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DifFerential luminosity under multiphoton beamstrahlung
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For the next generation of e+e linear colliders in the TeV range, the energy loss due to beam-

strahlung during the collision of the e+e beams is expected to be substantial. One consequence is that
the center-of-mass energy between the colliding particles can be largely degraded from the designed
value. The knowledge on the differential luminosity as a function of the center-of-mass energy is essen-

tial for particle physics analysis on the interesting events. On the other hand, the beamstrahlung photon
spectrum provides useful information on the low-energy backgrounds and high-energy yy luminosity.
In this paper, we derive analytic formulas for the e+e and y energy spectra under multiple beam-

strahlung process, and the e+e and yy differential luminosities. Major characteristics of these formu-

las are discussed.

PACS number(s): 41.60.Ap, 12.20.Ds, 41.75.Ht

I. INTRODUCTION

It is known that beamstrahlung [1],the synchrotron ra-
diation from the colliding e+e beams, will carry away a
substantial fraction of the primary beam energy Ep in fu-
ture linear colliders. This, for one thing, will result in a
degradation of the center-of-mass energy of the colliding
beams. From the high-energy-physics point of view, it is
important to know the luminosity as a function of the
effective e+e center of mass, so as to unfold, e.g. , the
energy dependence of particle production processes. In
addition, the low energy end of the e+e and y spectra
are also important for background analysis.

When the average number of beamstrahlung photons
radiated per beam particle is much less than unity, the
energy spectrum for the final e+ or e beams is simply
the well-known Sokolov-Ternov spectrum [2] for the ra-
diated photons with the fractional photon energy, y(:Er/Eo), rep—laced by the corresponding final electron
(or positron) energy, x =1—y. When the condition is
such that the average number of photons radiated is not
much less than unity, the effect of successive radiation be-
comes important. Previously, the multiphoton beam-
strahlung process has been studied by Blankenbecler and
Drell [3] and independently by Yokoya and Chen [4]. In
this paper, we shall adopt the formulation developed in
Ref. [4] as the basis for our derivation of the difFerential

luminosity. In Sec. II, we will review the electron spec-
trum under multiphoton beamstrahlung. Sec. III will be
devoted to the derivation of the e+e differential lumi-

nosity. In Sec. IV, we derive the photon spectrum, and in

Sec. V, the yy luminosity. The characteristic feature of
our formula is discussed and a comparison to computer
simulations is presented in the last section. Unless ex-
pressed explicitly, the convention e =A'=c = 1 is assumed
throughout this paper.

II. ELECTRON ENERGY SPECTRUM

Let P(x, t) be the energy spectral function of the elec-
tron for energy x —=E /E p at time t normalized as

jg(x, t)dx = 1. We assume that the emission of the pho-

ton takes place in an infinitesimally short time interval.
Then the interference between successive radiation pro-
cesses is negligible, and the evolution of the spectral func-
tion can be described by the rate equation

= —f dx" F(x",x)g(x, t)+ f dx'F(x, x')g(x', t ),
p X

The spectral function of radiation can be characterized
by the beamstrahlung parameter Y, defined as

Y Qp )
B

C

(3)

where yp:Ep /mc, B is the effective field strength in the

beam, and B,=m c /eA-4. 4X10' G is the Schwinger
critical field. High-energy e+e beams generally follow

Gaussian distributions in the three spatial dimensions.
Thus the local-field strength varies inside the beam
volume. It can be shown [5], however, through integrat-

ing over the impact parameter and the longitudinal varia-

tions, that the overall beamstrahlung effect can be simply
described as if all particles experience, during an effective
collision time w= l /2= &3tr„auniform mean field

where the first term corresponds to the sink, and the
second term to the source, for the evolution of g(x, t). F
is the spectral function of radiation, i.e., F(x,x')dx' is the
transition probability of an electron from energy x' to the
energy interval (x,x +dx) per unit time. Obviously,
F(x,x')=0 if x ~x'. Notice, however, that F does not
include the probability for electrons to remain at the
same energy without photon emission. Pulling out P(x, t)
from the first term, which is independent of x", the
remaining integral represents the average number of pho-
ton radiated per unit time by the electron with an instan-
taneous energy x:

v(x)= f dx" F(x",x) . (2)
p
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5 eN
6 o,(o„+o)

(4)

where N is the total number of particles in a bunch, cr„,
cTy 0 z are the rms sizes of the Gaussian beam, and
1=23/3cr, is the effective length of the oncoming bunch
in our model. Thus in the following calculations we will
assume, for the entire beam,

5 "e1'P
6 uo, (o„+o)

(5)

where r, is the classical electron radius, and a is the fine
structure constant. For Y((1, the radiation is in the
classical regime, such as that in the SLAC Linear Collid-
er (SLC), where Y-0.004. In contrast, for the next-
generation linear colliders, Y-0.1 to 1, and it starts to
enter into the quantum regime. Notice, however, that
the typical number of photons radiated per beam particle
is of the order unity. Thus even in the classical regime,
such as that in SLC, the discrete nature of beamstrahlung
should not be overlooked.

The transition probability F derived by Sokolov and
Ternov [2] is

F(x,x')=,f(g, rI),
XX

5 a
v,1=v(x =0)= Y .

2v'3 r, y,
Note that for a given field strength v, &

is independent of
the particle energy. In general, however,

v(x)—:v„U11(xY),
where

1, v~0,
(28v'3/45)I (2/3)(3v )

' =1.012v ', v

2/3
]
—1/2

To look for a compact analytic solution for 1(1 in Equa-
tion (1), the exact Sokolov-Ternov spectral function in
Eq. (6) is somewhat cumbersome. One can instead invoke
an approximate expression [4], which is independent of g,
to replace f (g, 7)) in Eq. (6}:

f(g, rI) = f du K5/3(u)+ E2/3(7/)
3 1

5m. 1+ rt 1+ rt

where g—:3x'Y/2, ri=a[(1/x) —(1/x')], and for con-
venience, a —=2/(3Y). To be sure, while Y (and therefore
1t) is a global parameter in beamstrahlung, the parameter
g as defined here is not. For any given Y, g ranges from 0
to 3Y/2, according to the instantaneous energy carried
by the individual particle between successive radiation
processes. E 's are the modified Bessel functions and v, &

is the number of photons per unit time (or length, with
c = 1), calculated by the classical theory of radiation. By
definition, this is also the limiting case for v(x) where
x~0:

Y«1, (10)

where rt„—=k [(1/x)—1],and

h(u)= . f exp(up ' +p)dp
27Tl A, —i oo

, n!I (n/3)

with A, )0 and 0~ u ~ ao. The first term in Equation (10)
represents the electron population that sufFers no radia-
tion. The nth term in the Taylor expansion of the second
term corresponds to the process of n-photon emissions.

For finite values of Y, the rate equation cannot be
solved exactly since v(x) is not constant in time anymore.
However, in the intermediate regime where YS 10, v(x)
should not deviate from v, &

too significantly. This sug-
gests a solution based upon minor perturbation from the
above classical result. It is found [4] that

~Z

P(x, t)=e ' 5(1—x)+ h(rt„'/ vt), YS10,
X

(12)

for the intermediate regime, where

v&=—v(x =1)=U&(Y)v,1, v=—xv,1+(1—x)v& . (13)

In effect, v is a linear interpolation between the two extre-
ma v„and v~. We see that v~v,

&
as x ~1, since for the

electron to remain at high energy after an n-photon pro-
cess, it can only have radiated classically. On the other
hand, V—+vz as x ~0. This indicates that the low energy
electron spectrum is mostly contributed by quantum radi-
ations.

III. CENTER-OF-MASS e+e LUMINOSITY

To find the differential luminosity X(x) as a function of
the effective center-of-mass energy squared, s, one needs
to convolute the energy spectrum of one beam, g(x„t},
with the other g(x2, t} Let t =0 w.hen the e+e bunches
first meet. In addition, let the longitudinal coordinate z
along the beam be defined such that z =0 at the front of
each beam. Then the first z slice in beam 1 wi11 always
encounter a "fresh" beam 2:

3d X + ( lX~ 2X, 0)
~ —f dt g(x„t)g(X„O),

dx&dx2dz l o
(14)

where l is the total length of each bunch. As explained in
the preceding section, our model assumes a uniform field

With this approximation, Eq. (1) can be solved by proper
Laplace transformations. The details can be found in
Ref. [4]. The solution is

~Z

g(x, t) =e " 5(1—x)+ h(rt„'/ v„t)
1 —x
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within an effective bunch length 1=2''3cr2, in relating to
the Gaussian distribution. The total collision time is I/2
because both beams move at the speed of light against
each other. A slice at z in beam No. 1, however, will al-

ways see a beam No. 2 which has evolved for a time
t =z/2.

3d X + -(x, ,x2,z) 2 izz~ —f dt g(x i, t)P(x2, z/2) . (15)
dx)dx2dz I o

Adding all z slices in beam no. 1 together, we have

2dX+ (x„xi) 4~ —f dt g(x„t)f dz g(x2, z/2)
dx)dx2 I o 0

4 l/2 I /2=—f dt g(x„t)f dz 11(xi,z) .

(16)

Note that the two integrals in the last expression are
functionally identical. Inserting the spectral function in
Eq. (10), we find, for Y« 1,

1!(x):——f dt p(x, t)
1/2

I 0

—N)(1—e ")5(1—x)+ h(x)e
1 —x

dg (s)
=~pf f dx, dx,

dX + (s)

dS

+p N)—
[(1—e ") 5(1—s)

"1$

+2(1—e ") h(s)
1 —s

(20)

where rt, =a[(1/2) —1]. It can be shown that in the clas-
sical regime the last term is much smaller than unity, and
is negligible. Thus

dX p (s)
[[1—e '] 5(1—s)

ds N,
S

+2[1—e "] h(s)j, Y«1 .
1 —s

(21)

X5(s —x,x2 )g(x, )11(xz), (19)

where Xp is the nominal luminosity of the collider, in-

cluding the enhancement factor due to the beam-beam
disruption effect [6]. It is straightforward to find that

Y « 1, (17)

where rl„=it[(1/x)—1], and N, i=v,~l/2 is the average
number of photons radiated per particle during the entire
collision of the e+e beams. The function h(x) in the
second term is

~n /3

h(x) g, y(n+1, N, i),
i n!I n/3

where y( n + 1,N„)is the incomplete gamma function.
The center-of-mass energy squared for the system of

two particles with energies x, and x2, normalized to the
reference center-of-mass energy squared, so =4, is
s —=x&x2. The differential luminosity as a function of $ is
therefore

f(x)= [(1—e ')5(1 —x)+ h(x)],
N 1 —x

Y & 10, (22)

where N =v l/2, and

n n/3

h(x)= g y(n+1, N )r.
vr n!I n/3

(23)

When the average energy loss per electron is becoming
substantial, which is possible in the transition regime, the
integral term in Eq. (20) should be retained. The
differential luminosity in this regime is therefore

For the intermediate regime, the spectral function of
Eq. (10) should be replaced by Eq. (12). The derivation is

essentially the same, and we 6nd

dX + (s)

dS

S

[[1—e '] 5(1—s)+2[1—e ']
pf 2 1 —s

e ~x ~s/x

h (s)+ f h (x)h (s/x) ], Y & 10,
s x (1—x)(1—s/x)

(24)

where, in addition to i)„the x dependence of v in h(s) is
also replaced by s.

IV. PHOTON ENERGY SPECTRUM

Next we look for the companion formulas for the
beamstrahlung photons. Let us ignore the loss of pho-

l

tons due to beamstrahlung pair creation [7], which con-
stitutes only a fraction -a (fine structure constant) of the
total photon population. Then the time evolution of the

spectrum is dominated by the beamstrahlung process
alone:

1= f dx F(x y, x)g(x, t), — (25)
Bt y
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Q(y, t}=f dt' f dx F(x y—x}P(x,t'),
0 y

(26)

where y =E~/E0 is the photon fractional energy. There-
fore

Note that while f f(x, t)dx =1, which conserves the elec-
tron (or positron} number, the photon number accumu-
lates along the course of collision, and in general
fg(y, t)dy%1. Combining Eqs. (6), (9), and (10), we
have, for Y«1,

1/3

p(y, t)= y
' 'f dt'e " [(1 y—) ' 3e "y " «'+I(y, t')],r(1/3) o

where

n/3( ti )n

I(y, t ) = g, e" dX X
—(n+')/ (X y}

—1/3(1 X}n/3 —le K/(z y)

, n!r(n/3) y

(27)

The above integrand is exponentially suppressed when x ~y for any value of y. On the other hand, when x ~1, jt js
dominated by the term (1—x)" '. So it is a reasonable approximation by setting x '"+"/3=1. Under this approxi-
mation, we find

f 1

dx (x —y) 1/3( 1 —x)"/3 1e n/(n y) —r(n/3)& —1/6(1 )n/3 —1/6e —n/2(1 —y) pr K—y e —n/3+1/6, 1/3
1 y

i

where W„„(z)is the Whittaker function:

(28)

W„,(z)= u' )' '/ e " 1+—z~e- /'
Q

r(v —q+1) z

' v+p —1/2

du —=z"e */ [1—w„„(z)], (29)

X dt'eft, —[1—(1—y) ]v t'

0
(31)

The integration over time is straightforward, and we
finally obtain

1/3

P(y t)= y (1—y) ' e " " 'G(y),
I (1/3)

Y«1, (32)

where

G(y)= [1—e
1

g (y)

g(y)=1 —(1—y)'/' .

—g(y)~ ~r]
7

(33)

Note that in the limit v,1t «1, the terms in the square
brackets can be replaced by g(y)v, )t. This recovers the
known expression for the beamstrahlung photon spec-
trum using single-photon (i.e., disregarding the loss of e
energy between successive radiation processes) picture:

where w„,(z)—+0 as z —+ oo. In the classical limit, )t » l.
Thus )t/(1 —y) »1 for all y, and the Whittaker function
takes the asymptotic form W„,(z}=z"e '/ . We there-
fore have

( 1 )2/3 t i]n

I( ti )
—

( 1 )
—1/3 —ny/() —y)

n=1 n.

(30)

Inserting Equation (30) into Equation (27), we find

1/3

P(y t) y /
( 1 y) / e y/( )

r(1/3)

1/3
lim P(y, t)= y '"(1—y) '"e """' "v„t.

v i-o ' r(1/3)

(34)

K
w

P~ 1 y
—=—w, f~5.

6]/7c
(36}

In the y «1 limit, the y dependence is approximately
~y

—2/3

To extend our result to the nonclassical regime, we find
that a similar calculation as above but using Eq. (11) for
the electron spectrum would be quite complex, due to the
additional x dependence in v. Instead, we shall follow
the same philosophy as in Sec. II by adopting the form of
Eq. (32) and replacing v, ) s by vr and v in a similar
fashion. An inspection of I(y, t') in Eq. (27) suggests
that, if one intends to extract (vt')" out from the in-
tegrand such that a similar calculation for the nonclassi-
cal regime can follow, the x dependence in v should be
properly averaged over the spectrum. Again, in the
linear approximation, we find

(7)= f dx[xv„+(1—x)v ]
1

cl y

=—[(1+y)v,)+(1—y)v ] .
1

(35)

In principle, one could then express I(y, t') in terms of
the Whittaker function. But if one wishes to further sim-
plify I(y, t') through the asymptotic expansion of Eq.
(29), then it is necessary that the correction term u)„„(z)
be retained. In the n-photon process, the leading order
n = 1 dominates, which gives p= —

—,
' and v= —,'. Ignoring

the y dependence in z, we find that
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1 —w -g(y)~ f —v tG(y)= [1—e ' ]+w[1—e ' ],
g(y)

g(y) =1— (1—y)' ' .

V. CENTER-OF-MASS yy LUMINOSITY

The yy center-of-mass luminosity can be obtained in
the same way we did in Sec. III. It amounts to looking
for integration of P(y, t) over the e+e collision time.
We find, for f ((1,

p(y)= —f dr p(y, &)
I/2

l o

1/3

I (1/3)
—2/3( 1 )

—1/3 —«y/() —y)G( ) (39)

where

1 1G(y)= 1 — (1—e ") (40)

For the nonclassical regime, the corresponding expres-
sion reads

1/3P(y)y2/3( 1 y)1/3&K&1/(11)G(y)
I (1/3)

Y~5, (41)

where

1 —w
G(y) =

g(y)

—g(y))v

g(y)2Vr

1+w 1 — [1—e '] (42)

The center-of-mass yy luminosity is then

dX~ (s)
=&of f dy) dy2 &(s —y)y2)(((y) )P(y2) .

We then have

1/3

p( r )
— —2 /3

( 1 )
—) /3e —«y /( ) —y) G ( )I (1/3)

Y5 5, (37)

HD=1+ D, D «1.2

3 7T

(45)

Since the enhancement results from the reduction of the
effective beam size, we can estimate the effective cr as

(46)

In our case, D =0.7. Thus o -0.890. , and we find the
effective Y-0.44.

The simulation has the disruption effect included, but
the beamstrahlung parameter as defined in Eq. (5) was
not calculated in ABEL. Instead, for every photon radiat-
ed, there is a critical energy registered, using the local
field strength and the instantaneous energy of the radiat-
ing electron prior to its radiation. The average of all the
critical energies is then translated into an effective beam-
strahlung parameter Y-0.43, which is in very good
agreement with what we estimated above. Note that this
effective Y from simulation has been weighted by the
photon number, and does not have a fixed electron ener-

gy.
Using this effective value of Y(=0.43), and with the

bunch length 1=2&3o,=0.38 mm, we calculate the
number of photons P(y, l/2)by, with by=0. 02, at the
end of the collision using Eq. (37). Figure 1 shows the
final photon spectrum from our formula and from simula-
tions. We see that the agreement is quite good for a large
part of the spectrum. Both high- and low-energy ends of
the spectrum from our theory, however, tend to be softer

10
~ ABEL Simulation

10' Theoretical

Ref. [9])were used.
The parameter Y=0.39 in this example uses the nomi-

nal values of a and cr . As is well known, the field in-
tensity of a flat beam (i.e., cr„))cr ) is determined largely
by o. . In the case when the disruption in the x dimen-
sion is not negligible, the effective 0. during collision is
different from the nominal value. This is indeed the case
for Palmer's G machine. The disruption parameter is
defined as

21Vr, cr,

ya„(a,+o~)

The effective cr can be deduced from the luminosity
enhancement factor for round beams [10]:

(43)

The integration is quite involved, and since simple ex-
pression of dL&z/ds for the whole range of 0 + s ~ 1 is
not easily attainable, numerical calculations may be
necessary.

VI. DISCUSSION

0

10

103
10-4

0

0.43

0.2 0.4 0.6 0.8 1.0

To confirm our theoretical formulas, we perform com-
puter simulations using the code ABEL [8]. The parame-
ters of a linear collider with a center-of-mass energy —,

'

TeV designed by Palmer [9] (the Machine G in Table I in

FIG. 1. Final beamstrahlung photon spectrum calculated by

computer simulation and by the analytic formula equation (37).
The number of photons P(y, l/2}by is plotted against photon

energy y, where Ay =0.02 in this case. Parameters from

Palmer's G machine where Y=0.43 were used.
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than that from the simulation. But the statistics from
simulation is quite low at the high energy end, thus the

discrepancy there should not be overemphasized. The
average number of photons radiated per particle is ob-
tained by integrating $(y, 1 /2) over y. We find

fP(y, 1/2)dy -3.27. This agrees with the simulation re-

sult, -3.55 photons per electron, to within 10%%uo. In-
cidentally, however, the direct estimation Nz
=vrl/2-3. 55 agrees almost perfectly with the simula-
tion result. The discrepancy is due mainly to the slight
underestimation of photon spectrum, Eq. (37), in the

y &(1 limit.
For the e+e differential luminosity, a two-

dimensional plot from the simulation results of
(d X + /dx, dx2)bx, hx2 per beam crossing as a func-

tion of x
&

and x2 is shown in Fig. 2. The example used in
this calculation was Palmer's F machine, the so-called
Pat beam design, for a 0.5 TeV collider. The beam-
strahlung parameter is Y=0.12, considerably smaller
than the G machine. Indeed, in this case the average
number of photons per electron is of the order one, and
the average energy loss is only -4%%uo. We see that the
most striking character of the e+e luminosity spectrum
in this particular case is that, aside from the sharp delta
function at the nominal machine energy, other contribu-
tion to the e+e luminosity comes essentially from the
matching between a full energy particle and a beam-
strahlung degraded particle. This is evidenced by the
"walls" on the edges of the two-dimensional plot, which
corresponds to the second term in Eq. (24). The last (in-
tegral) term in that equation is seen to be negligible in
this case. However, because of the stronger beam-
strahlung and larger number of photons per electron,

(10 crn )

1.0—
Al

CI
x 08
X

0.6—
cu 04
X

0.2—

0

FIG. 2. Two-dimensional plot of the e e differential lumi-

nosity (d'X + /dx& dx2)hx& hx2 per beam crossing as a
e e

function of the e+e fractional energies, x&,x2, from computer
simulation. The width of the bins is hx& =hx2 =0.02. The ex-

ample used is Palmer's F design for a 0.5 TeV linear collider,
where Y=0.12.

there is a finite contribution from this integral term in the
case of Palmer's G machine.

It goes without saying that the ey luminosity can also
be derived by convoluting f(x) and P(y).
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