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The structure of the Cabibbo-Kobayashi-Maskawa (CKM) matrix is analyzed from the standpoint of
illustrative composite models. It is shown how electroweak couplings can yield information on substruc-

ture. Models are constructed with two and three families of quarks, by taking tensor products of
sufficient numbers of spin- —representations and imagining the dominant terms in the mass matrix to

arise from spin-spin interactions. Assumptions are made about the absence of certain terms. Generic re-

sults then obtained include the familiar relation
~ V„,~ =(md /m, )' —(m„/m, )'~', and a less frequently

seen relation
~ V,b ~

=&2[(m, /m& ) —(m, /m, )]. The magnitudes of V» and V,d come out naturally to be
of the right order. The phase in the CKM matrix can be put in by hand, but its origin remains obscure.

PACS number(s}: 12.50.Ch, 12.15.Ff, 12.15.Ji, 14.80.Dq

I. INTRODUCTION

The pattern of charge-changing weak transitions
among quarks undoubtedly is a reflection of deeper phys-
ics. In the present article we examine the form this pat-
tern might be expected to take if the underlying physics is
that of a composite system. We construct two- or three-
level quantum-mechanical models of composite quarks,
and analyze the way in which the mass eigenstates are
affected by alteration of the identity of one or more of the
subconstituents. We thereby obtain an illustration of
how the quark mixing matrix, or Cabibbo-Kobayashi-
Maskawa (CKM) matrix [1,2], might arise from some un-
derlying substructure.

Our intent is not to present a realistic model of the
CKM matrix. Rather, it is to stimulate further efforts de-
voted to the construction of such a model, by highlight-
ing the gaps in our present knowledge. In particular, a
major unsolved problem in such models remains the ori-
gin of the CP-violating phase in the CKM matrix.

We discuss briefly in Sec. II some reasons for believing
quarks are composite objects. We then present, in Sec.
III, some results of a model for a two-family system. A
more realistic three-family system is described in Sec. IV,
while an alternative three-family model is mentioned in
Sec. V. Possible origins of the CP-violating phase in the
present mod|:ls are treated in Sec. VI, where we also com-
pare results of our three-family model with present data
on the phase in the CKM matrix. Our conclusions and
suggestions for further study are contained in Sec. VII.

II. MOTIVATION FOR A COMPOSITE
MODEL OF QUARKS

A. Electroweak symmetry breaking

The least understood aspect of the present electroweak
theory [3] is its symmetry-breaking sector. The break-
down of the full SU(2)XU(1) gauge group to the U(1)
gauge group of electromagnetism is described phenome-
nologically in terms of one or more doublets of Higgs bo-

sons. The vacuum expectation value of one or more neu-
tral Higgs bosons gives rise to the symmetry breaking,
which is manifested directly in terms of masses for the 8'
and Z bosons and indirectly in terms of quark and lepton
masses.

The pattern of W and Z masses is specified once we
know the gauge couplings and the representations of the
Higgs fields which acquire vacuum expectation values.
Present electroweak data [4] strongly disfavor any
significant contributions from vacuum expectation values
of Higgs representations whose weak isospins exceed —,'.
The effect of the Higgs sector on gauge boson masses can
be studied quite productively, as a result of this simplici-
ty.

One approach to the Higgs sector, whose validity we
shall implicitly assume here, is to take it to be composite.
The sector can even be studied in the limit of zero gauge
couplings [5,6], in which case it resembles the physics of
low-energy pion-pion scattering, but at an energy scaled
up by a factor of about 2650.

Although we now understand pions as states of quarks
bound by interactions due to the exchange of gluons, the
physics of pion-pion scattering is governed by general
constraints of current algebra, unitarity, and crossing
symmetry. Whether these suffice to specify the low-
energy amplitudes completely is a subject of some current
discussion [6,7]. However, there seems little question
that one cannot learn about the properties of quarks and
gluons from pion-pion scattering alone. In particular, the
p meson, with isospin I= 1 and spin J= 1, is a feature in
pion-pion scattering whose properties tell us very little
about quarks. The lowest-energy resonance whose cou-
plings and properties are sensitive to assumptions about
quarks is the co, degenerate in mass with the p but having
I=O, J =1.

One can also learn about quark charges and colors
from the two-photon decay of the neutral pion, whose
amplitude is proportional to a quantity S relating the
charges and numbers of the pion's constituents. The
measured decay rate implies 5=1. One can realize this
constraint either in terms of a color triplet [8] (N=3) of
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quarks with charges Q„=—', and Qd
= —

—,', satisfying
S=N(Q„—Qd)=1, or in terms of a single isospin dou-
blet (N = 1) of elementary fermions with charges Q~

= 1,
Q„=O,as in the original calculation by Steinberger [9].

The corresponding scenario for the Higgs sector [10]
envisions fermionic subunits of Higgs bosons with
charges QU and QD =QU —1. There may be several such
doublets of weak isospin, having various values of QU .
However, a constraint that must be realized in this sys-
tem leads to an important contrast with the case of
quarks and pions. The composite state II analogous to
the neutral pion is the one which mixes with the neutral
SU(2) and U(1) bosons to form the longitudinal com-
ponent of the Z . The absence of a Z —two-photon cou-
pling in the underlying gauge theory requires one to
choose the charges QU' in such a way that their total con-
tribution to H ~yy vanishes. The minimal choice
[11,12] is to have a single doublet with QU

=
—,', QD

= —
—,',

since then QU
—

QD =0.

B. Quark and lepton compositeness

With the minimal choice QU= —,', QD
= —

—,
' for the as-

sumed constituents of Higgs bosons, a natural extension
to the case of quarks and leptons [12] is suggested by the
relation between electric charge Q and the third com-
ponent I3r of weak (left-handed) isospin.

In the standard SU(2) XU(1) electroweak theory, the
charge of every quark and lepton is given by

Q =I3r +( Y/2), where the single U(1) gauge boson cou-
ples to the weak hypercharge Y. At this level of the
theory, the hypercharge is just an artificial quantum
number invented to make the charge come out right.

The SU(2) of standard electroweak theory is that under
which left-handed fermions transform nontrivially. If,
however, both left-handed and right-handed SU(2) are
good symmetries at some energy, the third component
I3g of right-handed isospin also has physical meaning.
The weak hypercharge can be expressed [13] as
Y/2=I3&+(B L)/2, where —B and L are baryon and
lepton number. The eigenvalues of I3L+I3& are always
+—,

' for ordinary quarks and leptons. It is then tempting
to assume [12] that the fermions U and D in the minimal
model mentioned above, with QU

=
—,
' and QD

= —
—,', car-

ry the contribution of I3L +I3~ to the electric charges of
quarks and leptons. Models of this sort have been con-
sidered previously [14].

If the fermions U and D are the sole source of all elec-
troweak SU(2) charges in quarks and leptons, the helicity
of any quark or lepton must be that of the corresponding
U or D which it contains. This requirement can impose
strict constraints on models. We shall see below that it is
nontrivial to implement.

The above discussion is intended as an illustration of a
typical assignment of quantum numbers. In what fol-
lows, we shall take the more general point of view that
quarks and leptons are composites of fermions, some of
which carry weak SU(2), and possibly of other types of
subunits such as scalar or vector mesons. We shall inves-
tigate the effect on the composite system of changing the

III. TWO-LEVEL SYSTEM

A. Three spin- —' subunits

We wish to consider a quantum-mechanical system
consisting of three distinct static spin- —, subunits with

spins S, and masses m, (i = 1,2, 3), in a state in which all

relative orbital angular momenta are equal to zero. In
the absence of any interactions, the system consists of one
spin- —,

' and two spin- —,
' states, with a total of 2 =8 levels

which are all degenerate with one another.
Now we imagine the levels of the system to be split

from one another by means of interactions with the same
form as hyperfine S, S forces:

S--S
6M=A, g . m, m

(3.1)

charge of a fermionic subunit by absorption or emission
of a real or virtual 8'boson. We now conclude this sec-
tion with a general discussion of features to be imple-
mented in a composite model of quarks and leptons.

A crucial problem [15] associated with the construc-
tion of realistic models is to understand why, if the com-
positeness mass scale is very high, quarks and leptons are
so much lighter than this scale. One usually invokes an
unbroken chiral symmetry which prevents left-handed
and right-handed fermions from pairing up to form large
Dirac mass terms. We assume that the dynamics is such
as to solve this problem. (One recent suggestion is given
in Ref. [12].) We shall imagine that the families of quarks
and leptons are the low-mass states (perhaps massless in
some limit) of a quantum-mechanical system whose other
states lie at the compositeness scale. We shall assume
that this scale is independent of the physics giving rise to
any of the quark masses (though we will not be fully com-
fortable with such an assumption as long as the top quark
remains undiscovered).

A similar point of view is familiar when discussing
composite models of the ordinary hadrons. We normally
tend to view pions as Nambu-Goldstone bosons of a
spontaneously broken chiral symmetry, thereby under-
standing why they have nearly zero mass. However,
from the standpoint of the quark model, one could just as
well regard pions as spin-singlet quark-antiquark states
whose masses are nearly zero by virtue of a strongly at-
tractive hyperfine interaction between the quarks [16]
which nearly cancels their dynamical masses (about 300
MeV per quark). The spin-triplet hyperfine partners of
the pions, the p mesons, have masses which are typical of
the strong-interaction scale.

Because of our familiarity with quark models, we shall
use a language which is closely related to the nonrela-
tivistic quark model. We recognize that a proper treat-
ment of deeply bound composite systems may require a
relativistic treatment [17]. However, we find nonrela-
tivistic discussions a convenient means of counting states
and of dealing with dynamically induced masses of the
unwanted (i.e., higher-lying) excitations. The treatment
is best illustrated by reference to a simple system of three
distinct spin- —, particles, to which we now turn.
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We can examine limits of successively more badly broken
symmetry.

(1) When all the subunit masses are equal, the mass of
the composite system is characterized just by the total
spin S=S,+Sz+S3, since the hyperfine interaction is
proportional to S, Sz+S, S3+Sz.S3=S(S+I)/2 ——', .
This quantity is equal to —,

' for S=
—,
' and to —

—,
' for S=

—,'.
If the dynamics were such that the spin- —,

' states came out
massless, the masses of the states would then be described
by the Hamiltonian K=Mc+A(cr~ crz.+ao

~ 03+P(Tz o'3'), (3.4)

(3) When all three subunit masses are different, the
Hamiltonian is no longer diagonal in the combined spin
of any two subunits. One may choose a basis of states la-
beled by total spin S and the spin of any two subunits, say
S,z=S)+Sz. The state with S=

—,
' necessarily has S)z =1.

However, the eigenstates of the Hamiltonian with S=—,
'

are linear combinations of those with S,z
=0 and S&z = 1.

The most general Hamiltonian for this system can be
written, adopting the notation of Ref. [18],as

H = A (S, Sz+Si Sz+Sz.S3+—', )

= A [S(S+1)/2 ——', ] . (3.2)

where 0.;—:2S;. For the spin- —', state, the expectation
value of each 0.; o is 1, so

The parameter A would govern the dynamical mass scale
associated with compositeness. States of spin —,

' would
have masses —',".

(2) When only two subunit masses are equal (say,
m&=mz), the coefficient of one term (say, S& Sz) is
different from that of the other two in the Hamiltonian.
It then becomes convenient to characterize states in
terms of S&z=S,+Sz as well as the total spin S. The two
distinct spin- —,

' states have S,z =0 and 1, while the spin- —,
'

state of course must have S,z=1. The most general
Hamiltonian is of the form

H = AS(S+ 1)/2+BSiz(S,z+ 1)/2+ C . (3.3)

If we want both spin- —,
' states to be massless, we may take

B =0, C = ——',", and this case reduces to the previous
one. If we want the Sjz=1 states with S=—,

' and S=—,
' to

be degenerate with one another but the S&z=0 spin- —,
'

state to be massless, we may take A =C=0. The S,z =1
states will then have a common mass equal to B.

The charmed nonstrange baryons cud composed of a
charmed quark c, an up quark u, and a down quark d
have a spectrum close to the present example, as illustrat-
ed in Fig. 1(a). In the A„the u and d are in a state of rel-
ative spin S„d=0, with an attractive hyperfine interac-
tion. In the spin- —,

' X, and the spin- —', X,*, both of which
have S„d=1,the u-d hyperfine interaction is repulsive.
Hyperfine interactions involving the heavier charmed
quark are weaker, and are responsible for the small split-
ting between the X, and the X,*.

M3~z =Ms +A ( 1 +a +P) (3.5)

The masses of the spin- —,
' states may be calculated by di-

agonalizing a 2 X 2 matrix, which may be expressed in the
basis S,z =0, 1 as

A, &3(P—a)Mo —3A,

A&3(P —a) Ma+A(1 —2a —2P)
(3.6)

+2(1+a +I3 a f3 aP)' —
] . —(3—.7)

The corresponding eigenvectors are

~1/2, —) =cos8 S,z =0)—sine~S, z =1),

~1/2, +) =sin8 S,z=O)+cosO~S&z=l),

(3.8a)

(3.8b)

It is easy to understand the origin of the terms in (3.6).
The upper left-hand entry contains no terms involving a
or P, since the expectation value of the operators a

&
0 3

and O.
z

0.
3 vanishes in a state of S&z =0. The expectation

value of 0 ]'0 z in such a state is —3, while it is + 1 in the
state with S,z

= 1. When a =P= 1, the matrix should be
proportional to the unit matrix, so its lower-right entry is
uniquely specified and its off-diagonal entries must be
proportional to a —P. [The matrix element of 0, oz be-
tween states of different S,z clearly vanishes. ] A brief
calculation, making use of the expansion of e; o.

3

(i =1,2) in terms of raising and lowering operators, then
yields the coefficients in the off-diagonal terms.

The eigenvalues of the matrix (3.6) are

Miyz+ =MD+X[ (I+a+P)

J = 3/2

J= 1/2

(a)

z *(2510)
C

z (2455)

J= 3/2

J= 1/2

(b)

:» *(2600)
C

:-(&) (2560)
C

where

&3(P—a)
3+ [M~yz + Mo]/A

(3.9)

j= 1/2 :"(&)(2470)
C

J= 1/2 A (2285)

FIG. 1. Pattern of energy levels of charmed baryons. Num-
bers denote observed masses (for underlined states) or predicted
masses, in MeV. (a) States composed of c, u, and d; (b) states
composed of c, s, and u. The superscripts on the ", states
denote antisymmetry or symmetry with respect to s~u.

The parameters a and P may be expressed in terms of
subunit masses, taking account of (3.1), as a=mz/m3
and Iz'=m&/m3. If any two subunit masses m, and m.
are equal, the eigenstates correspond to states of definite
S;J. For example, when m, =mz so that a=P, the ma-
trix (3.6) is diagonal, with eigenvalues Mo —3A, and
MD+A(1 —4a) corresponding to the states with S&z=0
and S,z=1. When mz=m3 so that a=1, the eigenvalues
Mo —3AP and Mo+A, (P—4) correspond to states with
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S23 0 and S23=1. When both a and p are close to 1,
the spin- —,

' eigenstates are much closer to one another in
mass than to the spin- —,

' state.
An example of a system to which the above discussion

applies is the charmed-strange baryon composed of csu
(or csd) [19]. The mass eigenstates correspond only ap-
proximately to states of definite light-quark spin
S,„=0,1. The breaking of SU(3) symmetry induces mix-

ing. The corresponding levels are illustrated in Fig. 1(b).

B. A model for two quark families

Using a model based on three spin- —,
' subunits, one can

construct only two spin- —,
' composites, and hence the

present model applies only to the Cabibbo [1] angle. A
preliminary account has appeared in Ref. [20].

It has been pointed out [21] that the ansatz

0 p
p m

(3.10)

for quark mass matrices in a two-family model leads to
the reasonably successful relation

ec,„;bb,——(my/m, )' —(m„/m, )' (3.11)

Equation (3.11) actually agrees with experiment better if
the second term is omitted, which is the form in which it
was first hypothesized [22]. Here one may use quark
masses from Ref. [23], or a more recent set from Ref.
[24].

If one arbitrarily chooses Ma = 3k, in the Hamiltonian
(3.4) and the mass matrix (3.6), one obtains the desired
zero. The Hamiltonian (3.4) becomes

The mass matrix for spin- —,
' states is now

0 V 3(b —a )/4
V3(b —a )/4 —(a+b)/2 (3.18)

We may further assume that la b —
l
« la+b l, antici-

pating that the two eigenvalues of the quark mass ma-
trices will be very different. The eigenvalues of the ma-
trix (3.10) are approximately —p /m and m when

p « m. In the present case, the eigenvalues of (3.18) are
approximately —,'(a b)—/(a+b) and —(a+b)/2. These
are to be identified with the eigenstates

l —,', —) and

l —,', + ) of Eqs. (3.8). (One can always change the sign of
a quark mass by multiplying the appropriate quark field

by y, .) When p «m, the mixing angle 0 in (3.8) arising
from a matrix of the form (3.10) is

9=arctan(p/m ) =V'lM, /2, —/M j/i, + l
(3.19)

The Cabibbo angle in (3.11) is then the difference between
the mixing angles in the up- and down-quark sectors.

The need to take Mo=3X in Eq. (3.4) to obtain agree-
ment with experiment is using the observed pattern of
quark mixing angle to tell us something about quark sub-
structure. Both the terms a and b in Eq. (3.18) must
change in the course of a charge-changing weak transi-
tion. These features can be used to constrain hypotheses
about which subunit or subunits carry the weak SU(2)
quantum number.

We have taken an illustrative set of quark masses in or-
der to see if there are some regularities in the parameters
of (3.15) that would aid in model building. We choose a
representative set of masses [24] all evaluated at a scale of
1 GeV:

H=k(3+cr, cr2+ao, o, +Po.2 cr3) .

The mass matrix for spin- —,
' states takes the form

(3.12) m„=5.2 MeV, m&=9. 2 MeV,

m, =194 MeV, m, =1.41 GeV .
(3.20)

0 ~/3(P —cc)
JM +3(P—cc) 2(2 —a —P)

(3.13)
One can then solve for the parameters for the (u, c) and

(d, s) systems. The results, taking positive values for a
and b, are

while the spin- —,
' state's mass is

M3/2 = A (4+cc+p) (3.14)
(u, c) system: a=1.51 GeV, b=1.31 GeV; (3.21a)

An equivalent expression for (3.12) which will be useful
in our discussion of a three-family model is

H=Mo(J)+aS, S3+bSz S3,

where

(3.15)

Mo(J)—:A,(3+cr, .o z+o, .o 3+o'z. o i)

=A[3+2[J(J+I)——,'] ], (3.16)

while

a—:4A, (cc—1), b:—4A, (P—1) . (3.17)

The term Mo(J) vanishes when J=—,
' and is equal to 6A,

when J=—,'. By taking A.~~ and (a,P)~1 with (a, b)
fixed, we may describe masses of spin- —,

' states while set-

ting the masses of the spin- —, states to be arbitrarily high.

(d, s) system: a'=0. 243 GeV, b'=0. 145 GeV . (3.21b)

Here and elsewhere we shall denote quantities associated
with the down-quark sector with primes.

No obvious pattern is suggested by Eqs. (3.21). It ap-
pears that one cannot identify any one subconstituent as
carrying the weak SU(2) quantum number. For example,
if we were to take only the third subunit to change its
charge and mass in a charge-changing weak transition,
we would lose the correlation between the chirality of the
composite fermion and that of the subunit, since such a
correlation only exists for the Si2 =0 basis state. (In the
S&2

= 1 basis state, there is anticorrelation between the
two chiralities. ) Nonetheless, we expect results such as
(3.21) to be useful if and when one identifies a viable com-
posite model. With this possibility in mind, we now turn
to a three-level system.
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IV. THREE-LEVEL SYSTEM B. A mass matrix for three spin-
~

levels

A. Sources of three spin-2 levels

One can imagine a system of N distinct spin- —, subunits

coupled together to give quarks and leptons, in such a
way that the various families are associated with different
ways of forming a total spin of —,'. We have mentioned
the case [14,25] N =3 in the previous section. It leads to
two spin- —,

' composite states. The case N =5, examined
in Refs. [18] and [26], leads to five spin- —,

' composite
states. Although this is more than the number of light
neutrinos (three} measured in Z decays, one could imag-
ine that the pattern of masses changed after the first three
families in such a way as to make the fourth and fifth
neutrino species sufficiently massive not to contradict
these data. Instead, we seek the simplest model which
gives just three spin- —,

' states, in order to have a system
without extraneous levels wherein one can discuss a 3 X 3
CKM matrix.

One way to reduce the number of states in a model
with many spin- —, subconstituents is to imagine that two
or more of them are identical, and thereby subject to the
exclusion principle. For example, if we were to take two
of the spin- —,

' subunits to be identical except for a hyper-
color label with respect to which they were in an an-
tisymmetric state, their total spin would have to be I.
Such is the case for the two u quarks in an S-wave uud
state. The quarks are coupled antisymmetrically with
respect to color, they are identical in Aavor, and hence
they have to be symmetric in spin, with S„„=1.When
coupled to the d quark they can either form a proton
with spin —,

' or a 6+ with spin —', .
It so happens that one can form precisely three spin- —,

'

levels with the product of three spin- —,
' subunits and a

spin-1 subunit. The tensor product in question is

We are considering subunits of spin —, with spins S,.
(i =1,2, 3) and a spin-1 subunit with angular momentum
L. We shall adopt the following basis for description of
our states: (1) We imagine S, and S2 to be coupled to a
total spin Slz=S, +Sz as in Sec. III. The possible values
of S,2 are 0 and 1. (2} Next, we define J,2=S,z+L; (3)
finally, we form the total spin J=Jlz+S3.

For S,z=0, we must have J&2=1. When combined
with S3, this leads to a single state with J=

—,'.
For Slz =1 we can have Jlz =0, 1,2. Only the first two

of these can lead to spin- —,
' composite states when corn-

bined with S3.
We may then label our three spin- —,

' states by ~S,z, J&z &.

The basis states are

(4.2a)

(4.2b)

S, Sz=

S-S= 81 3

0 1 0

0 0-,'
8 1/2

1

4

1

4

8
—1/2

(4.3a)

(4.3b)

1

4 8
—1/2

(4.2c)

where in assigning the weak eigenstate labels we have an-
ticipated a result of Sec. IV C.

We shall take our model Hamiltonian to consist of a
constant term and linear combinations of terms propor-
tional to S; S. and L S;. The matrix elements of these
operators between the basis states written in the order
(4.2) are

0 04

—,' —,' —,'1=3( —,')e3( —', )e —,
' . (4.1) 0 8

—1/2 1

4

We shall adopt such a model for quark and lepton fami-
lies, regarding them as the spin- —,

' members of the set
(4.1). We do not inquire here into the origin of the sub-
units. The spin-1 subunit may either arise as a result of
the composition of two spin- —, subunits in the manner
mentioned above, or it may be due to some internal orbit-
al angular momentum. In what follows we shall label the
spins of the three spin- —,

' subunits by S; (i = 1,2, 3) and
that of the spin-1 subunit by L.

Our point of view is different from that espoused in one
early treatment [27] of composite quarks and leptons. In
that approach, the family index is explicitly carried by
one (h) of three spin- —,

' subunits. The approach in Ref.
[27] has the virtue that it can preserve the connection be-
tween the helicity of the subunit m carrying the weak
charge [with Q(w)=+ —,

' as in Sec. II] and the quark or
lepton. A third subunit in that model (c) carries the
remaining electric charge and the color index, serving to
distinguish quarks from leptons.

Sz S3= 8
—1/2

1

4

1

4

8
—1/2

8
—1/2 (4.3c)

L SI= 2
—1/2

0

2
—1/2 0

1

2 (4.4a)

2

0 2-'" 0
0

0 0

(4.4b)

L.S = 0 2
—1/2

2 (4.4c)

0 2 ' 0

The sum of all six matrices is —
—,
' times the unit matrix,

as it must be, since
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which is —
—,
' for states of / =

—,'.
We investigated another basis in which the states were

labeled by the quantum numbers (S,2,S,23)= (0, —,
' ), ( 1, —,

' ), ( 1,—', ). Here S&23
—=S&+S2+S3. The ma-

trix elements of S;.S and L.S, have fewer zeros in this
basis, and we were not able to spot any simple regularities
leading to a convenient ansatz for mass matrices.

C. Model for three families of quarks

We examine the following simplified form of the mass
matrix for quarks, drawing on our experience with the
two-family model:

M(q)=MD(J)+aS, S3+bS2 S3+c(1+L S,), (4.6)

where Mo(J)=constX[J(J+1) —
—,'] is chosen so as to

make all states with J) —,
' arbitrarily heavy, while

Mo( —,')=0, as in the two-family example. We motivate
the inclusion of certain terms and the omission of others
in (4.6) by the following arguments.

(1}The terms S, S3 and S2 S3 mix the first and second
families.

(2) To preserve the desired zero in the upper left-hand
diagonal element, as in (3.18), the term S, S2 is omitted.
We wish to have a mass matrix leading to the successful
relation (3.11) for the first two quark families.

(3) The terms L S, and L S2 would give rise to further
mixing of the first and second families. The sum
L S, +L S2 is the matrix diag(0, —1, —2) which could be
very useful in fine-tuning our results. For simplicity,
however, we omit these terms.

(4) The combination 1+L S3 mixes only the second
and third families.

Clearly the form (4.6} is not unique. Taking account of
(4.5), the most general mass matrix will have a total of
five parameters for each charge of quark, giving (in prin-
ciple) more than enough parameters to fit both quark
masses and mixing angles. Nevertheless, we wish to see
how far one can go with the simplified version (4.6). As
we shall see, with this form the mass eigenstates are very
close to the basis states (4.2).

The mass operator (4.6) leads to the following mass
matrix for spin- —,

' quarks:

0 a&2 a
JR~yp= a&2 P P&2

P&2

where

(4.7)

a=(a b)/4, P=——(2c —a b)/4, y=c . —(4.8)

The form (4.7) allows for b and r-quark masses -which are
significantly larger than the corresponding ones in the
first two quark families. If the hierarchy

a «p«y (4.9)

S1 S2+S1 S3+S2 S3+L S1+L 'S2+L S3

=[J(J+1)—3( —,') —2]/2 (4.5)

is respected, the mass eigenstates will automatically be
very close to the basis states (4.2) which we have adopted
as weak eigenstates. The corresponding CKM matrix
will have diagonal elements close to 1 and small off-
diagonal elements.

With separate mass matrices (4.7) for up and down
quarks, one has six parameters with which to describe six
quark masses. This theory has no CP violation. By
respecting the hierarchy (4.9), one can construct approxi-
mate eigenvectors. For up quarks, one has

a&2/P
u= —a&2/P, c= 1

a/y —P&2/y

a/y
r = P&2/y

1

(4.10)

where only leading terms are shown. The corresponding
eigenvalues are

m„=—2a /P, m, =P, m, =y . (4.11)

The eigenvectors
may be expressed

1

d = —a'&2/P'
a'/y'

and eigenvalues for down-type quarks
in terms of primed quantities:

a'&2/P'
s — 1—P'&2/y'

a'/y'
b = P'v'2/y'

1

(4.12}

and

md ———2a' /P', m, =P', mt, —-y' . (4.13)

The CKM matrix elements are obtained as scalar prod-
ucts of the eigenvectors (4.12) and the complex conju-
gates of the eigenvectors (4.10). Since all quantities are
real in the present exercise, we have

' 1/2 1/2

QS
m,

—m„
m,

(4.14a)

V,„=&2 m,

m,
(4.14b)

V„b-—
(
—m„m,/2)' m, 2mu

1/2

m

(
—m„m,/2)'

m,
(4.14c)

( —m„m,/2)'" m,
td m mb t

2md
1/2

m,

(
—m„m,/2)'

m,
(4.14d)

Additional relations (not shown) are just those one would

expect from unitarity of the CKM matrix.
The first of Eqs. (4.14) is just the relation obtained in

the two-family model. The second is not a bad approxi-
mation to experiment, while the third and fourth are rela-

tions of the sort that might be expected to arise in a wide

variety of models. The approximation we have used

satisfies unitarity explicitly: V„&+V,d
= V„,V,&.
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Mass matrices of the type (4.7) are among a wider class
considered in Refs. [28]. Among the questions we have
not yet answered are the significance of the algebraic
signs of the various mass eigenvalues, and the origin of
the CP-violating phase. We shall discuss the question of
the phase in Sec. VI.

If one is able to construct a satisfactory mass matrix
[along the lines of Eq. (4.7), for example] in which some
terms allowed a priori are absent, one may be able to
learn something about quark substructure. The pattern
of parameters a, b, and c for up and down quarks follow-
ing from a fit of (4.7) to the observed quark masses does
not suggest such a pattern at present.

put in phases by hand. This approach is in the spirit of
many other exercises with mass matrices [28,30], but we
would hope that such a theory could emerge in the fu-
ture.

Some guidance in inserting the phase comes from the
observation that the relation (3.11) for the Cabibbo angle
[i.e., the relation (4.14a} for V„,] is best satisfied if one
omits the contribution of the u and c quarks. The two
terms in these relations have magnitudes of about 0.22
and 0.06, respectively. Equivalently, if the relative phase
of these two terms is imaginary, the relation is satisfied
almost as well. We shall assume henceforth that atria.
Since, from the scalar products of eigenvectors (4.10) and
(4.12), we have

V. AN ALTERNATIVE THREE-LEVEL MODEL
V„,=(a'v 2/p') —([ia]*v'2/p), (6.1)

One system with three quantum-mechanical levels con-
sists of a particle traveling in one dimension, subject to a
potential consisting of three attractive 5 functions of
equal strength. In isolation, each 5 function would have
a single bound state. We can imagine the zero of energy
to be chosen in such a way that these three bound states
are at nearly zero energy. In the limit in which the dis-
tance between each 5 function is large compared to the
exponential falloff of the wave function, tunneling splits
the levels by a small amount.

One can obtain a pattern very similar to the observed
one (with one heavy quark and two light ones in each
family} by assuming that the 5 functions are arranged
symmetrically on a ring. The tunneling amplitudes be-
tween any two 5 functions are then equal, so the mass
matrix is of the form

a p p
JK= p a p

p p a
(5.1)

This matrix has two eigenvectors with eigenvalue a —p
(to be identified with members of the first two families)
and one with eigenvalue a+2p (to be identified with the
third family). By construction, this problem is isomorph-
ic to the one considered in Refs. [29].

One could imagine a splitting of the degeneracies by
having particles of different masses for up and down
quark sectors bound on the ring, and by having the spac-
ings of the 5 functions not be uniform around the ring.
The physical origin of phases in such a matrix could be
associated with complex tunneling amplitudes, such as
might arise in systems with absorption or dissipation.
We have not yet investigated these possibilities, but they
appear promising.

the two terms then will have a relative imaginary phase,
as desired.

Within the spirit of the operator (4.6) it appears we
must take symmetric mass matrices, even in the presence
of phases. We then assume (a and a' are real)

0 iav2 ia
JM, U

= iav'2 p pv'2

ia Pv'2

0 a'v'2
a'v'2 P'

a' P'v'2

(6.2)

r
CX

p v'2

y'
(6.3)

1

u= iav2/P, c=
i a/y—

i av'2/p ia /@1, r = pv'2/y
—P&2/y 1

(6.4)

while the eigenvalues remain (4.11). One can use the ap-
proximate expressions (4.11}—(4.13) and (6.4) to construct
the CKM matrix elements as scalar products of eigenvec-
tors: V„d=u * d, and so on. The results are

QS

—md

m,

' 1/2 —m„
m,

1/2

(6.5a)

for Q =—', and Q = —
—,
' quarks, respectively.

Since Eq. (6.2) is not Hermitian, its eigenvectors will
not form an orthonormal set. However, we can convert
(6.2) to a Hermitian matrix by changing the sign of the
right-handed uo quarks. This is equivalent to multiplying
the first column of (6.2) by —1. The eigenvectors of the
corresponding Hermitian matrix are then

VI. THE CP-VIOLATING PHASE

The Hamiltonians we have been investigating all give
rise to orthogonal sets of wave functions which may be
represented in terms of real parameters. Consequently,
the scalar products of these wave functions generate
CKM matrix elements which may always be expressed as
real quantities.

Without a microscopic theory of CP violation, the best
we can do in composite models of the present variety is to

V,b
—-+2

mb

m,

m,

V„b-—
(
—mdm, /2)'

mb

m
l

mb m,

1/2

( —m m /2)'i
C

l )
m,

(6.5b)

(6.5c)
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( —mdm, /2)' I,
mb

2md
1/2

(
—m„m,/2)'~

I
m,

(6.5d)

We substitute a set of sample quark masses to see the
implications of Eqs. (6.5). In addition to the values (3.20),
we choose [24]

mb =6.33 GeV, m, =200 GeV . (6.6)

V„,=0.226, V,b =0.033,
(6.8)

V„b=0.0052 —0.0010i, V,d =0.0024 —0.0010i .

This solution implies values of the parameters p and g as
defined in Ref. [32]:

p=0. 69, 71=0.13 . (6.9)

Another solution may be obtained by taking an alge-
braically negative sign for the top quark mass. Here the
results, after rephasing, are

V„,=0.226, V b =0.053,
(6.10)

V„b=0.0053 —0.0016i, V,d
=0.0067 —0.0016i;

p=0.44, g=0. 13 . (6.11)

The above results are typical consequences of the ex-
pressions (6.5). They are not ideal representations of the
data, but have some interesting features.

(1) The magnitude of V,b is governed by the ratios of
quark masses, rather than their square roots. As a result,
one expects smaller typical values for this quantity than
for V„,. This point was noticed in Ref. [28]. The value
inferred from the study of semileptonic B decays to
charmed particles [33] is

V,b =0.041+0.002+0.004, (6.12)

where the first error is statistical and the second is sys-
tematic, mainly associated with theoretical uncertainties
in the spectrum shape. The first term in (6.5b) ranges
from 0.022 to 0.045 for mb=6. 33 GeV and m, ranging
from 100 to 200 MeV. (As noted in Ref. [23], one knows

These are values at a scale of 1 GeV. The physical top
quark mass will be about —', the value at 1 GeV [31], for
120 GeV in the above example. In accord with the re-
sults m„=—2a /P, md = —2a' /P', we choose algebrai-
cally negative signs for m„and md.

The results before rephasing are

V„,=0.218—0.061i, V,b =0.033,
(6.7)

V„b=0.0047 —0.0023i, V,d =0.0025 —0.0003i .

We perform an approximate rephasing by multiplying the
s and b quarks by a phase P=arctan(0. 061/0. 218) and
the c and t quarks by —P. This gets rid of the phase in

V„,while keeping the diagonal elements real (which they
nearly were to begin with). The results after rephasing
are

V„,=0.226, V,b =0.044, (6.1 3)

Vub
=0.005 1 —0.0024i, Vid 0.0049 —0.0024i

p=0. 51, q=0. 24 . (6.14)

more about the ratios of the masses of the three light
quarks than about their actual values. ) Thus, there is the
possibility of compatibility between (6.5b) and (6.12) for
either relative sign of the two terms, though constructive
interference appears favored for the lighter strange quark
masses. As in the case of V„„it appears as if one would
be better off without the second term.

(2) The orders of magnitude of
~ V„b~ and

~ V,d ~
are

correct. The estimate in Ref. [33], V„&/V, b =0.11+0.03,
is compatible with our range of 0.1 to 0.16 for this ratio.
The rather small value of

~ V,d ~
in the present solution is

compatible with information obtained from B-B mixing if
the B meson decay constant fz is rather large [34].
Larger values of

~ V«~ do not seem to follow naturally
from the mass matrices (6.2) and (6.3). The dominant
contributions to the real parts of V» and V,d in Eqs.
(6.5c) and (6.5d) come from the first term, and hence the
real parts of both quantities are of the same sign. Thus,
the present solutions are all ones with p) 0, entailing
small values of

~ V«~. Negative values of p appear to re-
quire modifications of the mass matrices [28].

(3) The imaginary parts of V„b and V,d tend to be too
small to accommodate the observed value of the CP-
violating parameter e in neutral kaon decays. Since in
the limit of a very heavy top quark this parameter is pro-
portional to Im( Vtd )m, times a slowly varying function
of m„one expects this conclusion to be true for a wide
range of m, . A related model of mass matrices [35] en-

counters similar problems. An interesting possibility is
that the limit of an extremely heavy top quark in this
model might encounter no more serious contradiction
with the data than any other value. Such a possibility has
been explored for other forms of the mass matrices [36].

(4) The parameters in the mass matrices (6.2) and (6.3)
may be related to those in the mass operator (4.6) via Eqs.
(4.8) (with corresponding expressions for primed quanti-
ties). In the solution in which the signs of the masses of
the four heaviest quarks are all positive, a, b, and c are all
of order m„with small splittings among these quantities
responsible for the masses of u and c, and with the CKM
phase arising from a —b=2i(2m„m, )'~ . Similarly, a',
b', and c' are all of order mb, with small splittings re-
sponsible for md and m, . The presence of S3 in nearly all
the terms of the mass operator (4.6) then would suggest
that the spin- —, subunit carrying 53 changes its identity
under a charge-changing weak transition. However, as in
the two-family example treated in Sec. III, it seems
difficult to preserve the connection between S3 and the
spin of the composite fermion.

Note added in proof. It is possible to insert a relative
phase of i between the two terms of Eq. (6.5b), while
preserving that in (6.5a), by the substitutions a~ —ia
and ) ~i y in the mass matrix (4.7) for up quarks. The
resulting CKM elements, after rephasing, are
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The values of V,b and g are somewhat closer to the ex-
perimental ones than those in (6.8)—(6.11).

VII. SUMMARY AND OUTLOOK

We have explored models for two and three families of
quarks based on coupling the spins of several subunits to-
gether to form composite systems of spin —,'. The higher-
spin excitations can be placed at an arbitrarily high (com-
positeness) scale by means of a spin-spin interaction
respecting symmetry under interchange of the subunits,
while the spin- —,

' levels are split from one another by
symmetry-breaking effects. While our discussion was
based on a nonrelativistic model of hyperfine interactions,
we expect many of the same features to be present in a
more realistic treatment. These include correlations be-
tween quark masses and mixing angles, and the ability of
patterns in these correlations to give us information
about the subconstituents.

One open question is the relation of leptons to quarks
in models such as the ones we have discussed. In both
the two-family and three-family models, we have
identified the subunit carrying the spin S3 as a candidate
for the subunit which changes its charge when a 8'is ab-
sorbed or emitted. Thus, we would expect one or more of
the other subunits to be responsible for the distinction be-
tween a quark and a lepton. In the usual manner of many
grand unified theories, we would expect Q =—', quarks to
be related to neutrinos and Q = —

—,
' quarks to be related

to charged leptons. One might expect at the composite-
ness scale that mb=m, and m, =m', '"'. The recent

analysis of Ref. [24] places the scale at which mb =m,
somewhere above 10 GeV, but considerably below a typ-
ical grand unification scale of 10"GeV.

Several other recent attempts have been made to con-
nect compositeness with the structure of quark mass ma-
trices. Shrock [37] has explored models in which the ori-
gin of fermion masses is largely independent of elec-
troweak symmetry breaking. He has paid particular at-
tention to the fact that the top-quark mass is large, and
to new possibilities for neutrino masses. Rau [38] has

drawn an analogy between atomic systems and families of
quarks and leptons which has much in common in spirit,
if not in realization, with the present discussion.
Krolikowski [39] has constructed a model in which
different quark and lepton families consist of different
numbers of subunits. Although not based on composite
models, the discussion of Dimopoulos, Hall, and Raby
[40] is another recent attempt to understand fermion
mass matrices, via an ansatz in the context of supersym-
metric grand unified theories.

We are still no closer to a fundamental understanding
of the origin of the CP-violating phase in the present dis-
cussion. We can speculate that it might arise outside the
overall framework of compositeness. One possibility be-
comes more natural once quarks and leptons are being
discussed on an equal footing. Additional degrees of free-
dom are available for forming CP-violating masses in the
neutrino sector [41], because of the possibility of forming
lepton-number-violating Majorana masses. If CP viola-
tion in the lepton sector gets communicated at the corn-
positeness scale to the quark sector, one might expect
some regularity of the pattern of the CP-violating phases
in the quark mass matrix. Furthermore, since lepton-
number and baryon-number violation are linked by the
electroweak anomaly [42], an origin of CP violation in
the lepton sector might provide a common basis for the
two manifestations of CP violation known at present-
the baryon asymmetry of the Universe, and the behavior
of neutral kaons.

(Note added in proof. Excited higher-spin quarks have
been considered in Ref. [43].)
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