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The flavor and spin symmetry of the heavy quarks and the spontaneously broken approximate
SU(3)L X SU(3)& chiral symmetry of the light quarks are exploited to formulate a theory describing the
low-energy interactions of the heavy mesons (Qq bound states) and heavy baryons (Qq ~ qz bound states)
with the Goldstone bosons m, E, and g. The theory contains only three parameters independent of the
number of heavy-quark species involved. They can be determined by the decays D*~D +~,
X,~A, +m, and X,*~X,+m. Theoretically, these coupling constants are related, through partial con-
servation of axial-vector current, to the axial charges of the heavy mesons and the heavy baryons. They
are all calculable in the nonrelativistic quark model by using the spin wave functions of these particles
alone. The theory is applied to strong decays and semileptonic weak decays of the heavy mesons and

baryons. The implications are also discussed.

PACS number(s): 11.30.Rd, 11.30.Hv, 14.20.Kp, 14.40.Jz

I. INTRODUCTION

The quark contribution to the QCD Lagrangian

Xq„,„„,= q(i8 —
mq )q+ Q(iB —

m& )Q

separates naturally into two pieces: the first contribution
comes from light quarks (q =u, d, and s) whereas the
second one is due to heavy quarks (Q =c, b, and t) Each.
of the two exhibits a distinct symmetry. The light-quark
sector has an approximate SU(3)L XSU(3)R flavor chiral

symmetry, because the current quark masses are all very
small on the typical hadron energy scale. The symmetry
is spontaneously broken to the usual vector SU(3), and
the chiral symmetry is reflected in the presence of eight
Goldstone bosons: the pions, kaons, and g. Their cou-

plings to hadrons at low energies are determined by
PCAC (partial conservation of axial-vector current) and

current algebra, or alternatively, by the nonlinear chiral
Lagrangians. On the other hand, in the limit of infinite

quark masses, the dynamics of a heavy quark in QCD de-

pends only on its velocity and is independent of its mass
and spin. As a consequence, a new flavor and spin sym-

metry appear in the sector of hadrons containing one
heavy quark. (In the following we will refer to these as

heavy rnesons and heavy baryons in distinction from
quarkonia which are QQ bound states. ) This is known as
heavy-quark symmetry and much progress has been

Permanent address.

made in this area by many authors [1—14]. More precise-
ly, this new symmetry implies that the excitation spec-
trurn of heavy mesons and heavy baryons are indepen-
dent of the heavy-quark species and heavy-quark spins;
so are the transition form factors in weak decays of these
heavy hadrons when they are properly defined. All these
are a sophisticated generalization of the familiar QED ex-

ample that a hydrogenlike atom has an excitation spec-
trum and transition matrix elements independent of the
mass and spin of the nucleus.

Since the heavy mesons and heavy baryons contain
both heavy and light quarks, one expects both the chiral
symmetry of the light quarks and heavy-quark symmetry
to have interesting implications for the low-energy dy-

namics of heavy hadrons interacting with the Goldstone
bosons. Experimentally, these circumstances arise in ex-

amples of strong decays such as D*~Dm. and X,~A, ~
involving soft pions and in semileptonic decays of heavy
hadrons where there are ample phase space for emission
of light mesons. This is the subject of the present work.
The preliminary results on mesons were reported earlier

by one of us [15].
The chiral properties of a heavy hadron is dictated by

its light quark contents. For the heavy mesons, since

they contain only a single light quark, each heavy quark

Q will give rise to an SU(3) antitriplet qQ. For the heavy
baryons a heavy quark Q will combine the two light
quarks to form baryons Qq&q2. Here the situation is

much more interesting. The two light quarks can form a
symmetric 6 or an antisymmetric 3 in flavor-SU(3) space.
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We will denote these baryons as 86 and 83 respectively.

For the ground-state baryons in the quark model, the
syrnrnetries in the Aavor and spin of the "diquarks" are
correlated. The SU(3)-symmetric sextet diquarks will
have spin 1 whereas the SU(3)-antisymmetric antitriplet
diquarks wi11 have spin 0. Thus, for the ground states of
the SU(3)-symmetric sextet there are both spin —,' baryons

(B6}and spin- —,
' baryons (B6). For the ground states of

the SU(3) antisymmetric antitriplet, there are only spin- —,

baryons (B&). The correlation between flavor and spin
wave functions is outside the realm of QCD, but it is
strongly supported by the empirical evidence from the
baryon spectroscopy. We will assume this correlation in
our subsequent discussions. Once the flavor SU(3) con-
tents of these heavy hadrons are determined, their cou-
plings to the Goldstone bosons can be immediately writ-
ten down following the standard formalism of nonlinear
chiral dynamics. Here we find the nonlinear chiral quark
model [16] most useful in our work, although we never
have to use it explicitly. Multi-light-meson emissions are
of course related by chiral dynamics. Thus only the
single-light-meson-emission vertices are independent. Let
us call them schematically P*P*p, P'Pp, 8 6 86p,
8686p, 8686p, 8683p, 8683p, and 8383p. Here P' and

P refer to 1 and 0 ground-state vector and pseudosca-
lar heavy mesons, respectively, and the lower case p
denotes a light Goldstone boson. The heavy-quark Qavor
symmetry tells us how the coupling strengths of these
vertices depend on the heavy quark mass. The heavy-
quark spin symmetry relates the coupling constants for
these vertices. We find in the meson sector that, to lead-
ing order in the light meson momentum, there is only one
independent coupling constant, and there are two in the
baryon sector. To arrive at these conclusions we have
made extensive use of the tensor method or the method
of interpolating fields [10,12—14]. This is especially true
for the case of baryons. Here we find the concepts of di-
quarks particularly useful.

Since the ground-state baryons have even parity, the
diquark in the SU(3) sextet must have spin parity 1+
which can be represented by an axial-vector field P&.
Similarly, the diquark in the SU(3) antitriplet must have
spin parity 0+ which is represented by a Lorentz scalar
field P. The two independent coupling constants in the
baryon sector describe the decays (()„—+P&+ m and

P„~P+n., respectively. As an indication of the power of
the heavy-quark spin symmetry we point out the absence
of the decay P~P+a which does not conserve parity.
As a result, the 8383p coupling vanishes. Finally, the
three independent coupling constants can be easily corn-
puted in the nonrelativistic quark model. Through
PCAC, these coupling constants are related to the matrix
elements of the axial vector current between the initial
and final heavy hadron states whose values depend only
on spin wave functions of these states in the quark model
just like the va1ue of g„ for a nucleon. Of course, this is
we11 known for the baryon-pion coupling constants. It is
less well known that the meson-pion coupling constant
can also be computed in the same fashion. Thus, the
heavy-quark symmetry and chira1 dynamics together,

II. DYNAMICS OF HEAVY MESONS

A heavy meson contains a heavy quark Q and a light
antiquark q. The ground states comprise the usual 1

and 0 mesons, which will be denoted by P;* and P;, re-
spectively. Their quantum numbers are displayed in the
interpolating fields [10,12,14]

P; (v )=qy 5h„'QM~, (2.1)

P,'(v, s) =qdh„'QM, , (2.2)

where the heavy-quark field h„' destroys a heavy quark of
type i and four-velocity v and is related to the conven-
tional field operator Q; by [8]

Q (x)=e a h„'; (2.3)

the masses Mz and M + are those of the pseudoscalar
and vector mesons. The factors QMp and QM, areP
included in (2.1) and (2.2} for our later use. The light
quark q stands for a column vector in flavor SU(3):

g
— d

S

(2.4)

Thus, both P;(v) and P;*(v,E) are an SU(3) antitriplet.

when supplemented by the nonrelativistic quark model,
uniquely determine the low-energy interactions of the
heavy mesons and heavy baryons with the light Gold-
stone bosons.

The paper is organized as follows. In Sec. II we con-
sider the dynamics of heavy mesons interacting with the
Goldstone bosons. We discuss the chiral properties of
the heavy mesons and derive the nonlinear chiral La-
grangian involving heavy and light mesons. We then in-

vestigate the implications of heavy-quark Aavor and spin
symmetries on the coupling constants. The quark-model
calculation of the coupling constants is given. The same
discussions for heavy baryons are presented in Sec. III.
Here we find the concept of a diquark system extremely
useful. In Sec. IV we consider applications of our results
to simple examples of strong decays and semileptonic
weak decays of the heavy mesons and heavy baryons. Let
us mention here two specific cases. In the heavy-quark
limit, the weak decay Xb ~A, +tv is suppressed, but the
decay Xb ~A, +m. + Iv should not. So it may become the
dominant weak decay mode. In a specific example of the
semileptonic decay 8~D'~lv we demonstrate how the
full power of heavy-quark symmetry and chiral dynamics
allows us to write down the complete amplitude involving
all possible transition weak form factors in terms of a sin-
gle universal Isgur-Wise function and a coupling constant
which is calculable in the nonrelativistic quark model. In
the kinetic region where the leptons carry away most of
the energy the amplitude is completely known. In dis-
cussing this process, we have worked out two weak tran-
sition vertices of the vector and axial vector currents
sandwiched between two spin-1 heavy mesons that do not
seem to exist in the literature. In Sec. V we make some
concluding remarks.
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Before we discuss interactions of heavy mesons with the
Goldstone bosons, let us summarize briefly the dynamics
of the Goldstone bosons themselves [16]. The nonlinear
chiral symmetry is realized by making use of the unitary
matrix

A„~3„'=UA„U

The quark triplet (2.4) transforms as [16]

(2. 14)

and the axial vector field is an SU(3) octet which trans-
forrns as

2iMW 2fX=e (2.5) q~q'=Uq . (2.15)

0 +"
v'6

0 +"
v'Z v'6 (2.6)

where M is a 3 X 3 matrix for the octet of Goldstone bo-
sons

P~P'=PU (2. 16)

We now return to the chiral properties of the heavy
mesons. For the moment we will focus on a single species
of heavy quark, so the heavy mesons will be simply re-
ferred to as P and P*. The pseudoscalars form an SU(3)
antitriplet, so we can endow them with the transforma-
tion law

and

f =93 MeV (2.7)

and a similar equation for the vector mesons P *.
A gauge-covariant derivative can then be constructed

with the aid of V„(V„ is the transpose of the matrix V„):

D„p"=(a„+v„)p', (2.17)

is the pion decay constant. The Lagrangian for the Gold-
stone bosons is D„p=p(a„+ v„')=(a„+v„" )p, (2.18)

tra z a"r,f2

M 4 p (2.8)

which contains all SU(3)t XSU(3)ii-invariant interac-
tions up to two derivatives among the Goldstone bosons.
The invariance of the Lagrangian X~ in (2.8) under
SU(3)I XSU(3)z chiral transformations is easily estab-
lished since the unitary matrix responds to these transfor-
mations according to

X~X'=LXR (2.9)

where L and R are global transformations in SU(3)l and
SU(3)z respectively. Since the chiral symmetry SU(3)1
XSU(3)„ is spontaneously broken down to SU(3), the
discussions of the couplings of Goldstone bosons to the
ordinary hadrons (including the heavy mesons and
baryons) are facilitated by the introduction of a new ma-
trix [16]

which transforms simply:

D„P ~(D„P )'= U(D„pt) . (2.19)

,=D PD"P MPP +f—(PA "P* +P*A "P )

pgpvpkg +~2 pkppk t
P I' P

+ g s (p llllllvA 2P 4K$+ p 4K A iptlllvt) (2.20)
1

where

P* =D P* —D P*
pv p v v p (2.21)

It is now a simple matter to write down the chiral-
invariant Lagrangian involving P and P* and their cou-
plings to the Goldstone bosons [17]

g
—y 1 /2 (2.10) p„', =(a„+v„*)p„*—(a,+v„*) „' . (2.22)

which transforms under an SU(3)t X SU(3)ii as

(~g' =LgU = UgR (2.11)

where U is a unitary matrix depending on L and R and a
nonlinear function of the Goldstone fields M. From g we
can construct a vector field V„and an axial vector field

A„with simple chiral transformation properties:

v„=—(g'a„g+ pa„g'),1
(2.12a)

(2.12b)

V„V„' = UV„U'+ Ua„U', (2.13)

The vector field is a gauge field under a chiral transfor-
mation

This is the most general Lagrangian consistent with
chiral invariance that contains one single derivative on
the Goldstone boson fields. Namely, these are the lead-
ing terms in the expansion of the light meson momenta.
The Lagrangian (2.20) contains two coupling constants

f& and g&. As we will see in a moment, the heavy-quark
spin symmetry relates g& to f&, and the heavy-quark
flavor symmetry gives the dependence of f& on the heavy
masses. Thus, there is only one independent coupling
constant even if all the heavy-quark species are included.
Finally, through PCAC the parameter f& is given by a
matrix element of the axial-vector current between P and
P* states. In this form, the nonrelativistic quark model
has a simple prediction for the value of f&.

We will begin with the implication of the heavy-quark
spin symmetry for the two coupling constants. Applica-
tion of PCAC gives the invariant matrix element for the
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emission of a soft pion:

M( A &~'(q)}p,„c= & Iq"A'„I A & .1 (2.23)

We now evaluate the right-hand side of (2.23) by the

method of interpolating fields which are given by (2.1)
and (2.2). Recall that use of these interpolating fields

gives a simple derivation of the relations among different
weak transition form factors and their dependences on
the heavy masses [10,13,14]. We have [18]

&P(v')Iq" A„'IP*(v,s) &
= &Olq. y,h„.(q"A„')h„dq„IO) QMpM,
= —

& ol yah. h.&lo & & 0lq. q"A „'q„ lo & QMpM, . (2.24)

&olh„,h„lo) = (2.25)

where a matrix multiplication with respect to the Dirac
indices is implied. We have attached the velocity of the
heavy quark to the light quark field with which it is asso-
ciated. In the soft pion limit, U=-U' and we have the
"propagator" for the heavy quark: 8+1 8+1

y5 2 y5 (2.28)

where u(P') and u (P) are the isospin wave functions of
the heavy mesons, and a, b, and c are constants indepen-
dent of heavy-quark masses. We notice that

The matrix
u= &OIq„q&A„'q„.lo) (2.26)

is at least first order in q„and Lorentz invariance gives

So we have, effectively,

7 QAt=u(P*)* u(P)y, [(a c)g b(—v q)]— (2.29)

~=u (P*)' u(P)y, [a/+a(v q)+cgd]2 (2.27}

&P(v')Iq"A'IP'(v, e})= —u(P')' u(P)+M~M, tr y~ dy5[(a c)f b(—v q)]— (2.30)

The trace is easily evaluated; we obtain

M [P'(v, e) —+P(v')+m'(q)]= 1, , ~ 2 TQ&P(v'}Iq"A' IP'(v, e)) = (a c)QM M—+(s q)u (P')' u(P) .P I f p 2
(2.31)

Similarly

&P'(v', e')Iq"A„'IP (v, e))
=

& oI q. &'h„(q"A „')h„lq„lo)M

+1= —tr d' ~ M, . (2.32)

from the Lagrangian (2.20) and

al+
v +2f

we find

1 1
8 7g1T +P 2 0

(2.35)

Here again in the soft pion limit U =-v', and

dd'= —d'ab+2s'. v = —dV+O(q) . (2.33)

fg =2(a —c)+MMMM, ,

gg =(a —c},
(2.36)

(2.37)

Therefore, the matrix Ai in (2.32) e5'ectively takes the
same form given by (2.29). So

M [P"(v, s)~P*(v', e')+n'(q)]

that is

Q
Q

2+M~M,
(2.38)

2
(a —c)M~ e

7
Xu (P')' u(P'*)ic„i„q"s' v . E" . (2.34}

Equations (2.36) and (2.37) also give the heavy-quark
Aavor symmetry prediction on the heavy-mass depen-
dences of f& and g&.

When (2.31) and (2.34) are compared with those obtained fg=+MpM gf, (2.39}
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gg=g ~ (2.40)

where f and g are universal constants independent of
heavy-quark masses and species. The relation (2.38)
reduces to

where the arrows indicate the spin directions of the
quarks. A simple calculation gives

«P„,lr'IP ' „,»
=-,'[&.~l~'Id ~ &

—&. 1 l~'ld»]

g=2f.
1

As a by-product we can establish

(2.41)

(2.52)

(P(U')Iq" /I „'IP'(U, E) &
= (P'(O', E)lq" /I „'IP(U ) &,

(2.42}

which yields

f= —2. (2.53}

and hence the constant f& is real. Similarly, g& is real.
The reality of these constants is already incorporated in
(2.20).

We now show that the nonrelativistic quark model has
a simple prediction for the value of f. Consider the sub-

group SU(2) and denote the P * as

Qu P 1/2P"= (2.43)
—1/2

where the subscripts +—, indicate the value of the isospin

quantum number I3. Consider the matrix element

Implicit in this calculation is the assumption that in the
single quark transition u ~d the gz for the quarks has
the value 1. Such an assumption leads to the well-known
result

gnucleon 5 (gud —
1 )A (2.54)

g
"d=0.75 (g nuc eon = l. 25 ) . (2.55)

which disagrees substantially with the experimental value
g&"'" "=1.25. One may argue that the value for g„" is
renormalized to give the correct value of g„""'"'" [20].
Then

(P„,(p )I ~„'+"IP * „,(p,.) &

= [sg(2+(s p')(p+p')„a+

+(E p')(p —p')„a ] . (2.44)

If this is accepted, we will have

f = —2 (g„""=1),

f= —1.5 (g„""=0.75) .

(2.56a)

(2.56b)

In the soft pion limit, p=p' and E p'=O(q). There-
fore, the first term dominates. Indeed, the coefftcient f&
is identical to the coupling constant that appears in the
Lagrangian (2.20). Let us pick s"=(0,0,0, 1) to be the
polarization vector for the helicity zero state, then

( P, /, I
~ '+" IP *,/, &

= &MM*f, — (2.45)

where the states have the Lorentz-invariant normaliza-
tion [19]

(p, lp, & =2E(2m. )'5'(p, —p, ) . (2.46)

«p, lp, » =&p, p, ,

and Eq. (2.44) becomes, in the rest frame of P *,

((P„,Ir'IP * „,» =-,'f,
where

fd'x ~—'+"= 1' d'x u'~'d .

(2.47)

(2.48)

(2.49)

It is convenient for our present calculation to use a
discrete normalization by enclosing the system in a large
volume. Then

These values of f will be used in Sec. IV when we discuss
the applications of our results.

III. DYNAMICS OF HEAVY BARYONS

A heavy baryon contains a heavy quark and two light
quarks, which we will often refer to as a diquark. Each
light quark is in a triplet of the flavor SU(3). Since

3X3=3+6, (3.1)

there are two different SU(3) multiplets of heavy baryons:
a symmetric sextet and an antisymmetric antitriplet. As
explained in the Introduction, we will make use of the
correlation between the symmetries of the flavor wave
functions and the spin wave functions of the ground-state
baryons in the quark model. Consequently, the diquark
in the flavor-symmetric sextet has spin 1, and the diquark
in the flavor-antisymmetric antitriplet has spin 0. When
the diquark combines with a heavy quark, the sextet con-
tains both spin- —,'(B6) and spin- —,'(B6 ) baryons. However,
the antitriplet contains only spin —,'(B3) baryons. We will

adopt the following notation used in Ref. [11]. The spin-

—,
' heavy baryons in the sextet are

Now all we need are the spin configurations of these
states in the nonrelativistic quark model: rq+' =uuQ, (3.2a)

IP '-i/~&&= ~- [IQtd 1 &+ IQld 1 &],v'2

—[I01.1& —I01.1&],V'2

(2.50)

(2.51)

—(ud +du)Q,o
v'2

Xg '=ddQ,

(3.2b)

(3.2c)
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1
Q

—(us+su)Q 7

—(ds +sd)Q,
2

(3.2d)

(3.2e)

B-=
3

+ 1/2
~Q

AQ

0

+ 1/2
~Q

(3.6)

Qg =ssQ, (3.2f)

where the superscript denotes the value of the isospin
quantum number I3. An asterisk on the symbol will

denote a corresponding spin- —', baryon. For example, the
symbol Q2 denotes a spin- —,

' baryon of ssQ. The spin —,'

heavy baryons in the antitriplet are B6 B6= UB6U (3.7)

and a matrix for B6 similar to B6.
Now that we have determined the fiavor SU(3) con-

tents of the heavy baryons, their chiral transformation
laws can be established:

A(2
= (ud —du)Q,

1

2

+ 1/2 —(us —su)Q,
2

(3.3a)

(3.3b)

B6 B6 =UB6U

B3—+B3= UB3U

(3.8)

(3.9)

—(ds —sd)Q .
2

The decomposition

Ill I2j ( 71 I2j+'Vlj'V2')+ (9 l 92j 91j I2i )

(3.3c)
The transformation laws for the antiparticles can be ob-
tained from above by Hermitian conjugation. The co-
variant derivatives under chiral transformations for B6
and B- are3

1=(B6);,+ —(B-, )~j,
2

(3.4)
D„B6=B„B—6+ V„B6+B6V„, (3.10)

allows us to assemble the sextet and the antitriplet in a
systematic and an antisymmetric 3 X 3 matrix, respective-
ly, D„B-=B„B-+V„B-+B-V„". (3.11)

B6=

'+ 1/2

1 p—X(2

' —1/2

'+ 1/2

g2 -(2

' —1/2
Q (3.5}

A similar equation holds for D„B6. At first sight two
chiral invariants tr(B6 A „B6) and tr(B6B6 A „) can be
constructed out of B6, B6, and A„. However, these two
are not independent due to the definite symmetry of the
matrices B6 and B6. The chiral-invariant Lagrangian is
then

Xii =
—,'tr[B&(iP —Mz )B& ]+tr[B6(i8—M6)B6]

+tr[B 6"[ g&„(iP——M6 )+i (y&D, +y+„) yp(i8+M6 —)y ]B6']
+g, tr(B6y„y 5 A "B6)+g2tr(B6y„y5 A "B&)+H.c.

+g3tr(B;„A~B,)+H c +g4tr(.B.6~A„B, )+H.c.+g,«(B-6"y„y,A~B6, )+g, tr(B ,y„y, A~B ,)—-(3.12)

where B6„is a Rarita-Schwinger vector-spinor field for a
spin- —, particle [21] and A„ is the axial field introduced in

(2.12). For a similar reason to that given in the preceding
section, we do not need to write the Lagrangian Xs in
terms of velocity-dependent fields [17].

We now show that the heavy-quark spin symmetry
reduces the six coupling constants to two independent
ones. For this purpose, it is convenient to introduce the
interpolating fields [12,14] for the heavy baryons in terms
of the diquark fields of the light quarks. Since the
ground-state baryons have even parity, the diquarks must
have also even parity. Therefore, the diquark in the 83

B3(v,s}=u(v,s)g, h„, (3.13)

B6(v,s, K)=B~(V,S,K)f„hU, K=1,2, (3.14)

where ~= 1 for spin- —,
' baryons and ~=2 for spin- —,

'
baryons. The wave function B„is given by Georgi [12]:

multiplet has spin parity 0+; hence, it is represented by a
Lorentz scalar field P. Similarly the diquark in the B6
multiplet has spin parity 1+; hence it is represented by an
axial-vector field P„. The interpolating fields are
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1
8„(v,s, v= 1)= —u(v, s)y5(y„+v„),v'3

B„(v,s, x.=2}=u„(v,s),

I/B„(v, s)=B„(v,s),
v"8„(u,s}=0 .

(3.15)

(3.16)
With the normalization

(3.21}

(3.22)

with u„(v, s) and u (u, s) being the Rarita-Schwinger vec-
tor spinor and usual Dirac spinor respectively. The cor-
responding interpolating fields for the antibaryons are

u„(v, s)u "(v,s') = —5„. ,

u (u, s)u (u, s') =6„,
(3.23)

(3.24)

8&(v, s) =h, P, u(v, s),

86(u, s, K) =h„P"„B„(u,sK), K —1,2,
where

18„(v, s, I~= 1)= — —(y„+v„)y,u (v, s),v'3

(3.17)

(3.18)

(3.19)

B„(v,s, ~=2) =u„(v,s), (3.20)

the minus sign in (3.19) is a result of the anticommutation
relation Iy5, yo) =0. The relative sign is important when
we compute the relations between the different coupling
constants. The function B„(u,s, a. ) satisfies

the coefficients in Eqs. (3.15} and (3.16) are chosen to
have the proper relative weight for forming a spin- —', and

a spin- —,
' field out of a spin-1 field P„and a spin- —,

' field Q.
The diquark fields t}} and P„are matrices in flavor SU(3)
space. No factors such as /Ms or QM, appear in the

interpolating fields as a result of the normalization for
baryon states [19]:

(2~}'S'(p —p'}S„, .
B

Using the interpolating field (3.13) we find the matrix
element for the divergence of the SU(2) axial vector
current:

(8&(u', s')~q" A„'~B&(v, s)) =(O~u(u', s')P„.h, (q"A' }h,P, u (v, s)~0}

=(0(u(v', s')h, h„u(v, s))0}(0($,,(q"A„')$„~0} . (3.26)

In the soft pion limit v'-=v, so

(O~u(v', s')h, h, u (u, s)~0}=u(v', s') u (v, s)
+1

where

M "(u, q) = (0~ /„",(q"A „' )Pt ~0 } (3.31)

=u(u', s')u(v, s) . (3.27)
is a four-vector (both P„" and A„' are axial vectors) and
we are only interested in terms linear in q. Therefore,

Lorentz invariance implies that

(0~ y„,(q~ A „')y', ~0) —=0 (3.28)

M, (v, q)=P, q„+P2u„(v q) .

In the soft pion and heavy-quark limit,

(3.32)

since no pseudoscalar quantity can be formed from U„
and U„' or v„and q„. By comparing with the one-pion
emission matrix element obtained from the Lagrangian
(3.12) we find

U =U'+0
V V MB

(3.33)

g6=0 .

This is an interesting and surprising result. It is a state-
ment that in the heavy-quark limit, the pion is emitted
from the light quarks and the transition P, ~P„.+~ does
not conserve parity. Next, consider the B6B3 couplings.
We have

(86(v', s', v)~q" A „' ~83( v, s) }
= (0~8„(u',s', ~)h;P;(q" A „')Q,h„u (u, s) ~0)

= (0~8 (u', s', ir)h„.h, u(u, s) ~0)M (v, q), (3.30)

and

B,(v', s', a)v "=0, (3.34)

so finally

(86(v', s', v)(q" A' ~83(v, s) )

which gives

=P,B„(u',s', x)q"u (v, s}, (3.35)

(86 (u', s')~q" A„' ~B&(u, s) }=Pju„(v', s')q"u(v, s), (3.36)

(86(v', s') ~q" A„'~83(v, s) }= —P, u(v', s')y, (y"+v")q„u(v, s) . (3.37)
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Now

v p
= 2](dy p+y pgf) =

21 (rt'y p+y pr) )+0
B

Using the relations

u(u', s')8'=u(v', s'),
s(u(v, s)=u (v, s),

we get

(B6(u', s')Iq" A„'IB3(u,s) &

(3.38)

(3.39)

(3.40)

g5=

1

3
(3.52)

(3.53)

(B6 (u', s')lq" A„'IB6 (v, s) &

= —5u '(u', s')y„ysq "u„(u,s) . (3.50)

Comparing these results with the one-pion emission ma-
trix elements from the Lagrangian (3.12) we obtain

g =—5=2 (3.51)

P,u (u', s')y"y 5q„u (u, s) . (3.41)
3

Equations (3.29), (3.42), (3.43), and Eqs. (3.51)—(3.53) to-
gether give

1g2= —~- Pi, (3.42)

By comparing Eqs. (3.36) and (3.41) with the one-pion
emission matrix elements obtained from the Lagrangian
(3.12) one finds the relations

g, =—v 3g, ,
1

3g5= 2g) ~

g4=

(3.54)

(3.55)

(3.56)

g4=A (3.43) g6=0 . (3.57)

In obtaining the results (3.42) and (3.43), we have
suppressed the SU(3) fiavor quantum numbers and
neglected an overall normalization. These are all ir-
relevant, since we are only interested in the ratio of g2 to
g4.

We now turn to the B6B6 couplings. As before we find

(B6(u', s', K')Iq" A„'IB6(v,s, K) &

=Bp(v, s,K )B„(v,s, K)M""(u,q), (3.44)

Consequently, only two of the six coupling constants in
the baryon sector are independent. Furthermore, these
two coupling constants g& and g2 (and all the three other
nonzero coupling constants} are independent of the heavy
masses.

The quark-model calculation of the coupling constants

g& and g2 follow the same procedure as in the meson
case. We will do the calculation for g2 first. The La-
grangian (3.12}leads to the coupling

where

M~"(u, q)=&oly". q'A'y Io&,

which is a second rank pseudotensor. Thus

(3.45)

+1 p +X g y"y5A(2d„n.
Q Q ~2f

Wedefineg„~ ~ by

(3.58)

M"'(v, q) =is"" "qqu„5 . (3.46)

To simplify (3.44) when (3.46) is substituted, we find the
following identity useful:

& X~+'I A„'+i A2
I A~ &

=u(X&')y„y5g„Q Q(q )u(A&}+, (3.59}

where the unlisted terms vanish at q =0. A simple appli-
cation of PCAC shows that

—g"'r "r5+g" r"r5

It follows from (3.44) and (3.46) that

(3.47)
X A

g = g Q Q(0) (3.60)

(B6(v',s') Iq" A „' IB6(v,s) &
= 5u (v', s')y—"y5q„u (u, s},

3
As in the meson case, in the baryon rest frame Eq. (3.59)
becomes

(3.48}
(& ~,+'t l~'IA, t && =g„"Q(o), (3.61)

(B6 (u', s')Iq" A„'IB6(v,s) &
= 5u "(v',s')q„u(u, s),

3

(3.49}
where the notation is the same as introduced in Sec. II.
The Aavor-spin wave functions needed are

IA~t&&=lgt&
'

(lud& —Idu&) —(its& —lit&)
2 2

1=—IQt&(lu tdl& —
lund t& —ld tul&+Id Ju t&),

2
(3.62)
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=v -,'Igl&l )I~1&—v -,'lgl &I ) +-(I11&+Ill�&)
v'2

=v' —', lgl ) lu Tu1& —v' —,'Ig t)(lu tu1&+ lu lu 1 &) . (3.63)

Equations (3.62) and (3.63) then give

((r~ 'ply'la~ 1 )) = —
—,
' v'-,'( —4) ~ » I

~'Id 1')

3
(3.64)

~t
Let us define a gz~ according to

( ~+1/2I g 1 + & g 2
I

-~ 1/2 )-Q v ' v -Q
~l

=u(:-I2+' )y„y u(:-I2 ' )g„~(q )+ (3.67)
Hence

2
3

(3.65)
Again, a simple application of PCAC gives the relation

(3.68)
The calculation of g& follows the same steps. The La-
grangian (3.12) contains the coupling

In the baryon rest frame we have

1

g pp's r~ dp1T g2

g„~(0)=&(:-I2 '"1I&'I:-I2 '"I&& .
(3.66)

The spin wave functions of these states are

(3.69)

l=g+'/ 1))=V' —', lg1) —(Ius) +Isu ) )I 1'1 &
—v -,'IQT) —(lus &+Isu &) —(Its &+

I 11 &)
2 2 2

=V'1lg& &(lu 1's1&+ Is&up&) —
—,'v —,'IQT&(lu psl &+Is Tu

l)+lugs'�&+

Is&u 1 &), (3.70)

g ~(0)=—' (3.71)

therefore,

g&=3 (3.72)

As in the meson case, the values for g &
and gz obtained

so far assume that g„" = 1. Therefore I20j

g = —v'-' (3.73)

g„" =0.75: g, =
—,
' X0.75, g2= —V' —', X0.75 . (3.74)

We will make use of these results in the applications
presented in the next section.

IV. APPLICATIONS

In this section we apply our results obtained so far to
the strong decays and the semileptonic decays of the
heavy hadrons. Recall that the heavy quark symmetry
has greatly reduced the number of parameters in the
low-energy interactions among the Goldstone bosons and
the heavy hadrons. Among the six coupling constants
only three are independent: one in the meson sector and
two in the baryon sector. In addition, the nonrelativistic
quark model has simple predictions for all three of them.
We will first consider the implications of these results in a

and a similar equation for I:-& ' t' ) with u replaced bp d
in the above. One finds

few examples of the strong decays of these heavy parti-
cles. The remainder of the section is devoted to the semi-
leptonic weak decays of the heavy hadrons with one pion
emission. Implicit in this application is the assumption
that saturation of the intermediate states by the ground-
state heavy particles is a reasonable approximation.

The main purpose of the present discussion is to bring
out the important features of the formalism. The most
striking among these is in the meson sector. Here, the
flavor symmetry and the spin symmetry for the heavy
quarks and the chiral symmetry of the light quarks com-
pletely determine the relative magnitudes and their rela-
tive phases among the different strong and weak vertices
contributing to different Feynman diagrams of a given
decay. The whole amplitude can be expressed in terms of
a universal Isgur-Wise function and a single coupling
constant all as overall factors. When the lepton pair car-
ries away most of the available energy, the Isgur-Wise
function takes the value unity, and the emitted pions are
necessarily soft. In this limited corner of phase space,
both the heavy-quark symmetry and chiral symmetry,
when supplemented by the quark model, combine to
determine the dynamics completely.

The situation in the baryon sector is somewhat more
complicated. In this case there are two independent cou-
pling constants in the chiral Lagrangian and three in-
dependent heavy-quark weak-decay form factors which
correspond to one for A@~A+lv, and two for
X&;~X+Iv. Again in the special kinematic region
specified above, two of the form factors take the value
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M{P'~P+m'(q))=u*(P') u(P)+Mt M, (s.q)2

The widths implied by the amplitude (4.1}are
r r

P+ 1 f M
1/2 P —1/2 +~ 24nv'2. f„

Mp

M g

M g

r{p)/2~p)/~+m )=o 1 f
48m. v'2f

(4.1}

(4.2a)

unity, and a third one will drop out from the decay am-
plitude. We will restrict our present discussion to this
special case. In a future publication we will present,
among other things, a more detailed and complete
analysis of the examples considered here.

The strong decay of a heavy 1 meson into a 0 heavy
meson plus a pion is described by the following amplitude
derived from the Lagrangian (2.20):

3

r{P'~P+n ) = A EpE„.M* (4.8)

Using the experimental rate for E ~Em as input,
Eichten et al. found I (D' ~D m. )-53 keV. For the
heavy baryons, the strong decay

er models [23]. An SU(4) model [24] predicts
I (D' ~D n )=17 keV and I (D' ~D m )=7 4
keV, and a QCD-sum-rule calculation [24] gives results
which are about one-half of those of SU{4}.The SU(4) re-
sults are easy to understand since the value of the cou-
pling constant in that model is obtained from the rate for
K*—+E~ and it does not vary with the quark masses. If
we remove the mass dependence (2.39), the results (4.4)
should be reduced by a factor 8.5 which is how much the
mass dependence has changed from the E'~Em. to
D*~Dm.. One calculation is closer to ours in spirit.
Based on their experience with quarkonia, Eichten et al.
[25] proposed a scaling formula

(4.2b)
X,++—+A,++a (4.9)

I'(D' Don )=0.045f ~ MeV .

The quark mode predictions for f then yield

(4.3)

0. 18 MeV (f = —2),
0. 10 MeV (f= —1.5) .

(4.4a)

(4.4b}

For the decay D ~D n. , with q =39 MeV, Eq. (4.2)
gives

1
g

2

8~

(MK —MA ) —M
q, (4.10)

M
Xg

where q is the pion momentum in the c.m. system and

has been observed experimentally, though its actual rate
has not been measured. The chiral Lagrangian (3.12) pre-
dicts for the general decay X& '~A&+~

r(xg '~Ag+m+)

I „,(D'+) & l. l MeV . (4.5)

This is consistent with the experimental upper bound [22] Q Q
M~ +MA

gzuAu~= g2f g2 (4.11)

To test the heavy-mass dependence of f& (2.39) we
must compare the predictions (4.2) for two different
heavy-quark species. Unfortunately, the decay 8 ~8m
is forbidden because the phase space is too small. The
other example is E*—+Em.. However, it is questionable
whether the s quark is qualified as a heavy quark. Let us
assume it is; then Eq. (4.2) gives

61 MeV (f = —2), (4.6a)
I'(K ~K rT +K tt )= '

34 M V (f—
1 5)

(4.6b)

as compared with the experimental value [22]

I (K* ~K n. +K n. )=49.8+0.8 MeV .

We note that the factor M~/M, in Eq. (4.2) should be

unity in the heavy-quark limit. Experimentally, its value
is 0.55 for K*~K~ and 0.93 for D'~De. It is not un-
reasonable that the heavy-quark symmetry predictions
for K*~Km should differ substantially from the experi-
mental value. Indeed, we find it encouraging that the
theoretical prediction even has the right order of magni-
tude.

Let us compare the results (4.4) with those in some oth-

is the Goldberger-Treiman relation. The quark-model
prediction (3.65)

gz= V 3ga (4.12}

gives

—29.3 (g" =1)
xc~c~ —22 (g«=0 75)

(4.13a)

(4.13b)

which, in turn, leads to

4.35 MeV (g&~=1),

2.45 MeV (g„" =0.75) . (4 14b)

(4.14a}

The quark-model results are not very different from
other predictions. The MIT bag model calculation [26]
gives gz' '= —Q —,'(0.65) leading to ~gz z ~

—= 19 from
the Goldberger-Treiman relation. Another calculation
[27] finds ~gz A ~

=23.5 by exploiting the null result of
Coleman and Glashow [28] for the tadpole model of sym-
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metry breaking. Aside from the observed transition
X,~A, +m, the test of the heavy-quark symmetry and
chiral symmetry must await the experimental discovery
of Xb Ab+m in the future.

We will now study a few examples of the semileptonic
decays of the heavy mesons with one-pion emission. We
begin by listing all the form factors needed later [1,6].
They are [19]

(P,.(v')i VPP;(u) ) =+M;M C, g(v +u')„,
(P*(v', s')~V'„'~P;(v)) =QMM *C;.pie„„z,e "v v",

(P'(u', e')i APP;(u)) =+M;M C;g[(1+u v')e„' —(e' u)u„'],

(PJ(u')~ V~'~P (v, s)) ='tr M, M 'C,.pie„„&„e"v ,u",

(P, (u')i APP;*(v, e) ) =Q M, M,
* C, g[(1 +u v')e„—(s v')u„],

(P,'(u', e')iVi'~P; (u, e)) = Q—M,'M,'C;, g[(s' e)(v+u')„—(e' u)E —(E u')e'],

~P'(v s')I A'„'lP;*(u, e)) = QM;—*M"C,;gE„,.e'e'(v +v')",

(4.15a}

(4.15b)

(4.15c)

(4.15d)

(4.15e)

(4.15f)

(4.15g)

g(u u'=l)=1 (4.16}

where g is the universal Isgur-Wise function depending
on the variable U U' normalized to

trix elements which follow from the Lagrangian (2.20)

M [P;*(u,s)~P (u', e')+~'(q)]

and C, is a renormalization e6'ect which takes into ac-
count the large logarithms of M&'s:

a, (M~ ) ' a, (M )

i M—;"E &„qi's e ( u+v')"u*(P; (v))

X —,'r, u(P (v'}) . (4.22)

where, for the b ~c transition [2,5, 13],

6
a =—

25
(4.18a)

The first example we will consider is the semileptonic
decay B~D+vr+Iv. The amplitude has contributions
from the two Feynman diagrams listed in Fig. 1. The
vertices can be read off from Eqs. (4.15) and (4.1). Each
propagator combines with the &M factors from the adja-
cent vertices to give

al (w)= [wr(w) 1], —8

r(w)= ln(w ++w —1) .
&w' —1

The vector and axial-vector currents are

(4.18b)

(4.18c)

iM ~

(P —q) —M ~

iM g

(P'+q) —MDe

l

—2u q+2(M& —Mz+)

l

+2v' q+2(MD —MDe )

(4.23a)

(4.23b)

V~'=h ~.y h'
p v p v (4.19a)

(4.19b)

with the heavy-quark fields h„' and h„' being those intro-
duced in the beginning of Sec. II. The last two equations
(4.15f) and (4.15g) in the above list did not seem to exist
in the literature but they are easily derived by the method
of interpolating fields. In the derivation one encounters
the ubiquitous matrix which appears in the derivation of
all the results in (4.15) [29]:

{a)

M:—(Oiq, q„ iO) = A +8/+Cd'+DAf', (4.20) yl

/=A 8 —C+D . — (4.21}

In addition to (4.1), we also need the strong decay ma-

where Lorentz invariance dictates the structure exhibited
on the right-hand side. The universal function g is to be
identified with [29]

FIG. 1. Feynman diagrams contributing to the decay
B~D+m.+1v. The four-velocities of B and D are U and U' re-
spectively. The pion momentum is q.
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where v and v' are the four-velocity of the initial B meson
and final D meson, respectively, and q is the four-
momentum of the emitted pion. We have exercised phe-
nomenological pragmatism in keeping the Grst-order
mass difference between a 1 and a 0 meson. We will
work out the amplitude due to Fig. 1(a) in some detail.
First, in the soft pion limit, the intermediate state B' can

I

be treated as on shell except for its propagator. So we
have

(D(u')m'(q)i V„' —A„' iB(v)) =M,„+Mb, (4.24)

where M,„and Mb„are the contributions from Fig. 1(a)
and Fig. 1(b), respectively, and

M, =u(B)' ,'r, u—(D)QM~MDC,bg g [i&q,g,&'v v" (1+v'v )sp+(~'u )up) —2u +2 M~ M~—e

This can be simplified further by the polarization sum

g cq(u)s„(u) = —g„„+v~v„.
pol

The final result is

(4.25)

(4.26}

(D(u')~'(q)i V„' —A„' iB(u) ) =iu (8)' 2r, u(D)QM~Mu C,~( uu')g(u. v')

X . [is„,z„q"v "v"+q.(v+u')v„—(1+u.v')q„]
2u q

—2(M~ —M +

[is&„&~"u u "+q (v+u')u„' —(1+v u')q„] . (4.27)
2u' q+2(Mu —Mn,

Even though the lepton pairs and the pions in the two diagrams are emitted from different particles, the heavy-quark

symmetry allows us to combine them without ambiguity in relative magnitude and relative phase. The second example
8~D +n+ iv is even more interesting. All five transition vertices in Eqs. (4.15) appear in the single decay; so do two
different strong pion emission vertices PP*v and P*P'm. . Again, their relative magnitudes and relative phases are
known. In addition, though the physical process B ~B~ is forbidden by phase space, its coupling is needed for both
of our examples. The amplitude for B~D +m+lv has three Feynman diagrams as depicted in Fig. 2. A calculation
similar to the one for B~D+++ Iv gives

(D'(u', e')~'(q)l V„' —~'„~ IB(u ) ) = iu (8}—*—,'r, u(D")+M~M, C„(u u')Pu u')(B.„+Bb„+8,„),8 D+f cb

where

1
[is„g s, („v+"v')"(q"—q. vu )+[(s' v)(v q) —e' q](v„+u„')—2u q+2 M~ —M,

(4.28)

+(s' v)(q„—q vv„)+[q v' —(u.v')(v q)]s„'],

Bb =, [is &~ s u [(1+u v')g"„—v"v„']+(e' v)q&+[(q v')(v u') —
q v]e„' —(q v')(s' v)v„'],2v' q

(4.29a)

(4.29b)

(4.29c)

correspond to the contributions from Figs. 2(a), 2(b), and 2(c), respectively. In obtaining (4.29) the relations
(2.38)—(2.41) between f and g have been used. In the region v —v' we have /= 1 and the amplitude is completely deter-
mined except for the parameter f. When the nonrelativistic quark-model result (2.53) is employed, the theory leaves
nothing unspecified for the sernileptonic decays of heavy mesons involving soft pion emission in the region v —v .

Finally, we consider some examples of semileptonic decays of the heavy baryons involving one-pion emission. Again,
we begin by listing the weak transition form factors needed for our examples [11,12,19,30]:

(AJ. (v', s')i VJ„'iA, (u, s)) =C,, oui( u', 's) y„u;( ,v)s,

(A.(v', s')i A/A;(v, s) ) =C;gu (v', s')y„you, (v, s),
(XJ(u', s')i V'„'iX, (v, s) )

= —
—,C,, u (u', s')[[(u.u')y„—2(v„+u„')]g,+[(1—(u v') )y„—2(1—v v')(v„+u„')]$2]u, (v,s),

(4.30a)

(4.30b)

(4.30c)
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& X,(u', s')
i A ~' iX;(u, s) )

=
—,'C, u, (u', s')y5[[(v u')y„+2(v„—v„')]g, +[(1—(v v') )y„—2(1+v u')(u„—u„')]$2]u;(v,s), (4.30d)

&
X*.(u', s')~ V/X;(u, s) ) = —C, u ".(u', s')[(2g„,+y„u„g'&+u„[(1—u u')y„—2u„']$2]y~u;(u, s),J (4.30e)

& XJ (u', s')
~
A „' ~X;(u, s) ) = — —C~; u J(v', s') [(2g„„y—&u„)g&+v„[(1+v u')y„—2u„']gz] u;(v, s),J (4.30f)

&X~(u', s')~V&~X;(u, s)) = — —C Juj( u's')y&j(2g&, +y„u')g, +[(1—u u')y„—2v„]u„'gz]u; (u, s),J' J (4.30g)

& X (u', s')
~ A&'~X,"(u,s) ) = — C;u~(u', s') j(2g„,—y„v' )g, + [(1—v u')y„—2u„]u,'gz] u;"(u, s),P (4.30h)

&X,*(u', s')~ V~' —A~'~X,*(u,s)) =CJ;u~&(v', s')y„(1 y—5)u;„(v,s)[ —g "g, +u"u'"g2], (4.30i)

v v 1
g&(u v')=r)(u u') — ~(u c'), (4.31a)

where C, is given in (4.17) and g& and $2 are the two form
factors introduced by Georgi [12] and are related to those
of Isgur and Wise [11]by (4.36a)

lated to the "vacuum expectation values" of the interpo-

lating fields:

&0~$, $„~0)=g(u v'),

&0ly~ y"„'10). =-g~"g, (v' )+u" "g,(v' )

1
$2(v v')= ——i(v v'),

with the normalization for g,

g((i)=1

(4.31b)

(4.32)

+ u'"u "(3(v.v')+u "u "g~(u u')

+u'"u'"(5(v u'), (4.36b)

where the form factors g3, g4, and g& do not appear in the

weak transition vertices as a result of

& XJ (x, v', s')
i
OJ„'

i A;( v, s) )

= &0~77„(~,v', s')a~. y", ,F ~,r„a,'y, F ', u (u, s) ~O&

=a„(~,u', s')r„u(v, s)&o~y„",y„'~0) . (4.33)

As emphasized earlier, the diquark fields P„and P„are
a scalar and an axial vector, respectively. Thus,
&0~$„'$,~0) is an axial vector. But it is impossible to
construct an axial vector out of v„and v„'. Consequently,

&oly", ,y'. 10 & =0 (4.34)

Isgur and Wise [11] have shown that in the heavy-
quark limit there are no weak transitions of the type
X ~A, + I v and X' ~A; + Iv. Since it is so simple to es-
tablish this fact by the method of interpolating fields, we
would like to sketch the proof here. It will demonstrate
once again the usefulness of the concepts of diquark fields
introduced in Sec. III. Let X (~,u, s) be a spin- —,

' baryon
if ~= 1 and a spin- —,

' baryon if ~=2. Then for
OJ' =h J I „h,', we have [18]

u"B„(u,s, v)=0, v=1, 2 . (4.37)

V

p+

(b)

The chiral Lagrangian (3.12) implies the following ma-
trix elements for one-pion emission:

and

&X (~, v', s')~Oi'iA;(u, s)) —=0 . (4.35)

(c) yl

The derivation of all the transition weak form factors
in (4.30) follows a procedure similar to the one shown
above. For example the form factors g, g&, and (2 are re-

FIG. 2. Feynman diagrams contributing to the decay
B~D*+~+1v. The four-velocities of B and D are U and v'

respectively. The pion momentum is q.
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lg
M(Xb&(u)~X&(v'}+m'{q))= s,b, u(u')gysu(u),2. ''

Ws, . v'3
M(X~&b(v)~X&(v')+n'(q)) = e, b,

u(v') q„u (u) gs =
g&2f

{4.38a)

(4.38b)

M(X& (v )~X&'(v')+n'(q))= s,b, u (v')gysuz(v)
lg5 3

R5 (4.38c)

M(X&(v)~A&(u')+m'(q))= u(v')fysu(v)5, b,2f
Ã4

M(X& (u) A&(v')+m'(q))= u(v')q, u "(v)5,b (g4= —&3g2) .
2f

(4.38d)

(4.38e}

In the above we have given the relations among the coupling constants. %e are now in a position to discuss the semi-
leptonic decays of the heavy baryons. To illustrate the various features of the formalism, three examples will be stud-
ied: Xb~X, +m. +Iv, Xb ~X, +n+Iv and Xb~A, +sr+ lv. As mentioned earlier, we will restrict ourselves to the
special kinematic region v —v where simplification occurs.

The first example Xb —+X, +m+lv contains four Feynman diagrams as shown in Fig. 3. To evaluate these ampli-
tudes, we have to carry out the spin sums for the intermediate states

S

Q US Q US
+1
2

(4.39}

g uz(v, s"}uk(u,s")= [ gz„+ ,'—yzy„+ —,'(yzv„—y„u&)+—', u&u„]-
II 2

&+ I= [ g~.—+-,'y~y. ,'{y—e—. y.v.—)+-', u~u. l (4.40)

With the normalizations (3.23) and (3.24) adopted, the propagator contains a factor 2M. For example, the propaga-
tor which appears in Fig. 3(b) is

2M gi
b

(P —q} —Mzp
b

—U.q+M& —M +
b

(4.41)

where we have retained a correction term due to the mass difference. Using the weak and strong vertices given in (4.30)
and (4.38), we find, for v -u',

(X,(u', s')sr (q)~ V&
—

A& ~Xb(v, s)) =ed f (&C,b(u' v)u(v', s'}.[C,&+Cb +C,„+Cd&]u (v, s),
P P b ~ def 2f 1 cb (4.42)

where cd,f is the totally antisymmetric symbol associated
with the isospin of the particles involved, and

C,„,. . . , Cd„correspond to the contributions from Figs.
3(a), . . . , 3(d), respectively:

Cd =— 1
v' q+M& —M,

C C

X [ —q„+—'(g —
q u')y„

1 1
~P 3 v

[3 p(1 ys)+4upys](lf q'v ), (4.43a) +—,'(g+2q. u')v„']( I+ys) . (4.43d)

Cb =— 1
(1—y, )—v.q+M —M

X [—q„+—,'y„(g —q-u }+—,'u„(g+2q. u }],

(4 q u')[y„(—1 .ys} 4v„—ys]—1 1

(4.43b)

(4.43c)

The approximation v =v' is made so only the form factor
g& enters the amplitude. If we set g, =l, the value at
v -v' = 1, and g &

=
—,', the quark-model result, then the am-

plitude (4.42} for Xb~X, +n+1v is comp. letely known
near the region v-v'=1.

The second example Xb~X,'+vr+Iv is somewhat
more involved than the first in that it requires more
varieties of strong and weak transition vertices. Yet in
the same approximation made above the amplitude is
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(a)
Eb

q/
/

y I

(a) V

E+
C

(b) yl (b) y I

(c) V yl (c) y I

yl
(4) y 1

E+
C

FIG. 3. Feynman diagrams contributing to the decay
Xt, ~X, +n.+lv. The four-velocities of X& and X, are v and u'

respectively. The pion momentum is q.

FIG. 4. Feynman diagrams contributing to the decay
X&~X,*+m+lv. The four-velocities of Xq and X, are U and U'

respectively. The pion momentum is q.

elf g]C~g ( v 'v )tjg( v, s )

where
of the

X [D, +Dbp+D, p+Ddp]g(v, s), (4 44)

D,„,. . . , and Dd„are the contributions from each
Feynman diagrams in Fig. 4, respectively:

completely specified. In Fig. 4 we show the Feynman di-
agrams contributing to the decay Xb~X,*+m.+lv. The
amplitude is, for U ~ U'=1,

(&; (v', s')~"(q)~ V„"—W„''~r'(v, s))

in the heavy-quark limit. What is interesting about this

decay is that in the general case all the three weak form
factors g, g, , and gz are required to describe the decay.
In the region v v'=1, we have g=(, =1 and g2 drops

out, and the amplitude is completely determined if the
quark-model result is supplemented. The Feynman dia-

grams contributing to this decay are shown in Fig. 5.
The XX~ and XX*~vertices could not appear as a result

of the suppression of X&~A, and X& —+A, transitions.
We have

bp

g (I+y, )(g —
q v),2 1

3 v'q

3 1

2 —U.q+M —M g
b

x [
—y (1—y, )q ~+ -', g

~
( I+y, )(g —

q v )],

(4.45a)

(4.45b)

(a)
hb

VI

hc

D A. 1

. +M —MU -q
c c

(4.45c)

(b) y I y I

hc

1D „=&3, [
—g„(g—q.v')+ ', q (y„'v)]( I+—gy) . —

(4.45d)
We now come to the third and final example of the

semileptonic decay of heavy baryons: Xb ~A, +~+Iv.
This is possibly the dominant semileptonic weak decay of
X& since the simpler process X& ~A, +Iv is suppressed

(c) y I

FIG. 5. Feynman diagrams contributing to the decay

X~ —+A, +m+lv. The four-velocities of X& and A, are u and U'

respectively. The pion momentum is q.
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(A, (U', s')m (q)~ V„' —3„' ~Xb(v, s)) =i — 5,dC,b(v' U)u(v', s')[E,„+Eb„+E,„]u(v,s) .
P P b &

2f ed cb

Again, E,„,Eb„, and E,„are the contributions from Figs. 5(a), 5(b), and 5(c), respectively. We have, for U v'= 1,

(4.46)

E.,=& y„(1 y—s)(4 q—U»
1

—v-q+M& —Mz
(4.47a)

1 1

3 '- +M —Mv'-q+M~ —Mz
(4.47b)

E,„=—2g, , [ q„—+—,'(g —
q U')y„+,'(g+2q U')U„'](1+y, ) .' v'.q+M~ —M,

C C

(4.47c)

In the above, we have left g and g, unspecified to remind
us where they come from.

To fully appreciate the implications of the formalism
presented in this work, it is essential to work out the vari-
ous distributions of the particles in the final states. These
will include the energy and angular distributions of the
leptons, of the pions, and of the heavy particle, etc. We
will present analysis of this type in a future publication.

V. CONCLUSIONS

In this paper we have presented a formalism to de-
scribe the chiral dynamics of the heavy mesons and heavy
baryons interacting with the Goldstone bosons. Thanks
to the heavy-quark symmetry, there are only three pa-
rameters independent of how many heavy-quark species
there are or will be. Furthermore, these parameters are,
through PCAC, related to the axial charges of the heavy
mesons and heavy baryons, and therefore they all find
simple answers in the quark model just as the g„of the
nucleon did some years ago. It is interesting that the in-

terplay between the symmetries of heavy quarks and light
quarks almost defines the theory completely. Of course,
the applicability of chiral Lagrangians requires that the
light mesons emitted be soft. On the other hand, it is
known to the practitioners in the subject that, when
treated as a pole model, the chiral Lagrangians work well
beyond the soft pion limit.

We have applied the theory to the strong and weak de-
cays of the heavy hadrons. The examples considered il-
lustrate the important features of the formalism. Howev-
er, these examples involve only a single pion. When two
or more pions are emitted, we must take into account the
couplings to the vector field V„ in addition to those to
the axial vector field A„which are responsible for one
pion processes. The full implications of the theory can
only be revealed by a detailed analysis of some specific
processes in the semileptonic decays accompanied by soft
pion emissions. Furthermore, the examples of the semi-
leptonic decays considered so far are al1 Cabibbo favored
processes. It will be interesting to study some of the Ca-
bibbo suppressed semileptonic and nonleptonic decays of
the heavy mesons and baryons. Work along these lines is
in progress.

In addition, there are many interesting issues we are
studying. Let us mention a few here. First of a11, we
should like to incorporate symmetry-breaking effects into

I

our formalism. These will include the finite-mass effects
from the light quarks and the AQcD/mg corrections from
the heavy quarks. Next, it is a simple generalization to
incorporate the photon into the theory so radiative de-

cays of these heavy particles can be studied. Also, we feel
that the idea of a diquark should be useful in other areas,
especially in the nonleptonic decays of heavy baryons.
Another topic concerns the dynamics of the excited
states of these heavy mesons and baryons. Several of the
excited charmed mesons have already been found and un-

doubtedly many more with other quantum numbers will

emerge in the future. It is important to study their
strong and weak interactions [31]. How much constraint
will the symmetries of heavy and light quarks impose on
the theory when the excited states are included? Finally,
how do we extend the theory to include the interactions
with light vector mesons such as p, co, K', and P?

Note added. After completion of this work we have be-
corne aware of a recent paper by M. B. Wise, Phys. Rev.
D 45, 2188 (1982), in which he constructs an effective La-
grangian for heavy mesons interacting with the Gold-
stone bosons. He has considered many aspects in the
heavy meson sector which we have discussed in the text.

Notes added in proof

(1) After this paper was submitted for publication, we
became aware of the work by G. Burdman and J.
Donoghue, Phys. Lett. B 280, 287 (1992). These authors
also considered the implications in the meson sector of
combining the heavy quark symmetry and the chiral sym-
metry.

(2} For the semileptonic decays with one pion emission
of heavy baryons considered in Sec. IV, we have found
that the pole contributions from the excited heavy
baryons vanish at the kinematic point v =v'.
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