnM
J

(2.18)

In this case, the P potential is explicitly calculable.
In addition to neutrino schizons, one can readily en-

visage other candidates for "natural" low-mass elementa-
ry particles. For example, consider [14] a hidden, unbro-
ken SU(2) gauge theory ("quasicolor") containing nf'

massless fermion flavors ("quasiquarks"), which unifies
with SU(3), at a scale MoUr. By the usual renormaliza-
tion group, this new force wi11 become confining at an en-

ergy scale

AQCD
ASU(2) ™GUT MGUT

(33—2n ) /(22 —2n )f f
(2.19)

Taking MGUT —10' GeV, nf =6, nf' =4, and using

AQcD-—0. 1 GeV, we obtain AsU~2) =0. 1 eV. If the quasi-
quarks are massless, then this theory will contain mass-
less quasipions, some diquark "quasibaryons" with
masses of order 2AsU[2), and an analogue of the g' with a
mass of order As„~ii (due to macroscopic instanton
effects). These are all "quasihadron" bound states on the
scale of AsU~2), and all of the phenomena wi11 be natural
in the strong sense. A quasihadronic phase transition
would occur when the Universe has a temperature
T=AsU[2), i.e., at a redshift z =400. If such a phase tran-
sition occurred within the hidden sector of a unified
theory, e.g., if the SU(2) is the low-energy remnant of the
hidden Es of superstring models, we would only know of
its existence through the gravitational effects that it pro-
duces. If the 8 parameter of the SU(2) theory becomes
associated with a dynamical field through a Peccei-
Quinn-like mechanism, i.e., via an anomalous global sym-
metry with spontaneous symmetry-breaking scale fq„
the resulting PNGB, the "quaxion, " will obtain a mass

~ —AsU~g~/fqa. For f MGUr —10' GeV, we again
find mq, -10 eV with a Compton wavelength of order
30 kpc.

It is also possible that such cosine potentials can be
generated nonperturbatively in a theory if the associated
symmetry has an anomalous current; this happens in
QCD where instantons nonperturbatively generate a
large g' mass, or a nonvanishing axion mass, through the
axial U(1) anomaly. In the present context the prefactor
of the cosine potential might be the large-scale A -f
multiplied by an extra "tunneling suppression" factor of
order exp( —8n./a), yielding a very small mass for the
PNGB. The application of ideas such as this to soft-
boson models has been suggested by Ovrut and Thomas
[15];this may ultimately be a very appealing way of gen-
erating soft-boson mass scales.

To study phase transitions in these models, we need to
know their behavior at finite temperature T [12]. For the
neutrino-schizon models, this involves integrating over a
thermal Fermi-Dirae distribution of neutrinos to get the
one-loop finite-temperature effective potential Vr( P ).
There are two subtleties here. First, one is interested in
studying effects at T-m„- eV, yet the light neutrinos
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freeze-out of thermal equilibrium at TF —1 Mev. Al-
though the neutrinos are no longer in thermal equilibri-
um, their distribution function retains the form of a red-
shifted thermal distribution so long as they are semirela-
tivistic. [This distribution is characterized by an effective
temperature T,tt= TFa(tF )/a (t), where a (t) is the cosm-
ic scale factor; one thus computes Vz. (P).] Second, the

eff

reactions that keep P in thermal equilibrium have rates of
order I —T /f . The field will be in thermal equilibrium
if this rate is larger than the Hubble expansion rate H,
where, for a radiation-dominated universe, H- T /Mpi.
Thus, the condition that P be in equilibrium, I H, cor-
responds to T )f /Mp, . Hence, for f -Mo„~, P decou-
ples thermally very early. However, we emphasize that
this does not invalidate use of the effective potential. In
the neutrino-schizon models, one computes the tempera-
ture corrections by calculating the value of operators to
which P couples, such as vv, in the appropriate density
matrix for the neutrinos. We emphasize that this is a
coherent or classical geld treatment of P and vv, corre-
sponding to a classical limit of quantum mechanics, and
it is not invalidated by the small reaction rates for P par-
ticles to scatter incoherently off of a given v excitation
[16].

The relevant temperature corrections have been calcu-
lated for the Z~-neutrino-schizon models in Ref. [12]. In
the high-temperature limit T )&mo the result is

M, (P) M (P)
b V (P)=g ' ln

J

(2.20)

Comparison with Eq. (2.18) shows that, for the Zz model,
the coeScient of the cosine potential changes sign at a
critical tetnperature T-(mo+e): the schizon undergoes
a second-order phase transition at a temperature compa-
rable to the neutrino mass. If the zero-temperature
minimum of the potential is at P/f =n., with maxima at

P/f =0,2m. , then at temperatures T)m„, P/f =rr be-

comes a local maximum of the potential, and the zero-

temperature maxima become minima. This is illustrated
in Fig. 1. On the other hand, for the N )2 models, be-

cause of the P independence of the expression g M. , in

the sum of the vacuum contribution of Eq. (2.18) and the
finite-temperature contributions of Eq. (2.20) the
dependence cancels at T ))mo. In this case, the P poten-

tial becomes asymptotically flat as the temperature is

raised, as shown in Fig. 2. As a result, the transition at
T-m in this case is analogous to the transition for an

axion potential arising from QCD instantons at T-AQcD
in which the axion mass turns on. Note that this is also
the expected finite-temperature behavior for the hidden

SU(2) quaxion model outlined above. There is, however,
a qualitative difference between the Zz)2 and quaxion
models: for the schizon models, the potential turns off
only logarithmically as the temperature is raised, while

for quaxions the instanton-induced potential is

suppressed roughly as an inverse power of the tempera-
ture. For axion models, it is well known that the temper-
ature dependence of the mass plays an important ro1e in

9
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FIG. 1. The temperature-dependent potential V7 (P )

= V(P)+ 5 Vr($) for the pseudo Nambu-Goldstone field in the
Z2-schizon model. The field exhibits a second-order phase tran-
sition at a temperature T-mo', this is characteristic of models
we classify as type II (from Ref. [12]).

I

T=O

I

I

CI+

27r//3

FIG. 2. The temperature-dependent potential for the scalar
field in a Z3-schizon model; this is typical of Zz models with

N) 2; the potential is flat at high temperature, developing a

minimum at T-mo. We classify these as type-I models (from

Ref. [12]).

determining the cosmological bound on f due to the den-
sity of coherent axion oscillations. For the schizon mod-
els, however, this temperature dependence is small: when
the schizon starts oscillating, its mass differs only loga-
rithmically from its zero-temperature value. The cosmo-
logical implications of these different behaviors will be
discussed in the next section.

In the model of Ovrut and Thomas [15],it appears that
there is no temperature dependence of the potential for
T(f; in this case, the "phase transition" will simply in-
volve the "unfreezing" of the boson field when the Hub-
ble expansion parameter becomes of the order of the P
mass. If, however, the tunneling effects which generate
the potential are associated with a mass scale M, then we
would generally expect the potential to turn on as a
power of temperature at T-M, as in the (qu)axion mod-
el.
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III. COSMOLOGY
AND LATE-TIME PHASE TRANSITIONS

where the finite-temperature potential is

Vr(P)=IJ, [2+c(T)[c so(P/f) —1][ . (3.1b)

Here, P is a real PNGB scalar field; f is the scale of glo-
bal spontaneous symmetry breaking, assumed to be of the
order of the grand unification or Planck scale,

f—10' —10' GeV; and p, is an explicit symmetry-
breaking scale associated, e.g., with a light-neutrino mass
or a hidden strong-interaction scale taken to be of order
10 —1.0 eV. By suitable rescaling of p we can set
c (T =0)=1, and we have inserted a constant term in the
potential to ensure a vanishing cosmological constant in
the usual way.

From the discussion of particle-physics models in Sec.
II, we extract three broad classes of models for the tem-
perature dependence of the potential.

(I) Models in which c(T)=0 at high temperatures,
T))T,-p, and the potential turns on approximately
logarithmically at a critical temperature T-T, -p; for
these models, c ( T)-1 for T & T, . The Z~-schizon mod-
els with X)2 are in this category.

(II) Models in which c (T) is a slowly varying function
of temperature that changes sign at a critical temperature
T, -p, defined by c(T, )=0: for example, in the Z2-
schizon model, c(T)-ln(T, /T), where T, -IJ, -m„. For
models of this type, the Universe goes through a second-
order phase transition at the critical temperature T, . For
TAT„we will generally assume ~c(T)~ —l.

(III) Models in which c(T)=0 for high temperatures,
T))T„and the potential turns on roughly as a power
law in temperature near a critical temperature,
c(T)=(T,/T)", n-a small number (for T& T, ). For
these inodels, c ( T) —1 for T & T, . For example, the
quaxion model, where the instanton-induced potential is
suppressed at high temperature, is of this type.

We will not explicitly consider a fourth logical possibil-
ity, that c(T) is constant for all T, as in the Ovrut-
Thomas model with a high-energy tunneling scale. This
possibility is implicitly included in some of the cases dis-
cussed below.

Abstracting from the models of the preceding section,
we generally expect the critical temperature to be of the
order of the explicit breaking scale, T, —p; we will define

g=T /p-1 (3.2)

as a third parameter of the model, which is naturally of
order unity. We note that, in some cases, the potential
term in Eq. (3.1} may actually be absent until the

Having discussed a variety of underlying particle phys-
ics models for late phase transitions, we now turn to their
cosmological implications. We will examine conse-
quences that are relatively insensitive to the details of
particular models. Thus, we assume the existence of a
generic PNGB with a phenomenological Lagrangian
given as a function of temperature:

(3.1a)

Universe cools to the electroweak-symmetry-breaking
scale, T-100 GeV. Indeed, in the schizon models this is
necessarily so, since the potential term arises from quark
or lepton masses, which do not appear until electroweak
breaking.

With the generic temperature dependence of the poten-
tial in hand, we now discuss the cosmological evolution
of the scalar field in broad outline. %'e focus here upon
the spatially homogeneous, zero-momentum mode of the
field, P( t) = ( P(x, t) }, where the angular brackets here
denote spatial averaging. In paper II we study the evolu-
tion of spatial fluctuations in the field; here we are irnpli-

citly assuming that these fluctuations do not strongly per-
turb the zero mode. This is certainly the case if the fluc-
tuation amplitude is small compared to P as would be ex-

pected, e.g., after inflation if the reheat temperature
T,h &f: in this case, aside from inflation-induced quan-
tum fluctuations, the field will be homogeneous over
many present Hubble volumes. On the other hand, if
inflation did not take place, or if T,„)f so that the glo-
bal symmetry is broken again after inflation, we generally
expect large spatial gradients ("Kibble gradients"} in the
field due to the fact that P/f is uncorrelated on scales
larger than the Hubble radius when the transition at
T-f occurs. In this case, it may not make sense to talk
of a zero-momentum mode [17], but, at least in the ab-
sence of light-boson production by topological defects,
the zero-mode treatment does lead to an estimate of the
scalar energy density which should be accurate in order
of magnitude, since the (neglected) gradient-energy term
is comparable to the potential-energy term [18].

We assume that at temperatures f ~ T))T„P is a
classical-field expectation value, randomly placed on its
potential. The scalar equation of motion is

P+3H$+ =0,
dP

(3.3)

(3.4)

the P field becomes free to roll down the potential, rnodu-
lo Hubble damping. There will then result spatially
coherent oscillations about the potential minimum; once
the amplitude is sufficiently small that the oscillations are
approxiinately harmonic, the P stress tensor is that of a
nonrelativistic particle (pressureless dust). The coherent
P oscillations may currently dominate the mass density of
the Universe, providing (unclustered) dark matter, but
they must satisfy Q&(1. This condition provides a con-
straint on the parameter space off, p, , and g' (see below).

where the Hubble parameter is given by
~ =(8~/3mpi)p for a spatially flat universe. At these
high temperatures, the Compton wavelength of the field
is much larger than the Hubble radius, so the potential
term is negligible compared to the Hubble damping term
(P is effectively massless). In this limit, the solution is
time independent, P(t) =P, ; i.e., the field is frozen to its
initial value.

As the temperature drops below T„defined by the
point where
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%'e now discuss the cosmic evolution of the scalar field
for the three classes of models in more depth.

2

P(T, )=a(T, )
24vrf (3.9)

A. Model I

For these models, the potential is Hat at high tempera-
tures and turns on rapidly at the critical temperature T,
(see Fig. 2). We shall approximate their behavior by let-
ting

(3.5)

The model is described by three parameters f, p, and g
(or T, }, and it is useful to define three important charac-
teristic temperatures: T, is the critical temperature as
defined above (i.e., when the potential goes from being
fiat to curved); T„ is the temperature, defined above,
when the Hubble damping ceases and the field begins to
oscillate in the potential; and Td is the temperature when
the energy density of the scalar field begins to dominate
over baryons (if ever). By definition T„&T, .

We will assume that the initial value of the field, P, is
not extremely close to the maximum or minimum of the
zero-temperature potential. For a typical initial value of
the field, the potential-energy density at the critical tem-
perature is of order VT (Pi)=p . It is convenient to
define a parameter a which characterizes the ratio of the
scalar energy density to the baryon density:

(T) P{
p

(3.6)

Thus, the temperature Td is defined by a( Td ) = 1. Since
ps(T, )=Quip, „;,(T, /To), and using T, =g)u, we have

TP 0
~

3p 0.02

Q~p „g' eV Qsh' ' (3.7)

where, in the last equality, we have used the present
microwave-background temperature Tp =2.4X 10 eV
and the critical density p„;,=8.1X10 "h eV . We also
define the ratio

For this case, since a( T, ) & 1, we have

P( T, ) & m p]24mf. . Again, we subdivide the possibilities.
(la) f &mp~/V'24vr=1. 4X10' GeV. In this case we

are guaranteed to have P( T, ) & 1 so that T„(T, : once the
potential "turns on, " the field remains frozen to its initial
value for a while because of Hubble damping. As a re-
sult, the scalar energy density remains approximately
constant (instead of reshifting), acting as a cosmological
constant during this phase. Since the baryon density red-
shifts, the ratio a(T} grows as a-T, giving us the
more general relation P(T)=a(T)m p~/24~f, so that
P( T) & a( T). Thus a( T) reaches unity before P( T) does:
P is frozen to its initial value until after it dominates the
energy density; i.e., we have the relation T, ) Td ) T, .
This can be seen from evaluating

/31

p
+apcrit

4/3

Td Tp

=2 eV
eV

0.02

n, h2
(3.10)

while the critical temperature is given by
1/3

Tc

Tp
p

a(T, )Qsp„;,
(3.11)

Thus Td/T, =a'~ (T, )&1. The evolution of the scalar
and baryon densities is shown schematically in Fig. 3.

Once the temperature drops below Td, the scalar ener-

gy density dominates the expansion rate, and the expres-
sion for P(T) changes. Initially, at T just below Td, the
field is still frozen at its initial value, so the density
V( P) =p =const. In this case, we find

P( T & Td ) =m p~ /24~ f Since f & m .p, /&24m, this im-

plies P( T & Td }& 1, so the field remains approximately
frozen. In actuality, however, the field does evolve to-
ward the minimum, but on a time scale slower than the

/m~@/

P(T) =
9H T

(3.8) '. Pbaryon

Thus, the temperature T„at which the field starts oscil-
lating is defined by P( T„)= 1.

It is convenient to divide the discussion of this model
into two subcases. (1) a( T, ) & 1, i.e.,

lu & (g /8. 5)(Q&h /0. 02) eV: baryons dominate at
T =T, and T, & Td, (2) a(T, ) & 1: P dominates at T, and

Td )T, . We consider these two cases separately.

1. Case 1: a(T,) & 1 &og [a(t.lj

Since baryons dominate at T„we must use the baryon
density to determine the expansion rate in the denomina-
tor of P [Eq. (3.8}];for a typical field value on the poten-
tial, we have

~
m P =p /f, and so

FIG. 3. The evolution of the scalar and baryon energy densi-
ties p~ and pz as a function of the scale factor a (t) for model I,
case (la). In this case, the scalar field presently dominates the

energy density.
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expansion time H '. When P(T)&1, the field slowly
rolls down the potential with a characteristic growth rate
P-exp(m &t /3H )-exp(3HtP). One can think of this as
a brief period of slow rollover quasi-inflation beginning at
T=Td and ending when the field begins to roll rapidly
down the potential at T= T, . As we shall see, however,
this epoch must be very brief, so that the Universe never
enters a full-blown exponential de Sitter inflation.

With a simple approximation, we can analyze the
slow-rollover epoch: we assume that the baryon density
is negligible compared to the scalar density at T & Td and
that the scalar-energy density remains constant from
T=Td down to T=T„below which it subsequently
scales as nonrelativistic matter. As a result we have, at
the present epoch,

t 3
Q~ T —3N

Q~

pa
(3.12)

py p Td

where N, =in(Td/T„) is the number of e-folds of the
scale factor during the quasi-inflationary epoch between
Td and T„(note that we are not assuming exponential ex-
pansion during this phase). Since big-bang nucleosyn-
thesis suggests Qz —-0.01-0.21, we require

N, =(1+0.5)+ —,
' lnQ~ (3.13)

e-folds of quasi-inflation; i.e., the scalar field should slow-

ly roll only for about one expansion time.
The slow rollover of a scalar field in a potential of the

form (3.1) has been analyzed recently in the context of a
model of inflation [19], and we can apply those results
here. The slow-rollover phase ends, and the field begins
oscillating, when the field reaches a value P =P„, given
implicitly by ~ V'(P„)mp, /V(P„) ~

=&48m. or

si (nP„/f )

1+cos(P„/f )

&48ir
N1 P1

(3.14)

Note that this generally happens while
~
V"((())~ -9H,

i.e., slightly before the field begins oscillating according
to our criterion P( T)= 1 above. For example, for
f=m p, , we have P, /f =2.98, while for
f=m pi/v'24m, p, lf = 1.9. If the field begins (at T = Td )

at a value P =Pi, the number of slow-roll e-folds before it
begins to oscillate is

'' Pbaryon

log [a(t)]

can still play an important role in structure formation
(see paper II).

For this case the parameter space again naturally splits
into two regimes: (lbi) either the oscillations occur after
the phase transition, T„&T„which happens if P(T, ) & 1,
or (lbii) the field starts oscillating as soon as the potential
turns on, T„=T„which corresponds to P(T, ) ~ 1. From
Eqs. (3.7) and (3.9), in the first regime (lbi),

gi eP 24rrf i
JM 2 , Tq T~( (3.16)

and the oscillations begin at the temperature

PlP PlP1

24m.f Q~p„;,

The second regime (1bii) corresponds to

(3.17)

24nf &8.5g
~ P 0.02

1, T„=T, .
PygP1 eV Q~h

(3.18)

In this case, the ratio of the Hubble radius to the P
Compton wavelength when it begins oscillating is ap-
proximately N„=P'~ (T, ), or

FIG. 4. The evolution of p& and pz for model I, case (1b).
Here, the scalar field never dominates the energy density of the
Universe.

sin(P„/2f )
N, (g„g„,f )= i ln

m pi sin(P, /2f )
(3.15)

N„
3m pl p

&24~g'f

1/2
0.02
n~h2

(3.19)

To achieve N, =0.5 —1.5 requires, for example,
P&/f =2.63—2. 82 if f=mpi and Pi/f =0.17—0.79 if
f=mp~/i 24ir. Note that these values are only indica-
tive: for N, =l, the approximation p(P)))pii that we
have adopted is not well justified.

(1b) f &mp~/i/24m. . In this case, from Eq. (3.9), we
have P(T)) a(T), so that P starts to oscillate before it
dominates the energy density. Once it begins oscillating,
p& scales like nonrelativistic matter, i.e., like p&, so it nev-
er dominates the energy density, pal&ps for all T. (See
Fig. 4). In this case P cannot be the dark matter, but it

which may be substantially larger than one. This is in
contrast with the usual case, e.g., for the axion, which
starts oscillating when N„=m

&
/3H =H '/3A, &-—1.

This difference has important ramifications when we con-
sider structure formation in these models.

Briefly, in the scenario of Ref. [10],the scalar field gen-
erates nonlinear perturbations on the scale of its Comp-
ton wavelength; unless N„&&1 or the transition occurs
before recombination, this may lead to unacceptably large
microwave-background amsotropies (see paper II).
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2. Case 2: a(T,) &1

In this case the scalar field dominates the energy densi-
ty at T, and Td )T, T„. From the discussion below Eq.
(3.11), before the field starts redshifting we have
p( T) = m PI l247rf W. e therefore split the discussion
again into two subcases.

(2a) f & m p, I&247r. In this case p( T, ) & 1, so the field
at T, (i.e., T, & T„) and may undergo a brief quasi-
inflationary slow rollover. This is similar to case (la).
Inflation actually begins at T = Td given by Eq. (3.10).
However, in the range Td )T) T, the potential is Rat
and the field does not roll classically. The number of e-
folds of inAation between T, and T„ is constrained by the
requirement, analogous to Eqs. (3.12) and (3.13), that

3N (T, T„)a( T„)=a( T, )e
B B

(3.20)

3

p(
1

=1 4h~o( eV, Q~(1,
To

(3.21)

where the present value of the Hubble parameter is
Ho =50h so km/sec Mpc, and observations indicate
1 & h ~0 & 2. (We use the parameter h ~o because its default
value of 1 yields marginal agreement with globular clus-
ter ages if 0=1.) For fixed physical scale p, we may
think of this as determining the required value of g. For
IL1-1 eV, the scalar field provides closure density if g- l.
Since we expect g to be of order unity, this shows that the
natural explicit symmetry-breaking scale for a coherently
oscillating field that dominates the present energy density
is in the eV range. That this is far below the QCD scale
(AOcD-100 MeV), which sets the scale for axion oscilla-
tions, does not contradict the fact that axions may also
dominate the density (if f—10' GeV) because the tem-
perature dependence of the axion potential is different
(see model III below).

For closure-density bosons (0&=1), using g(ILI, ) from
Eq. (3.21), we find the critical temperature

4/3

T, =pg(IM)=0. 9h,~
~ eV p

eV
(Q~= 1) (3.22)

and the redshift of the transition

where a(T, ) is given by Eq. (3.7). Since for case 2

a( T, ) ) 1, this yields the requirement that
N, (T„T„)& —,'lnQs ' (0.5 —1.5; again, the number of
inflationary e-folds must be small. For fixed p and g, Eq.
(3.20) fixes the number of e-folds required to have the
proper ratio of scalar to baryon density today; from Eqs.
(3.14}and (3.15), this fixes the required initial value of the
scalar field pI. Since the number of e-folds is small, the
initial value of the field must in general be reasonably
large, i.e., not fine tuned very close to the origin.

(2b) f (mpilt 247r Here p. (T, )) 1, so the field starts
oscillating at the critical temperature, T„=T,. In this
case, the ratio of the scalar to baryon densities is
preserved, a(TO)=a(T, ). For Q&(1 we thus require
a( T, ) ( 1/Qe; using Eq. (3.7), this yields the constraint

10
I

[
I I I I I I

5x101B

(la)

2x1018
Py&PaT, &Td&T„

f = MPI/(247r)

T, &T, p~&p,
10

{1bi)

17Sx10
(1bli)

172x10 — T, = Td py & ps

10
.01

I I I I I I I I I

.03 . 1

Py & Ps

I I I I I I

j
I

I
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Td & T, & T„

1
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P & Py & Pa

I

I

I

I

I

I

I

(2b) ',

I

I

I

I

I

I

I

I

1
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Py & Pc

Td & Tc

1 3

W/~ (eV}

FIG. 5. The parameter space for models I and II, showing
the different cases in the plane f (GeV) vs p lg' (eV).

T
' 4/3

1+z = =3.7X10 hC 50 V0
(0~= 1) .

8X10 eV(ph50'" &0.4 eV .

This also corresponds to the range

0.2&gh5O (0.7 .

(3.24)

(3.25)

[For completeness, for case (2a) above, the corresponding
constraint is 5 &z„(10, which yields a range for p iden-
tical to Eq. (3.24).j For reference, we note that the ratio
of the Hubble radius to the scalar Compton wavelength
at the onset of oscillations is given in this case by

N, =P'i (T, )=
mp)

v'24~f
(3.26)

For case (2b), this is larger than 1.
The parameter space for the different cases of model I

is displayed in Fig. 5.

B. Model EE

For these models the high-temperature potential does
not vanish but is inverted from the low-temperature po-
tential, as in Fig. 1. We approximate the behavior of this
class of models by choosing the temperature-dependent
coefficient in Eq. (3.1) to have the form

—1, T)T, ,

c(T)= 0, T=T, ,

1, T&T, .

(3.27)

The analysis is simi1ar to that of model I, the primary

(3.23}

If we require the transition to occur after recombination,
i.e., at z, (1000, and before the first known quasars, i.e.,
z, ) 5, Eq. (3.23) gives
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difference being that in some cases the field may now os-
cillate before the critical temperature is reached. We
must now define two temperatures: T„"' ( T„' ') is the tem-

perature when the field starts oscillating in the high-
temperature (low-temperature) potential. Clearly,
T(1)& T & T(2)

1' C

We divide the analysis into the same subcases as for
model I. Then, for cases (la), (lbi), and (2a), the behavior
of model II is identical to model I because the field is al-
ways frozen in the high-temperature potential
[P( T & T, ) & 1]; for these cases, the constraints are sum-
marized in Fig. 5. We now turn to the cases where the
field does oscillate in the high-temperature potential.

(lbii) For p in the range given by Eq. (3.18), the field
begins oscillating in the high-temperature potential, cor-
responding to T,'"& T, =T„' '. The onset of these oscil-
lations occurs when P( T„"')= 1, which implies

T(1) 4 2

(3.28)
Tp Q~p„;,24m f

As in model I, for this case the scalar oscillations never
dominate the energy density of the Universe. Neverthe-
less, it is of interest to study the behavior of the field.

When the field starts oscillating at T„'", typically there
will be rough equipartition between the kinetic and po-
tential energy of the field, and the energy density de-
creases with the expansion. After a short, the kinetic en-
ergy has redshifted to become negligible compared to the
potential energy, and the energy-momentum tensor of the
field approximate that of a vacuum state with vacuum en-
ergy p„„=2p . This does not lead to inflation, however,
because by construction the scalar field never dominates
the total energy density for this case. Defining
p&=p& —p„„,it is easy to show that p& redshifts like non-
relativistic matter, p&-R . This implies that the oscil-
lation amplitude decays as

' 3/2

(3.29)

during the high-temperature phase. Using Eqs. (3.11)
and (3.28), the amplitude at the critical temperature is
then

to model I case (2b), except that in this case due to the
high-temperature damped oscillations, the field may be
localized near the origin at the critical temperature,
P( T, ) «f. This factor is straightforwardly estimated:

P(T, )
' 1/2

24m f
mpia(T )

=~24
mpl 0

(3.32)

where in the second equality we have used
a(T, )=Q&IQ&. In this case the ratio of the Hubble ra-
dius to the Compton wavelength at T, = T„' ' is

1/2

N = ' (T, )= mp) P, Q~

+24m f P(T )
(3.33)

For some applications in paper II we will be interested
in the case where the high-temperature (in addition to the
low-temperature) oscillations begin after recombination,
i.e., z„"'=T' "/To & 10 . Using Eq. (3.28), this happens if

. 1/2 ' 1/4
&24nh 5o Q~

p&0.2 eV
0.06

(3.34)
mp1

C. Model III: Quaxions

For this class of models, we take the coefficient in Eq.
(3.1) to be

Tc
T& Tc

1 T&T . (3.35)

From the effective Lagrangian viewpoint, the parameter
n &0 corresponds to a fourth parameter of the model
(compared to three for models I and II); however, it is
determined by microphysics. In this case the potential is
flat at T»T, and gradually turns on, reaching full
strength (and its zero-temperature value) at T, . For field
values away from the maxima of the potential, it is con-
venient to expand Vr(P) around the potential minimum,

~f:

1/2
~(TC) ] p i 247rf g

/ eV Q8"—P
—1/2( T

mp, 3 p 0.02

&r(P)=f(T)+—,'m~(T)P',

where

(3.36a)

(3.30}

In this case T,' '= T„and the ratio of the Hubble radius
to the Compton wavelength at the onset of the low-
temperature oscillations is just the factor by which the
amplitude has been damped in the high-temperature
phase:

f (T)=2IJ, 1—

n/2

m (T)="
T

(T & T, ), (3.36b)

Pl /2( T (3.31}

(2b) This is the most interesting case since the scalar
field can dominate the energy density. As above we have
T„' '& Tz & T, = T,' ', the situation is qualitatively similar

We define the parameters a(T) and P(T) as before. In
this case, like the axion, the field can start oscillating at
T, & T„and it is convenient to divide the cases slightly
differently than above [20]: (1) a(T„)& 1, (i.e., a baryon-
dominated universe when the oscillations begin) and (2)
a(T, ) & 1 (the scalar field dominates the energy density
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a(T„)= p 4

pg T„Q~p,„;,( T„/To)
(3.37)

when it begins to oscillate). For a typical initial field
value, p&( T„)=p, so that

Although the scalar field never dominates the energy den-
sity in this case, it is of interest to study the damping of
its oscillations in the evolving potential. As before, if we
subtract the instantaneous zero-point energy by defining
p&=p& f (

—T), then for the harmonically oscillating field
we find

1. Case 1: a(T,) &I

T.
Tc

1/(3+ n)2
8.5 p 0.02

247rf g' eV A~h'
2 1/3

8.5 p 0.02
24~f' g' eV A, h'

T„)T

Tr&T
(3.38a)

In this case p&(T„)&pz(T„). The temperature T„at
which the field starts oscillating is determined by
I3(T„)= m&(T„) /9H (T„)=1, where the temperature-
dependent mass is given by Eq. (3.36) and the expansion
rate at T„ is fixed by the baryon energy density. Straight-
forward manipulation gives

p~+ 3Hp~ 1 — =0,my

m&

which implies

m~(T)
py

(3.43)

(3.44)

' (n +6)/4
c

(3.45)

Since p&-m&(T)P, the oscillation amplitude decays as
P-m& (T)R . Using Eq. (3.36b), this gives the
amplitude at T„

From (3.37) and (3.38), we have

(3.38b)
and the relative energy density

a(T, ) T,

a( T„) T„
(3.46)

)
24~f Tr

m p1 Tc

so the condition a( T„)& 1 requires
1/n

Tr m pl

T, 2477f'

(3.39)

(3.40)

where the ratio in parentheses is given by Eq. (3.38a) and
we have assumed P, —f. As in the axion case, the com-
mencement of P oscillations in the evolving potential
reduces the relative scalar energy density.

2. Case 2: a(T,) & 1

eV fish 24trf
P=Pcrit

8 5 002 2 ~ r c
m p1

(3.41)

[Compare Eqs. (3.16) and (3.18).j We thus subdivide this
case into two subclasses: (1bi) IM &p„;„which implies
T„&T„and (lbii) p, )p,„;„i.e., T„)T, .

(lbi) p & p„,, This is identical to case (lbi) of model I.
Again, the high-temperature nature of the potential plays
no role since T„&T, .

(lbii) p&p, „;,. In this case, the field starts oscillating
while the potential is still evolving. The condition
a( T„)& 1 restricts p to the range

As before, we subdivide this case into two subclasses
depending on the value of f.

(la) f &mp, /i/24ir. In this case, from (3.40) we im-

mediately have Tr & T, . Since the field does not begin os-
cillating until the potential reaches its zero-temperature
form, the high-temperature behavior of the potential is ir-
relevant in this instance. This is therefore identical to
model I, case (la).

(lb) f &mp&/&24m. In this case the ratio T„/T, may
be smaller or larger than 1, depending on the value of p.
From Eq. (3.38), the condition T„=T, clearly corre-
sponds to

In this case, the scalar field already dominates the ener-

gy density when it begins to oscillate, Td ) T„. From Eqs.
(3.8) and (3.36), for Td & T )T„,we find

P(T)= '

2m p1

24rrf
2m p1

24m f T&T, ,

(3.47)

where we have used the fact that p&-—p for T ~ T, .
As usual, this motivates us to consider two subcases.
(2a) f )mp~/&24m. . This case is similar to model I,

case (2a). That is, in order to end up with an acceptable
value of 0&/Qz, the scalar field must undergo a very
brief period of slow-rolling quasi-inflation. The only
difterence is that, in the present case, the field can in prin-
ciple start evolving classica11y at T) T, . However, from
Eq. (3.47), the rollover rate in this high-temperature re-

gime is exponentially suppressed, since P -exp( 3Htl3)
and P-T " As a result, in pr.actice, the initial value(s)
of P, required to give II&/Qs & 1/(0. 01—0.2) in this case
will be similar to that in model I.

(2b) f & mp, /v'24~. In this case, from Eq. (3.47), we

have

(n +3)/n
m p1

24~f
)1, T, )T, .

I crit
(3.42)

1/n
mP1 )1,

24rrf ' (3.48)



46 LATE-TIME COSMOLOGICAL PHASE TRANSITIONS: 1237

and the field starts oscillating above the critical tempera-
ture. In the temperature range T„&T & T„ the field os-
cillates in the evolving potential, and its energy density is
approximately [cf. Eq. (3.36)]

p~=f ( T)+m ~( T)P (3.49)

Now the analysis follows along the lines leading to Eq.
(3.21): we form the ratio a( T, ) =p&( T, ) /ps ( T, ) and use
the fact that this ratio is conserved for T(T„ i.e.,
a(T&)=a(T, ). Then setting Q&~1, i.e., a(T, )~1/Qs,
yields the constraint

3( 0 pCfltP—
0

2
mp,

24m.f
(6+n)/2n

=1.4h 5og eV

'(6+n)/2n
mpl

24m f (Q~ ~ 1) . (3.51)

Unlike Eq. (3.21), the cosmological constraint on the
scale p here depends on f, as in the usual axion case; in
particular, as f is decreased below the Planck scale, the
upper bound on p is relaxed [21],depending on the index
n.

Assuming the scalar field saturates, closure density
determines the parameter g and, analogously to Eqs.
(3.22) and (3.23), we have the critical temperature

2 1/n+ 1/6

T, =(Mg(p) =0.90h 5o eV
24~f

eV m p1

and the redshift of the transition,

(Q~ = 1) (3.52)

=T =
' 4/3

2 1/n +1/6
1+z,= ' =3.7X 10'h;,'"

Tp eV m p1

(Q~=1) . (3.53)

IV. CONCLUSIONS

We have studied a variety of particle physics models
which can potentially generate the observed large-scale
structure in the context of late-time phase transitions in-
volving ultralow-mass bosons. Some of these models can
simultaneously explain the dark matter in the Universe.
These models are distinguished in containing a funda-
mental large distance scale d, which emerges as a
hierarchical ratio of microscopic scales, e.g.,
d -~«, /m'. . Symmetry principles, abs~rac~ed and
borrowed from experience with QCD, allow us to build
underlying theories of such a phase transition, at a very
low-energy scale, T, ~ 1 eV, that are technically and even
strongly natural. This low-energy scale corresponds to a

The oscillation amplitude P decays according to Eq.
(3.45); again assuming a typical initial amplitude PI -f-
and using Eq. (3.48), we find

' (6+n)/2n

p~(T, )=p 24m
(3.50)

m p1

moderately recent cosmological epoch, z, ~1000, and
such models may therefore have other potentially striking
observational signatures, as in the scenarios for large-
scale periodic structure discussed in Ref. [21].

The common element of the models considered here is
the existence of an ultralight pseudoNambu-Goldstone
boson, a lighter cousin of the conventional QCD axion,
which becomes dynamical at this late epoch. We have
analyzed the cosmic evolution of this field in three broad
classes of models and have identified the regions of pa-
rameter space for which it can make a significant contri-
bution to the energy density of the Universe. Unlike the
conventional axion, an ultralight boson associated with
global symmetry breaking at the GUT scale, f -10'6
GeV, can provide Q&-1 without invoking special initial
conditions. We note that such a field is generically very
weakly coupled and thus difficult to detect.

For completeness, we close with several comments
about other possible implications of, and constraints
upon, these models. The first have to do with topological
defects. If inflation does not take place, or if it does
occur but with reheat temperature T„h & f, the boson
field is not expected to be homogeneous over scales larger
than the Hubble radius at the critical temperature T, . In
this case, the symmetry breaking at T, -p can lead to the
formation of domain walls, which may endanger the iso-
tropy of the microwave background. As in axion models,
there are a number of ways to avoid this domain-wall
problem [1]. For example, one can have additional terms
in the scalar potential which explicitly break the residual
discrete symmetry [22) (bias the potential), lifting the vac-
uum degeneracy; this effectively destroys the topological
stability of the walls, driving them into the false vacuum
regions. As long as the vacuum asymmetry is large
enough, the walls can disappear before they do any dam-
age [21]. Alternatively, if the broken global symmetry is
U(1), then cosmic strings form in the transition at T-f;
these become the boundaries of the walls which form
later at T-p. In models in which there is a unique
minimum of the boson potential, there is one wall per
string, and the wall-string system destroys itself before it
dominates the energy density [23]. We note that in this
case the strings radiate bosons until the boson mass turns
on at T„, and the resulting cosmic energy density of
string-radiated bosons may be larger than that calculated
from "misalignment" production in Sec. III by a factor
-ln(ft„)-100 [17]. In order for the gravitational effects
of the strings not to perturb the microwave background,
the symmetry-breaking scale is then restricted to roughly
f 810' GeV.

A final speculative possibility concerns the interesting
cosmological role of an ultralight field which has not yet
become dynamical (is still frozen) or only became dynam-
ical at moderate redshift (say, z —8 —10). The origin of
the smallness of the cosmological constant is still shroud-
ed in mystery, but let us suppose that there is some mech-
anism which sets the ultimate true vacuum energy densi-
ty of the Universe to zero. Then, at late times, classical-
ly we expect the vacuum energy to be dominated by the
lightest field which has not yet evolved to its ground
state. If there is an ultralight pseudoGoldstone boson
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which has yet to start oscillating, i.e., if it satisfies
T„&Tv=2. 4X10 eV, then it will act as a (temporary)
cosmological constant with present vacuum energy of or-
der p„„-p . If p=3X10 eV, then 0„,=1. This may
have potential benefits such as increasing the age of the
Universe (for a fixed value of the Hubble parameter) and
boosting the large-scale transfer function for density Auc-

tuations. The simplest way to implement this is to have
T, & Tc, which requires g= T, Ip &0.08; one could relax
this bound somewhat if the global symmetry-breaking
scale f ~mp~l&24sr. Alternatively, if the field became

dynamical at moderate redshift, it could lead to an epoch
of cosmological loitering, in which the scale factor of the
Universe passes through a moderate Eddington-
Lemaitre-like coasting phase, allowing extra time for the
growth of large-scale structure [24].
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