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Finite-temperature corrections to the effective potential of neutrinos in a medium
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We consider a neutrino of any flavor propagating through a thermal background of charged leptons,
nucleons, and neutrinos. The neutrino self-energy is calculated in a general gauge up to terms of order

g /m~, and it is shown that, although the self-energy depends on the gauge parameter, the dispersion
relation is independent of it. On the basis of this result it is argued that the neutrino effective potential
must be defined from the dispersion relation and not directly from the self-energy. Explicit formulas for
the effective potential are given.

PACS number(s): 14.60.Gh, 13.15.—f, 13.10.+q

I. INTRODUCTION

It is now well known that the properties of neutrinos
that propagate through a medium differ from those in the
vacuum; e.g., the vacuum energy-momentum relation for
massless neutrinos co=~, where co is the energy and ~ the
magnitude of the momentum vector, is not valid in the
medium [1]. From a macroscopic point of view, the
modifications of the neutrino dispersion relation can be
represented in terms of an index of refraction or an
effective potential. At the microscopic level, within the
framework of finite-temperature field theory (FTFT), the
modifications arise from the temperature- and density-
dependent corrections to the neutrino self-energy [2—5].

To leading order in g /m~, the correction to the
dispersion relation in a vacuum is proportional to the
particle-antiparticle asymmetry in the background. If the
asymmetry is small or zero, then corrections of order
g

/ming,

are important and could be dominant. This may
be the case in the early Universe, where the asymmetry
probably was a very small quantity.

Therefore it is of interest to calculate the 0(g /mii )

corrections to the neutrino dispersion relation. In the
FTFT formalism, the corrections arise from the
momentum-dependent terms of the boson propagators in
the self-energy diagrams. Since these terms depend on
the gauge parameter, there immediately arises the ques-
tion of the gauge invariance of the results for the physical
quantities. In fact, it is not obvious that the dispersion
relation, or, equivalently, the effective potential, is in-
dependent of the gauge parameter, since the self-energy
in general depends on it.

Two calculations of the 0 (g /m ii ) corrections to the
neutrino dispersion relations have appeared in the litera-
ture [3,6]. However, they have been carried out in a par-
ticular gauge, and therefore it becomes impossible to con-
clude anything about the gauge dependence of the results.

II. BASIC FORMALISM

The groundwork for carrying out the present calcula-
tion has been laid out before. We borrow from Ref. [5]
some results, which are brieAy reviewed here.

The properties of a neutrino that propagates through a
medium are determined from the Dirac equation, which
in momentum space is

(k —X,tt)/=0 . (2.1)

Here k„ is the neutrino momentum and X,z is the neutri-
no self-energy, which embodies the effects of the back-
ground. The chiral nature of the neutrino interactions
implies that the self-energy of a (left-handed) neutrino is
of the form

In this work we present a detailed calculation of the
O(g /ming) corrections to the neutrino self-energy in a
general background of charged leptons, nucleons, and
neutrinos. The calculation is carried out in an arbitrary g
gauge, and we show explicitly that, although the self-
energy depends on g, the dispersion relation does not.
This result leads us to conclude that the effective poten-
tial must be defined from the dispersion relation and not
from the self-energy itself. Our results are summarized
by a set of formulas that give the dispersion relations up
to terms of order g /m ~ for each neutrino type.

In Sec. II we present a brief summary of those features
of the FTFT formalism that are required to carry out the
calculation. The main contribution of our work is con-
tained in Sec. III. There we present the results of the cal-
culation of the self-energy for any neutrino Aavor, verify
explicitly that the dispersion relation is independent of
the gauge parameter up to terms of order g /ming„and
give the explicit formulas for the neutrino effective poten-
tial. Some details of the calculation are provided in two
appendixes.
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X,ff=R XL, (2.2)

where R,L =
—,'(1+y~). In the vacuum the most general

form of the matrix X is

f (co) =(1 —a)(co —a) —b,
f(co) =(1 a—)(co+a) b—.

Therefore its two solutions are obtained by solving

(2.11)

X=ak+bA, (2.3)

where a and b are functions of the invariant variables

X=ak,
where a is a function of k . It is easy to see that the only
nontrivial solutions to Eq. (2.1) have k =0, which im-

plies that the neutrino is massless.
In the presence of a medium, X depends also on the ve-

locity four-vector of the medium u„. It then has the gen-
eral structure

f (co,)=0,
f( —co„*)=0,

(2.12)

(2.13)

where co, and co„are identified with the neutrino and an-
tineutrino energies, respectively.

Notice that, in general co„Ace„; i.e., the neutrino and
antineutrino have different dispersion relations. Howev-
er, whenever Eq. (2.5) holds, f and f satisfy

co —k 'u

(~2 k2)1/2
(2.4)

which implies that

COK
=CO„. (2.14)

Some general properties of the coeScients a and b fol-
low from the invariance of the Lagrangian and back-
ground under discrete space-time symmetries. For exam-

ple, if the Lagrangian and background are CP symmetric,
then a and b satisfy [7]

a'( —co', ~)=a (co,~),
b '( —co', ~)= b(co, )i~. —

(2.5)

These relations also hold if the background is CPT sym-
metric (assuming, as usual, that the Lagrangian is CPT
symmetric).

We will work within the standard model of the elec-
troweak interactions and neglect the effects of CP viola-
tion, which in practice is a good approximation. There-
fore, for a background that consists of an equal number
of particles and antiparticles, Eq. (2.5) holds. However, if
the medium is neither CP nor CPT symmetric, we will
show explicitly that Eq. (2.5) is no longer valid.

Using Eq. (2.3), Eq. (2.1) can be written as

co+pf

uLQL =
K

where

(2.15)

n"= 1,—K
K

(2.16)

The normalization factor N„ is obtained from the func-
tion f (co) defined in Eq. (2.11) as

As already mentioned, this holds, for example, if the
background is CP or CPT symmetric.

For real neutrinos (i.e., the ones that appear in the
external lines of a Feynman diagram}, the effect of the
medium is to modify the dispersion relation, as already
discussed, and also the wave function. For most purposes
knowledge of the projection operator is suScient. This
can be easily obtained in the rest frame of the medium. If
we denote by uI the neutrino chiral spinor, the projec-
tion operator uL uL is given by

where

=0, (2.6)
N„=

CO Q)=Q)
(2.17)

V—:(1—a)k bu—
P P P (2.7)

Thus the Dirac equation has nontrivial solutions only for
those values of co and K such that

V =0. (2.8)

LPX
F (2.9)

Equation (2.8}can be written as

(2.10)

where

This condition is equivalent to requiring that
det(g —X,s)=0, and it also determines the poles of the

propagator, which is given by

For the antineutrino the corresponding results for the
projection operator vL vL are obtained from the previous
formulas with the substitutions co ~co„, K~ K,

f (co)~f (
—co), and N„~N„.

One final word concerns the calculation of X,&. The
general relation between X,z and the elements of the 2 X2
self-energy matrix of the FTFT formalism has been given
previously [8]. In the present work, we restrict ourselves
to the real part of X,z. In this case it is sufBcient to calcu-
late only the 1-1 element of the self-energy matrix and
take its real part. At the one-loop level, the calculation
of the 1-1 element of the self-energy proceeds as in the
vacuum case, except that the propagator in each internal
line of a Feynman diagram must be replaced by the 1-1
element of the thermal propagator matrix. For example,
the propagator for an internal fermion line is
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SF(p) =(gf+m) +2mi.5(p —m )q(p u )
P 77k

&~s"(q) = (1—I/g)q~q"
(3.1)

where m is the fermion mass and

(2.18) where B = W, Z. The propagator of the corresponding
unphysical Higgs boson is given by

8(p u) 8( —p u}
e"+1 e "+1 (2.19)

b,~(q) =
q

—ms /g
(3.2)

Here 8 is the step function, and

x =P(p u —p) (2.20}

where I/P is the temperature and p is the chemical po-
tential.

III. CALCULATION

A. Self-energy

Our first task is to calculate in a general g gauge the di-
agrams displayed in Fig. 1 for a neutrino vI, where I
stands for one of the lepton flavors e, p, or ~. Note that,
since we want to calculate X up to terms of order
g /mii„ it is necessary to include the diagram involving

the unphysical charged Higgs scalar, as well as the
gauge-dependent corrections from Fig. 1(a). None of
these contributions have been considered in previous
works because either they do not contribute to the lead-

ing order [2,4], or they vanish in the unitarity gauge [3,6].
In both cases the issue of the gauge invariance of the
dispersion relation cannot be investigated.

We restrict ourselves to those physical situations in
which the temperature is low compared with the W and
Z masses. This implies that there are essentially no W
and Z bosons present in the medium, and therefore their
propagators can be taken to be the same as in the vacu-
um, namely,

We first calculate Figs 1(a} and 1(b) and denote their
contributions to the self-energy by Xw and X&, respec-
tively. Both of these quantities have a part that is in-
dependent of the background and is the same as in the
vacuum and another one that depends on the background
and which arises from the second term of the electron
propagator given in Eq. (2.18). In the formulas given
below, we will drop the background-independent part.
To the order that we are calculating, that part only re-
normalizes the wave function and does not contribute to
the dispersion relation [9].

The background-dependent contributions to Xw and

X& are given by

2 d4y(T) g f P
& gpv(p

(2 )'

X5(p —m )ri(p u)
2

g(T) g f P g(p k)p
ml d4

2 m (2~)3

(3.3)

X5(p —mi )ri(p u) . (3.4)

It is convenient to decompose the sum Xw +X& into(T) (T)

two parts and write

y( T)+y( T) —y( T) +y( T)
W P P (3.5}

where X&
' depends on g and Xz ' does not. This is ac-

complished by writing the W propagator in the form

W (p-k) $ (p-k) AFAR (q) =b()"(q)+bP("(q),

where

(3.6)

l/( (k) ((p) 9, (k) 1(p) V~ (k)
bF() "(q)= 1

771 w

p v
pv+q q

2mw

gp ( )
q

—1

m~ q m~/g

(3.7)

u, (k)

f (p)
z (p-k)

U((k) 8)(k) Ut(p) &t(k)

d4
r ~" (p k~Pr—

(2~)' " '
X5(p —mI )g(p u), (3.8)

Using these expressions in Eqs. (3.3) and (3.4), we ob-
tain

(c)

FIG. 1. Self-energy diagrams for a neutrino in a thermal
background of charged leptons, nucleons, and neutrinos. In (a)
the charged lepton (I) in the loop is of the same flavor as the
neutrino. In (c), f stands for any fermion species that is present
in the background.

+ gib&(p —k),
mw

X5(p —mI )g(p. u) . (3.9)

d4
}' ~""(p k~1'r. —

2 (2m)
2
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In order to evaluate the integrals in Eqs. (3.8) and (3.9),
we expand the boson propagators in powers of m ~ . The
computation of X0( ' and X(&

' up to terms of order

g /m)I, is carried out in Appendix A. The coefficient
functions a and b are extracted from the defining equa-
tion (2.3). These functions can also be decomposed into a
gauge-independent and a gauge-dependent part as fol-
lows:

a =a0+a&,

b =b0+b( .
(3.10)

From the explicit results given in Appendix A, we obtain

g (CC)
4&2GF 2 5J(1) 2J(l) + J(1)Q0 —

2 ml 0 N 1

mar

b' '=43/26 . 1+ (co —K +3m ) J'"
2mw

+ (m J'"—4J'" ) .
3m~

a(CC) — F (m2J(!) J(!))
43/26F

ag 2 ml 0
m~

(3.11)

d3=f, @" '[fI(( )+(—1)"fI(( )], (3.12)

for any fermion f in the background. The second line of
Eq. (3.12) is obtained by evaluating the integral in the rest
frame of the medium, where p"=(8,P) with
C=(P +mI)'~. We have also introduced the particle
and antiparticle momentum distributions

1

ff )3(s* T-p&)
e

In terms of the number densities

(3.13}

(cc) ~~GF (co —K )

mw
1

with the Fermi constant identified as GF/3/2=g /Sm)F.
The superscript (CC) in the coefficients a and b in Eq.
(3.11) is used to indicate that these are the contributions
arising froin the charged-current (W-exchange) diagrams,
with the understanding that the contribution from the di-
agram with the unphysical Higgs boson has been includ-
ed. The coefficients J„'I' in Eq. (3.11) are defined by

deJP= f 5(p —m )ri(p. u)(p u)"
(2~)3

J(/) = [nI( 8I ') +(—I )"n-( 8"- ') ] . (3.16)

+23/26F . 1+
2

(co —K ) Ji '

2mz

Sco (v! )

2 7

mz

( ) F (v)
a (NC)

mZ

(3.17)

b(NC) g(~2 K2)J
(. )

m'mz

In the formula for b0 ', the sum extends over all the fer-
mion species that are present in the background, with the
factors Xf being the vector-neutral-current couplings of
the corresponding fermion. In particular, the sum can in-
clude contributions from neutrinos of any Aavor. The
coefficients a0 and b0 are given by

a =a' '+a'a0 —a0 a0
(3.18)

b (CC) +b (NC)
0 0 0

and similarly for a& and b&.
If the medium is CP or CPT symmetric, then nf =nf.

In that case, J',I' vanishes and from Eqs. (3.11) and (3.17)
we immediately see that Eq. (2.5) is verified.

B. Dispersion relation

The proof of the gauge independence of the dispersion
relation proceeds as follows. The dispersion relation co„ is
given by the solution to f(co„)=0, where f is given in Eq.
(2.11). It is convenient to write

f=fp+fg
where

(3.19)

The factor g& is equal to 1 for (left-handed} neutrinos and
2 for charged leptons and nucleons.

Let us now turn the attention to the Z-exchange dia-
grams. The tadpole diagram is independent of the gauge
parameter because the Z propagator is evaluated at zero
momentum. The computation of Fig. 1(d) is identical to
that of Fig. 1(a). As shown in Appendix B, the total con-
tribution from Figs. 1(c) and 1(d} to the coefficient func-
tions a and b is

(NC)
2V26F 2 (v! ) (v! )

Q0 =
2 J2 +COJ~

mz

b' ' =43/26 yX J'/'
. f

d3P
ff f 2~3 ff (3.14)

f()=(1—a() )(co—K) —b(),

fg= ar(co K) b~
—. — — (3.20)

and the thermal average of @",

(3.15)
d3

(gn ) — I f gnfff n (2~)3 ff '
ff

the functions J„' ' can be expressed in compact form as

The condition for co„ to be gauge independent is that
botll fp aIld fg

IIlllst vanish at (o=co„. In that case, al-
though the neutrino propagator has a gauge-dependent
part, the position of the pole is independent of the gauge.
On the other hand, the residue, which is related to the
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wave-function normalization, in general depends on the
gauge.

The condition

fo(co )=0 (3.21)

yields a quadratic equation for co that can be solved ex-
plicitly. Keeping only those terms that are consistent
with the order we are working, the dispersion relation
reduces to

in Eqs. (3.11) and (3.17) into the dispersion relations for
the neutrino and antineutrino [Eqs. (3.22) and (3.25)], we
obtain the following result for the effective potential:

3mh
V, =4&2G 1+

2mw 2

4 2

co„=s.+bo(a ) +0
mw mw

(3.22) + (m J'"—4J'" ) — J
3mw 3mz

where bo(s) is the value of bo at co=z. It remains to
show that f&(co„) is zero, at least to the order of our cal-
culation. According to the last equation, ~ —K is a
quantity of order g /m~. Therefore, from Eqs. (3.11)
and (3.17), we see that

(3.23)

and

(3.27)

In this formula the upper (lower) sign refers to the neutri-
no (antineutrino). Alternatively, an index of refraction
can be introduced,

Kn=
COK

which is related to the effective potential by

(co„—a )a((co„)=0
mw

(3.24)

n =1— =1-
COK K

which implies that f&(co„) also is of order g /ms, . A
similar result holds for the antineutrino, for which

4 2

ci)„=a. bc( —~)+—0
mw mw

(3.25)

Thus we conclude that the dispersion relation does not
depend on the gauge, although the self-energy does.

C. Effective potential

co =K+ V(, (3.26)

for a massless particle. According to the previous
definition, it is clear from Eq. (3.22) that V& coincides
with bp only in the lowest order. In general, VI will re-
ceive contributions from ap. In higher orders these con-
tributions have to be included to render a gauge-
independent result.

Substituting the expressions for bp(cc) and bpNc) given

The previous result indicates that the self-energy itself
cannot be directly associated with an observable physical
quantity. In Ref. [6], in a way that is unclear at least to
us, the authors infer the effective energy VI directly from
the self-energy by identifying it with the coefficient bp,
thermally averaged over the neutrino distribution func-
tion.

We insist that the neutrino effective potential must be
de6ned from the dispersion relation. This is the physical-
ly relevant quantity, which gives precisely the energy-
momentum relation of the particle in the medium. As a
matter of convenience, an effective potential is introduced
by subtracting the kinetic energy of the particle in a vac-
uum [10],i.e.,

D. Wave-function normalization factor

The normalization factor of the wave function is deter-
mined from Eq. (2.17). Explicitly,

N = 1 —a—
K

Ba
(CO K)

Bco

Since a is of order mw and m —K is of order mw, the
term with the derivative of a is of order mw and there-
fore can be discarded. A straightforward calculation of
the remaining terms yields

4&26~
2

2&J'& ' —2J2 +mr (g 1)JO'—N, =1—

mw (~ )

mz
(3.28)

IV. DISCUSSION

The importance of the 0 (m~ ) corrections depends on
the particular situation. For neutrinos propagating
through normal matter (i.e., electrons and nucleons), the
effective potential can be approximated by

The normalization factor for antineutrinos, N, is ob-
tained from the last equation with the substitution

For a CP-symmetric medium, J'& ' =0 and
therefore N„=N, as it should be. N, receives correc-
tions only of order m w, in agreement with the result of
Ref. (5), where it was shown that, to the order m~,
N, =N„=1. Note that N, is gauge dependent, as we
would expect for the normalization of the wave function.
However, this does not pose any problem since it is not a
directly observable quantity.
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V, =+&2GF[(1+X,)n, +X„n„+X&nz ],
V„,=++2G~[X,n, +X„n„+Xn ],

(4.1)

where the upper (lower) sign refers to neutrinos (antineu-
trinos). The quantity that is relevant to the problein of
neutrino oscillations in matter [11] is the difFerence

V, —V„„which depends only on the electron density [1].
However, for nontypical matter such as in the early
Universe or in the core of a supernova, other contribu-
tions could be relevant.

It is believed that the particle-antiparticle asymmetry
in the early Universe was a very small quantity, of the or-
der of the present-day ratio of baryons to photons:

n —n' =10-".
n~

Under such circumstances the O(mii, ) corrections may
be important because they do not depend on the
difference between the particle and antiparticle densities.
As an example, let us consider the situation in which
T &&m„. Then no p or ~ leptons will be present in the
background, which is composed of electrons, nucleons,
neutrinos of all flavors, and the corresponding antiparti-
cles. In such a case, substituting into Eq. (3.27) the for-
mula for J„'f' given in Eq. (3.16), the following explicit
formulas for effective potentials are obtained:
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+2[k P(1}—milka(1) ]k'], (Al)
2

XI '= — [k y„P'(g)+2[m( 6(g) —k P(g)]k'],

where we have defined the functions

d4 5(p —
m& )ri(p u)

6() )=
(2m ) (p —k) —mii /A,

(A2)

(A3)

APPENDIX A: CALCULATION OF X'g 'p

Here we give the details of the calculation of the func-
tions Xo and X& defined in Eqs. (3.8) and (3.9).

Substituting the propagators given in Eq. (3.7) into
Eqs. (3.8) and (3.9},we obtain

2
X(')+= — I(2mii, +mi —k )y„P'( I)

2P7l w

V, =kv 2G+(n, n, +n„—n„+Q—z } d4p 5(P —
m& )il(P u)

(2n ) (p —k) —mii /A,
(A4}

8~2GF~
[n, (E, )+n, (E, ) ]

3mw

8&2G~a
[n, (E„)+n (E~ )],

3mz

V„,=2~2G~ ( n„n+Q—z )
p, , w

8~2GFz
[n, (E„)+n„(E, ) ],

PlZ

where

(4.2)

X 1+
2

+O(Jtt )

J'"+ k 1~+O(u-') (A5)

The same functions appear in Eqs. (Al) and (A2), but
evaluated at A, = 1 and g, respectively.

It will be difficult to evaluate P„(A, ) and 6(A, ) in gen-
eral, but since we are interested in retaining terms up to
the order to mw, we expand the denominators in Eqs.
(A3) and (A4) as a power series in A,(p —k) /mii, up to
second order. Thus, for 6, we obtain

1 d4p6= f 5(p —mi )r)(p u)
(2m )'

Qz g Xf(nf nf )+ g (nf —nf )

f =e, n, p f=V,V, V

(4.3)

is the average Z charge of the medium. In writing V, the
term proportional to (m, /mz, ) in the coefficient of J",
has been neglected. Note that, in general, Eq. (4.2) con-
tains terms proportional to m, /(E, ), which are negligi-
ble as long as the temperature T &&m, . If those correc-
tions are neglected, our results coincide with those of
Refs. [3] and [6]. On the other hand, there are physical
situations, as in the nucleosynthesis era, where the tern-
perature is of the same order as the electron mass and
terms proportional to m, /( E, ) could be important.

where Jo" is the function defined in Eq. (3.12) with n =0,
2

2 m 2+k2 Pl w
(A6a)

and

d4pI„=f 3 5(p —
m& )t}(p.u)p„. (A6b)

Note that I„is manifestly covariant and depends only on
the vector u„. Therefore it is proportional to u„, with
the factor of proportionality determined by contracting
Eq. (A6) with u„. Thus we obtain
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and

I =J()Q

6()(,) = J'"+ J'"

4~2G~ 2

mw

1
b()

' =4&2G~ . 1+ (co a—+3m( ) J,"
2mw

In a similar fashion,

1 d4p
P„(A,)=,f,5(p' —mi')rl(p u)p„

( 2J(l) 4J(l) )
3mw

4&2G~(CC) P( 2J(l) J(l)
)a& — ~~ m1 0

—co l
mw

b (CC)
g(

2 2
)J(l)4GF

&zm2

(Al 1)

I + k I""+O(A ) (A7)
These are the results quoted in Eq. (3.11).

where

d4pI„„=f 3 5(p ml —)2)(p u)p~„.

In order to evaluate I„,note that it must be of the form

APPENDIX B: Z-EXCHANGE DIAGRAMS

In order to evaluate the contribution of the tadpole di-
agram [Fig. 1(c)j in a way that is valid for any back-
ground fermion f that runs in the loop, we write the Zff
coupling in the Lagrangian in the form

I„„=Ag„+Bu„u
Lz fy„(XI+Yfy, )fZ" .

2 cosOw
(B1)

By contracting this expression with u„u and g„,we ob-
tain two equations for A and B in terms of the scalars

IP 2J(1)m1 0

u u I1"'=J' '
p & 2

Solving for A and B, these are then determined as

For the electron,

X, = —
—,'+2sin Ow

Y —1

for the neutrino,

X=—Y=—''
V

and for nucleons,

Xp=2 2sin Ow,

g —) (m 2J(l) J(l)
)ml 0 2

) (4J(i) m2J(l) )

(A9)

Y= —X = —Y=—'
n n p

Each fermion in the loop yields a contribution to the
background-dependent part of the self-energy that is
given by

Substituting the expressions for I„and I„,into Eq. (A7),
y( T)

tadpole
g

2 cos6Iw

2

y„a~;(0)

X
3

Tr y Xf+ Yf/5 +mfd p
(2m. )

(
2J(l) J(l))k3' (A 10) X5(p —mf )2)(p u), {B2)

Now that the explicit expressions for 6(A, ) and P„()(,)
have been derived to order m w, we can substitute these
results into Eqs. (Al) and (A2) to find Xo ' and XP). Both
Xo ' and XI ' are of the form given in Eq. (2.3). It is then
straightforward to read off the coeKcient functions a and
b as follows:

a (tadpole) b (tadpole)
Oa(

The results for the g-independent terms are

(B3)

where we have retained only the second term of the fer-
mion propagator given in Eq. (2.18). Since the Z boson is
exchanged with zero momentum, there is no contribution
to the g-dependent terms; i.e.,
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& (tadpole) pao

b(t~dPo~e) =4/2G Mg J(I)F~ f 1

f
(B4}

where we have used the relation m~=mzcos8~ and
added the contribution from the different fermion species
present in the medium.

The calculation of the diagram Fig. 1(d) follows identi-
cal steps as the calculation of X'~', with the replacements

tions, since the diagram with the unphysical Higgs boson,
which is included in that equation, vanished if mI is set
equal to zero. The results are

(z) 2 2GF 2 (~I ) (~( )

ao =
2 +cd)

mz

b''=2&2G . 1+ (ro —x'} J0 F
mz

m~ mz

mI ~m „=0,

v 2 2cosHp

(B5)

Sco (vl)
2 2

3mz

2+2GF („)a' '= — gcoJ2mz

(B6}

The results for the coefFicients a' ' and b' ' can be bor-
rowed directly from Eq. (A11) with the above substitu-

b(z) g(co2 K2)J I
2GF (V )

m'mz

g(T)
(1—a)) 1 — ' k-

g(0)

b( T)

g(0)

and the propagator
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