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Chiral limit of nucleon lattice electromagnetic form factors
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We calculate electric and magnetic form factors of protons and neutrons in quenched Monte Carlo lat-
tice QCD on a 16' X 24 lattice at P=6.0 using Wilson fermions. We employ a method which character-
izes one of the nucleon fields as a fixed zero-momentum secondary source. Extrapolating the overall
data set to the chiral limit, we find acceptable fits for either dipole or monopole forms and extract proton
and neutron magnetic moments, the magnitude of which are 10 to 15 % low compared to experiment.
In the extrapolation of the dipole fit of the form factors, we find that the dipole-to-nucleon mass ratio is
about 7% low compared to experiment. In addition, we obtain positive values of the neutron electric
form factor, which, however, are poorly represented by a popular phenomenological form at intermedi-
ate to small ~ values. A zero-momentum technique for extracting hadron magnetic moments is briefly
discussed and shown to yield unrealistically small magnetic moment values.

PACS number(s): 13.40.Fn, 12.38.Gc

I. INTRODUCTION

The techniques of Monte Carlo lattice QCD continue
to be developed and applied to numerous quantities of
phenomenological interest. In particular, electromagnet-
ic form factors are a useful probe of hadron internal
structure. The method used in Ref. [1]characterizes one
of the meson interpolating fields as a zero-momentum
secondary source. Here, we apply this technique to the
nucleon. This allows us, in the final analysis of the quark
propagators, to reconstruct a number of operator probes,
among which are the various lattice axial-vector and vec-
tor currents. We report here on our results using the
conserved lattice vector current; see Ref. [2] for prelimi-
nary results using an axial probe. Using this technique
with separate proton and neutron electric and magnetic
sources, we extract all four of the nucleon electromagnet-
ic form factors at any desired lattice momentum transfer.
(For an independent implementation of this technique as
applied to the proton, see Ref. [3], where, however, only
the proton electric form factor is studied. ) This investiga-
tion for the nucleon is complementary to those in Refs.
[4] and [5] which fix the vector current, rather than the
particle field, as the secondary source and analyze the full
set of spin- —,

' baryon form factors, but only for a single
momentum-transfer value per quark mass value. See also
Ref. [6] for a introduction to the formalism and Ref. [7]
for some preliminary results of the present investigation.

The purpose of this study is to begin a comprehensive
examination of the mass and momentum dependence of
nucleon form factors in the quenched approximation. In
our treatment, we will extrapolate the parameters of the
functional forms rather than individual form factor
values. This is required if contact with various phenome-
nologica1 forms for nucleon form factors is to be made.

We begin with an introduction to the formalism of lat-

tice sources and correlation functions. We then present
our results for the electric and magnetic form factors and
their extrapolation to the chiral limit. We close with a
summary and some comments about the directions of fu-
ture lattice calculations.

II. FORMALISM

A. Fundamentals

In order to set the notation, we first give a fairly com-
plete catalog of the definitions and symbols used in this
paper. Our conventions follow Sakurai [8), although we
adopt the nonstandard representation y matrices

r

0 n I 0
cr 0 ' ~4 0 —I

0 —I
I 0

We use the four-vector notation b„=(b,ibo), where b&& is
purely real, to ease the transition to Euclidean space.
Our discrete Minkowski fermion action is given by

sF [0 0] g ft~tj [ U ]p (3)

where I=[ a,x]aand J=[y,13,b], which are in the or-
der [space-time, Dirac, color]. Flavor sums are under-
stood where appropriate. The matrix MtJ[U ] is defined
by
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MIJ [ U ]:—5I J —& g [ ( 1 —
yp) ay[ Up(x ) ] fi» y P

g (vac)@'(x)p(x')f&(0)~vac) = (v ac~/'(x) tt)ii(0)~vac) .

+ (1+y„) p[ U„(x —t2„)]' 6
P

The interpolating fields we use for the proton are
(4)

Using tt = 1/2(mt2 +4) and (all fields not otherwise
specified are lattice fields and a is the lattice spacing)

abc'(u)a( )q(u)b( )( C ) q(d)c(

a'b'c'ytd)c'( C ) qtu)b'(X)q(u)a'(

(12)

(13)

& 3/2qcant1

&2a. (5)

Scan = f d3XF

iaA {xj
we find that with U„(x)=e ",this corresponds to the
continuum action

where u~d for the neutron. (We assume m„=md
throughout. } The charge conjugation matrix C =y2
satisfies Cy„C ' =y„*, where C =Cy5. We now continue
to Euclidean space (t~ it, —where t remains real) and
use the integration formula [10]

(vac~ T(P ( it„—)gp( its—) . . )~vac)

&& (ttj""'(x) [ y„[B„—i A „""'(x)]+m ] ttt""'(x) ).

(6)

f(x)~e ' '")g(x),

P(x)~P(x)e' '"', (8)

The assigned (1+y„) structure in Eq. (4) means that the
upper components of the Dirac equation propagate in the
forward-time direction in the static (small-a) limit. The
conserved vector current [9] from Eqs. (3) and (4) is
identified from [b„co(x)=co(x +a„)—co(x)]

=Z 'f dUdgdge

Xg (t„)g(ts) .

(14)

fdgdgg giie
& &=det(M)S )3, (15)

where the g, g are independent, totally anticommuting
Grassmann integration variables and SG, SF[g, g] are the

Euclidean gluon, fermion actions [11]. For example, on
our lattice (a and p are generic indices)

5SFJ
5[6,„co(x)]

J„=(J,ip) is given explicitly by (for a single flavor)

J„(x)=is[/(x +a„)(1+y„)U„(x)g(x)

—P(x)(1 —y„)U„(x)g(x+a„)] .

p(x ) is normalized by ( t & t ' & 0)

(9)

(10)

f dgdgg gg~gse ™=det(M)(SAS s
—S sS &),

(16)

where S:—M

B. Source technique

For the proton two-point function, we define (assuming
t & 0 in the second line)

6 (r;p, l )—:ge '~ "I, (vac~T[y (x)y, (0)]~vac}

= ge '~ "I ~ e' '( e' ' )(C)—i'(C}r ()3va~gc'"'( )pe"' (x)lit' '(x)P, ' (0)@' (0)17i",' (0)~vac) .

We will specify later the particular I matrices which we use here and in following equations. Defining in Dirac space
the quantity Q =(CQC ) for an arbitrary matrix Q, we have [setting det(M) =1]

G))(~;p, I ) = g e '~ "e' 'e' ' [tr[l S'"'"(x,O)S'" ""(x,O)S'"'" (x,O)]+tr[I S'"'"(x 0)]tr[S' ' (x,O}S'"'"(x 0)]}

(18)

where a configuration average is understood and the trace is over Dirac indices only. The corresponding connected

Wick contractions of the proton three-point function are given as (q=p —p')



CHIRAL LIMIT OF NUCLEON LA'I I ICE ELECTROMAGNETIC. . .

6 z (tz, ti, p, p', I )—= —i g e 'e 'I ~ (vac~T[X (x2)J„(xi)X~(0)]~vac)
Xp, X)

g e 'e' 'e' ' [tr[I q„S'"'"(x2,0;ti, q, p)Si"' (x2,0)$'"'" (xi,o)]

+tr[I S'"'"(x2,0)qdS' ' (x2,0;t„q,p)$'"'" (x2, 0)]

+tr[I S'"'"(x,o}S' ' (x,o)q„S'"'"(x,o;t„q,p)]

+tr[I q„S'"'"(xi,o;t„q,p)]tr[S' ' (xi,o)S'""(xi,o)]
+trial

S'"'"(xz, o}]tr[qdg' ' (x2,0;t„q,p)S'"'" (x2,0)]

+tr[I S'""(x2,0)]tr[S' ' (x2,0)q„S'"'"(x2,0;t„q,p)) j . (19)

This is similar to the two-point function, except that each quark propagator S has been replaced, in turn, by qfS where

qf is the quark charge (q„=—'„qz= —
—,
'

) and

S(x2,0;t, , q, p)—:~ g e '[$(x~,x, +a„)(1+y„)U„(x,)S(x„0)—S(x2,x, )(1—y„)U„(x,)$(x, +a„,o)),

describes the quark propagator coupled, with momentum q, to the electromagnetic current given in Eq. (10). In order
to compactify our notation, let us introduce the quantity

[S„(x,o)] =e—e [[S (x,o)S"(x,o)I'] +[rS"(x,o)S"(x,o)] ~

+tr[S (xz,o)$"(xz, o)]I ~ +tr[I S (x2,0}](S") ~ ],
corresponding to the u- (d-) quark contribution to the three-point function for the proton (neutron), as well as

[S,(x„O)] .=e"e'b"—
{[S"'(x„O)]rS"'(x„O)]..+tr[rS'"'(x„O) ][S"'(x„O)]...],

corresponding to the d- (u-} quark contribution to the proton (neutron). In addition, define

S(x2,0;t„q,p) = g S(x2,y)X(y, o;ti, q, p),

(21)

(22)

(23)

where X(y, o;t&, q, p, ) is given explicitly as

X(y, o;ti, q, p) =z g e '[5 „+, (1+y&)U„(x&)$(xi,o) —5~„(1 yz)U&(x—i )S(xi+a„,o)] . (24)

Then we may write concisely, for the proton and neutron,

6 (t, t, ;p, p', I')=q„A (t, t, ;p, p', I )+q B (t, t, ;p, p', I'),

G„~ „(r,, r, ;p, p', I )=qd AJ (r, , t„p,p', I )+q„B~ (r„t,;p, p', I'), (26)

where

Aj (t2 ri p, p', I ):—g e 'Tr[S& (x2, 0)S (xz,y)X(y, o;t„q,p) ]
X2,y

(27)

BJ (rp, && ', p, p', I ) =—g e 'Tr[ss(xz, o)S (xz,y)X (y, o; t„q,p )]
X2,y

(28)

The Tr notation denotes a trace over both color and
Dirac indices.

%e have succeeded in rewriting the three-point func-
tions for the proton and the neutron in a very compact
manner. However, Eqs. (27) and (28) make it very clear
that these quantities cannot be calculated directly be-
cause of the presence of the S(x2,y) propagators, since
there are sums over both x2 and y present. These equa-

tions also make it clear that there are two remedies for
this situation. One possibility is to introduce a source to
simulate the current, contained in the X(y, o;t„q,p) fac-
tor and associated with the y sum above. This technique,
of course, is not specific to the nucleon and works for any
hadron field. However, as one can see from Eq. (24), this
choice fixes the spatial momentum transfer q for a given
set of quark propagators. The other possibility is to in-
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troduce a source to simulate the two quark lines, con-
tained in S~ and S~, which lead to the final nucleon asso-
ciated with the x2 sum. This technique is specific to the
nucleon, but leaves the spatial momentum transfer free.
Indeed, even the choice of which operator to reconstruct
is deferred until the final analysis, so that the propagators
calculated are also useful in studying, for example, an
axial-vector current. In summary, fixing the current al-
lows one to do a survey of particles with a given probe,
whereas fixing the particle source allows one to use a
variety of probes on a single particle. We choose here to
fix the particle source since we are particularly interested
in trying to understand the q dependence of the nucleon
form factors.

For this purpose we introduce U„B(y;tz,p) such that

Az (t2, t, ;p, p', I )= QTr[v„(y;t2, p)X(y, O;t„q,p)],

C. Correlation functions

X (p, s ~g~ (0)~vac), (38)

where 1V„ is the number of spatial points in the lattice
volume. We write lattice and continuum completeness,
respectively, for fermionic states as

Although the behavior of Euclidean time nucleon
correlation functions on the lattice is standard material
[3—7], we summarize their properties for future reference
below.

We deal with both protons and neutrons, but for sim-
plicity the following discussion will be for the proton
only. The two-point function defined in Eq. (17) in the
large Euclidean time limit gives

t»1
G~~(t;p, I ) N, ge 'I (vac~y (0)~p, s )

B~ (t2, t, ;p, p', I') = g Tr[UB(y;tz, p)X(y, O;t„q,p)],
(29)

(30)

g ~n, p, s)(n, p, s~=I,
n, p, s

g J —
~n, p, s)(n, p, s~ =I .

(2n ) E

(39)

(40)

'X

"„B(y;t2,p) —= g e 'S„B(x2,0)S(x2,y) . (31)

where the transpose is over both Dirac and color indices.
Explicitly,

The continuum limit

1 ~ J' dp (41)

We now multiply on the right of Eq. (31) by M (y, x') and
sum on y to give

where V=N„a, gives the correspondence between lat-
tice and continuum states

1/2

g ~A B(y;t2, P)M(y, x')=e ' '"SA B(x',0) . (32) ~n, p, )s~ ~n, p, s) . (42)

Using the well-known relation

M (x,y)=ysM(y, x)y~, (33)

Use of Eqs. (5) and (42) then gives

(-.iy.(0) Ip,.)-
N, E

' 1/2

where the dagger works in Dirac and color space, one
can show that Eq. (32) leads to

X(vac~y""'(0) ~p, s),
1/2

(43)

QM(x y)3'5UA, B(y;tz, p)=e' "ysS„B(x',0) . (34) (p, s~@,(0)~vac) ~ )3/2

The right-hand side of (34) identifies the sources X (p, s ~p'"'(0)
I
vac) . (44)

bA, B(x t2, p) =e' "r5—SAB(x'', 0), (35)

b """=q„b~+qdb~, (36)

b"'"'""=
qd b~ +q„b~, (37)

which give the desired proton and neutron three-point
functions directly. [See Eqs. (25) and (26).]

The general method of using secondary or sequential
sources to perform spatial sums over intermediate lattice
operators was introduced in Ref. [12].

to be inserted in the matrix inverter. Actually, for our
purposes, it is more convenient to consider a linear com-
bination of sources,

(vac~y""'(0)~p, s)=Zu (p, s),

(p, s ~g""'(0)
~
vac) =Z*u .(p, s ),

(45)

(46)

where the unknown amplitude Z transforms as a scalar
and therefore cannot depend upon p or s. Now, using
these results in Eq. (38), one obtains

t»1 iZi2 6

G~~(t;p, l ) ~ —e 'tr I
(2~)

iP+m-
2pl

(47)

(vac~y""'(0)~p, s) and (p, s~P'"'(0)~vac) are related as

usual to the free spinors u (p, s ) and u .(p, s) by
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where we have used the following relation for free spi-
nors:

one obtains

g u (p, s)u(p, s) = i—+m
2m

For example, with the choice

I 0
I4 —=—

(48)

(49)

'"' z+m IZI'a'
2E (2)(')3 (50)

For the proton three-point function, Eq. (19), the large
time limit is

G I (tz, t„p,p', I )

(fg f I )~EI )) 1

iN—~pe ' ' ' e ' 'I'
~ &vacIz (0}Ip,s&&p, sIJ„(0)Ip',s'&&p', s'Ig (0)Ivac& .

SRS

(51)

The lattice and continuum matrix elements of J„are re-
lated by

1/2

& p, s
I J„(o)Ip', s'

& ~ (p s
I Jq "'(0}lp' s'),

N, EE
J

(52)
2E

E+mG, (q )=

where G—:(F, +Fz } is the magnetic form factor.
Equations (50), (54), and (56}provide the means of cal-

culating 6, and 6 . We do not measure these correla-
tion functions directly, but instead analyze the ratio

'
1 —1 /2E'

2

where (o„„=1/2i[y„, y„] and F, and F~ are real)

(p, s
IJ„(0)I

p', s' }

=iu(p, s) y„F,—a„F& u(p', s') .

G J (t~, t~/2;0, —q, I' )

G (t~;0, I'4)

G„(t',o, r, )
' "'

X
G (t';q, r) (57)

(53) for G, and

Based on these forms, with the choices p=O, p=4, and
I = I 4, the proton three-point function yields

G~J ~(tz, t, ;0, —q, I'4)

(E2 t1)'t1 )) 1 2 6IZI a —m(&z —t() E&, F +— m

(2a)

2
/21'

G ( 2)=) 2F- E+m
m ~ I jkl 2E

G, (t„t,/2;0, —q, I „)
X

G (t~;0, r4}

G~~(t';0, I 4)

Gpp(t', q, I 4)
(58)

(54)

~k
Ik—=

2 P O
(55)

one finds that with p=0, p= j, and I =I k

G (t, , t), 0, —q, rk)
J

(f~ f I ), fl )) 1 2 61 IZI a —m(tz ~)) Et)—
'e,«q)G (q'»

(2a )

where G, (q )—= (F) —[q„/(2m) ]Fz) is the electric form
factor. Similarly, using

for 6, which are seen to have smaller error bars. No-
tice that Eq. (57) guarantees that we measure G, (0)=1
except for convergence errors and that all currents are lo-
cated halfway between the creation and annihilation time
steps. Also notice that the fractional powers are present
in order to provide a choice in the two-point functions
used in order to allow single exponential behavior to de-
velop in t'. The identities developed in Refs. [1] and [6]
show that G~~(t;q, I 4), G~J (tz, t);0, —q, I ~), and

GpJ p ( tp, t ),0, —q, I k ) are real functions in the ensemble
J

average after evenness [Eqs. (50) and (54)] or oddness [Eq.
(56)] in spatial momentum q has been enforced by hand.
Because the time interval between the initial and final nu-
cleon sources here is odd, t2=15, we define a spatial
current operator at half-time steps according to

(56) JJ(x„t,+—,') =—,'[JJ(x„t,)+J.(x„t,+1)] (59)
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for use in (56). The time-nonlocal charge density opera-
tor J4 is already naturally associated with half-time steps.

III. RESULTS

Our quenched configurations are 16 X 24 and were cal-
culated using the Monte Carlo Cabibbo-Marinari pseudo
heat bath [13]. The SU(3) fundamental Wilson action
was used with periodic boundary conditions and @=6.0.
The gauge field was thermalized for 5000 sweeps from a
cold start and 12 configurations separated by at least
1000 sweeps were saved. Since our gauge configurations
are taken from a single Markov chain, if the resulting
correlations between configurations are sufticiently small,
then the configurations chosen for analysis are effectively
statistically independent. The preferred way to test for
autocorrelations is to bin consecutive configurations; we
have too few configurations (12) for this to be a useful
test. A binning of a larger data set [14] on a quenched
lattice at /=6. 2 revealed no evidence of autocorrelations
for two-point hadronic functions when configurations
were separated by 250 —500 (multihit Metropolis) sweeps.
An examination of a number of observables as a function
of Monte Carlo sweep number in the quenched P=5.9
form-factor calculation of Ref. [5] revealed no apparent
autocor relations for a sample of 28 configurations
separated by 1000 pseudo-heat-bath sweeps. The same
sweep-number separation was chosen for calculations of
semileptonic form factors in Ref. [15];we have made this
same conservative choice in the present calculation to
keep autocorrelations to acceptably low levels.

For the quarks we use periodic boundary conditions in
the spatial directions and fixed-time boundary conditions,
which consist of setting the quark couplings across the
time edge to zero. The origin of all quark propagators
was chosen to be at lattice time site 5; the secondary
zero-rnomenturn nucleon source was fixed at time site 20.
We expect that these positions are sufficiently far from
the lattice time boundaries to avoid nonvacuum contam-
inations. All our results for proton form factors use the
point interpolating fields, Eqs. (12) and (13), and similarly
for the neutron. We used the conditioned conjugate gra-
dient technique for quark propagator evaluation de-
scribed in Ref. [16]. For our convergence criterion we
demanded that the relative change in the absolute sum of
the squares of the quark or secondary propagators be less
than 5 X 10 over five iterations. As one check of the
nucleon secondary source, we verified current conserva-
tion for t2) t, )0 to —10 . Since we wish to calculate
the electric and magnetic form factors of both the proton
and the neutron, one nonsource and four source propaga-
tor inversions are necessary per configuration. The re-
sults below include ~=0.154, 0.152, 0.148, and 0.140.
Our statistical error bars come from first- (form factors),
second- (form-factor fits), and third-order (chiral extrapo-
lations) single-elimination jackknifes.

We show the pion, p, and nucleon masses measured on
our 12 configurations in Table I. (The interpolation fields
used for the pion and p are the usual relativistic ones. )

Actually, we show the results of single exponential mass
fits using both smeared (over the entire lattice volume us-

ing the lattice Coulomb gauge) and point quark propaga-

TABLE I. Smeared and point propagator mass 6ts.

Particle

p
Nucleon

p
Nucleon

p
Nucleon

~=0.154

0.369(9)
0.46(2)
0.74(4)

0.38(2)
0.46(2)
0.73(5)

0.361(1)
0.463(3)
0.721(7)

0.152

Smeared case
0.488(7)
0.54(1)
0.85(2)

Point case
0.49(1)
0.55(1)
0.87(3)

Ref. [17]
0.474(1)
0.545(2)
0.861(5)

0.148

0.677(5)
0.711(9)
1.12(1)

0.684(9)
0.721(8)
1.15(2)

0.140

1.015(5)
1.032(5)
1.62(1)

1.027(6)
1.040(7)
1.64(1)

tors. The fits here are for lattice time sites 16—19 for
~=0.154, 0.152, and 0.148 and time sites 18—21 for
x=0.140, which was seen to evolve more slowly in time.
The smeared and point masses are consistent with one
another within the statistical error bars, but a small sys-
tematic downward shift of the smeared masses relative to
the point masses seems to be present. The smeared re-
sults are also consistent with the more accurate P=6.0
mass results of Ref. [17], with which our largest two a.

values overlap. When needed, the smeared mass results
from Table I (from our simulation) will be used for the ki-
nematic factors which appear in (57) and (58); the uncer-
tainties associated the kinematics are then included in the
form factors as uncorrelated errors, which affects mainly
the magnetic error bars. We will also use the accurately
determined P=6.0 value of t~„=0.15708(2) from Ref.
[18] for our chiral extrapolations. In the following, we
will illustrate our data mainly with the v=0.154 results,
where, it must be kept in mind, the error bars are the
worst.

In order to test for continuum dispersion and to exam-
ine the time dependence of our two-point functions, we
define the local mass, energy, and energy minus mass
from (50) as

(60)

G„(t;p,r, )
E(t + —,') =ln (61)

G (t;p, I 4)Gpp(t +1;0,I ~)

(62)

These quantities are given in Fig. 1 for ~=0.154 as a
function of lattice time. The starting position of all quark
propagators is time step 5. The horizontal lines in this
figure give the expected result from the continuum
dispersion relation using the central value of the mea-
sured nucleon mass. The most significant quantity
relevant to our form-factor measurements is Eq. (62)
since this involves a ratio of quantities that enters in Eqs.
(57) and (58). From the figure, it appears that this mea-
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I 4

1 3

1. 2

Gzz ~(tz, t„0,—q, I 4)
[E—m](t)+ —,

'
)

~

=in
GpJ p(tp, t& + 1;0,—q, I'4)

I, E
Of

E—m

1 0

0 9

0. 6

O. 5

0. 4

Z
Il

Gzz z(t2, t&, 0, —q, PJ. }

[E —m](t, + —,')~ =ln
G„, t„t, +1;0,—q, l,

(63)

(64)

0.3

0.2

0. 1.
0

o
e

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

time slice

surement does not become consistent with continuum
dispersion until time slice 14—„which corresponds to
t'=9 in Eqs. (57) and (58). (The propagator time origin is
defined to be t'=0.) The other a values are similar, and
t'=9 is used in all of our form-factor results.

Figures 2 and 3 represent energy minus mass measure-
ments as given by ratios of the three-point functions, Eqs.
(54) and (56). These are defined at integer time steps (the
currents at t, are defined at half-integer sites) by

FIG. 1. Local energy, mass, or energy minus mass for the nu-
cleon two-point function, Eqs. {60)-(62)for @=0.154 as a func-
tion of lattice time slice. In this and the next two figures, the
horizontal lines give the expected continuum results based upon
the measured mass. All propagators begin at time slice 5.

Figure 2 shows the local [E —m] values from the mag-
netic three-point function. This function is seen to have a
flat exponential behavior that begins quite near the
source origin. Figure 3 shows the [E —m] values from
the electric three-point function, which, unlike the mag-
netic case, never appears to flatten. On the other hand,
the results are consistent with the expected [E —m]
values near the midpoint of the lattice where the data for
Eqs. (57) and (58) are actually taken.

The results of our form-factor measurements are
presented in Tables II—V. Figures 4-7 present the
a=0.154 graphical results. Notice that the (qa) )0
values given in the tables are affected very little by the er-
ror bars in the nucleon mass (the maximum error bar, at
a =0.154, is approximately 3%%uo of the central value). Our
philosophy in comparing our results to the experiment is
to look at the simplest phenomenological forms con-
sistent with the lattice data and then to extrapolate the fit
parameters, rather than the individual form-factor
values, to the chiral limit. The solid and broken lines in
these graphs represent the best simultaneous dipole and
monopole fits, respectively, of the combined proton elec-
tric, magnetic, and neutron magnetic form factors. These
are three parameter fits, giving the fit dipole mass from

0. 5) 0. 6

0. 4

0. 3'

O. 5

0 4. E3

E3

t3

0 2

0 2

0. 1
0

0 0'
5 6 7 8 9 10 11 12 1.3 14 15 16 17 18 19 20 21

time slice

0 0
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

time slice

FIG. 2. Local energy mass for the proton magnetic three-
point function Eq. (64) at «=0.154 as a function of lattice time
slice.

FIG. 3. Local energy minus mass for the proton electric
three-point function Eq. (63) at re=0.154 as a function of lattice
time slice.
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TABLE II. Proton and neutron form factors at ~=0.154 as a function of lattice four-momentum-
transfer squared.

Form factor

G~
G~
Gn

G"

(qa) =0.145

0.481(34)
1.17(11)
0.033(17)

—0.748(69)

0.274

0.335(34)
0.895(90)
0.026(17)

—0.578(89)

0.392

0.223(34)
0.69(14)
0.046(38)

—0.526(88)

0.502

0.186{59)
0.86(24)
0.068{67)

—0.54(20)

gD(q2)— 1

1+q /mD

or the monopole mass from

(65) tric data at this ~ value.
Figures 7—10 show the measurements of the neutron

electric form factor at the four ~ values. The phenome-
nological form

gM( 2) 1

1+q /mM
(66)

2

G"(q )= — G" (q )
4m~

(69)

as well as the proton and neutron magnetic moments
from the forms

G (0)
gD( 2) ttl

1+q /mD
(67)

or

G (0)
gM(q2)—

1+q /mM
(68)

The fit parameters found this way are listed in Table VI
along with the g per degree of freedom found (y& ), and
the dipole/nucleon or monopole/nucleon mass ratio. In
general, the quality of the fits are reasonable except for
the monopole form at ~=0.140. The simultaneous mono-
pole fits are seen to be slightly preferable to the dipole
ones at the lowest three ~ values. Notice also that the ra-
tio mM /mN is essentially fiat over these three a values.

In a separate fit of the proton electric form factors, we
list in Table VII the dipole and monopole masses, the
corresponding charge radii (in lattice units), mass ratios,
and yd values found. In comparing the yd values from
the dipole fits in Tables VI and VII, we notice that the in-
clusion of the magnetic data decreases the quality of the
fits at x =0.154 and 0.140, whereas it increases the quality
at the two intermediate ~ values. For the monopole fits,
we see that the yd values are low in all cases, except again
for the ~=0.140 simultaneous fit. It is the inclusion of
the magnetic data that is responsible for the large yd
value; the values in Table V inform us that the (qa ) fall-
off of the magnetic data is faster than for the proton elec-

is compared to the numerical results, using either the di-
pole (solid line) or monopole (broken line) parameters
from Table VI to characterize G" (q ). Although the
data are quite noisy, we obtain positive values of G,"(q )

in all cases, in agreement with most experiments in this
energy regime. In addition, we see that the above phe-
nomenological form fails at the two lowest ~ values. This
does not rule out such a form in the chiral limit, but does
make whatever physics lies behind it less compelling.

Figure 11 shows the ~=0.152 proton electric form fac-
tor. In our measurements we have the option of recon-
structing the spatial momentum transfers in a number of
diff'erent directions for a given (qa) value. This figure
shows the effect on the error bars of averaging (0) and
not averaging (0) over equivalent momenta. [The (qa)
values of the nonaveraged data have been increased
slightly so that the two data sets do not overlap. ] At
these values of ~ the effect is to reduce the error bars by a
factor of 2 to 3.

Also shown in Fig. 11 are the best dipole (solid line)
and monopole (broken line) fits to this data from Table
VII. These fits illustrate that the source of the large gd
value seen in the dipole fit of Table VII at ~=0.152 (and
similarly at 0.148) comes about because of the failure of
the highest (qa) measurement to fall off sufficiently fast.
It is possible this is a systematic high (qa) lattice ar-
tifact; on the other hand, the fact that the ~=0.154 and
0.140 results do not display similar behavior undercuts
this explanation.

Figure 12 represents a comparison of the results of two
methods of extracting the proton magnetic moment. In
this figure, the data points given by the square symbols

TABLE III. Proton and neutron form factors at K =0.152 as a function of lattice four-momentum-
transfer squared.

Form factor

G~
GP

G tl

G"

(qa) =0.147

0.551(18)
1.22(7)
0.0230(77)

—0.781(59)

0.281

0.391(24)
0.906(59)
0.019(11)

—0.586(47)

0.406

0.293(29)
0.696(95)
0.026(20)

—0.474(49)

0.522

0.288(32)
0.65(13)
0.038(29)

—0.406(90)
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TABLE IV. Proton and neutron form factors at v=0. 148 as a function of lattice four-momentum-
transfer squared.

Form factor

G~
G~
Gn

G"

(qa) =0.150

0.665(10)
1.42(4)
0.0109(31)

—0.907(36)

0.291

0.496(17)
1.03(5)
0.0116(57)

—0.666(32)

0.426

0.390(25)
0.795(66)
0.0129(81)

—0.520(39)

0.555

0.367(27)
0.643(77)
0.016(10)

—0.403(49)

are taken from the dipole fits of Table VI, while the dia-
mond data points are given by the zero-momentum mea-
surement (t2 & t, & 0):

1 1 1
mqQ =

2 K K~f
(71)

g tr [I'k ( vac ly(x i )(x i );JJ (x i )g(0) I
vac ) ]

X2, X)

g tr[I'4(vac~g(xz)g(0) ~vac) ]

G (0)
=E' .

ijk 2m
(70)

The continuum formula on which the above is based is
derived by taking the derivative of the continuum analo-
gue of G 1 (tz, t, ;0, —q, I k) with respect to the ith com-

J
ponent of q, evaluated at q=0, and dividing by a zero-
momentum two-point function. The resulting equation is
then transcribed into lattice language by changing the
continuum matrix elements into lattice ones and by mak-
ing the substitutions fd x —+a g„and
JJ""'(x)—+a JJ(x). Although the two results agree at
the smallest K, the zero-momentum measurements give
unrealistically small magnetic moments at the larger K

values. The reason for this behavior is the same as for
similar behavior seen in lattice mesons using charge over-
lap techniques [19]. Because the lattice matrix elements
do not contain arbitrarily small momentum states, the
continuum derivative at q=0 cannot be duplicated, and
the lattice version would only be expected to hold for
D/2 »R, where D is the length of the lattice on one side
and R is a hadron correlation length, say, the charge ra-
dius. That is, the hadron is expected to be we11 contained
in the given lattice volume. Apparently, this condition is
only beginning to be satisfied at the smallest measured K

value, which is the farthest from the chiral limit.
Figures 13 and 14 represent the chiral extrapolation of

the dipole fit proton and neutron magnetic moments.
The values found from these fits as well as from similar
monopole fits are listed in Table VIII. The quantity mqa
is defined to be

These extrapolations are simply linear fits, which were
adequate to describe the data, as seen from the y& values.
The magnitudes of the magnetic moments are 10 to 15%
low; the magnitudes found in Ref. [5] are also low, but by
15 to 30%. There is a hint in these figures that the larg-
est K values prefer to lie above the linear fit, so more satis-
factory magnetic moments may result from a deeper ex-
ploration of the region near K„where, however, error
bars more problematical.

Figure 15 presents the chiral extrapolation of the
dipole-to-nucleon mass ratio from Table VIII. This is as-
sumed to be linear as a function of mqa; again, the y&
values in Tables VIII and IX do not demand a more so-
phisticated treatment. We prefer to do the chiral extra-
polations on the mass ratios from the above monopole
and dipole fits because the ratio of similar physical quan-
tities is often less subject to systematic errors and because
measuring the nucleon mass in relation to other hadrons
is best done in a separate high-statistics-spectrum calcula-
tion, such as the P=6.0 calculations of Refs. [17] and
[18]. For comparison, we have provided the results of
three-parameter (Table VIII) and one-parameter (Table
IX) fits of experimental nucleon data taken from Refs.
[20] and [21]. Setting the scale from the chiral limit nu-
cleon mass of Ref. [18], our four-momentum-transfer
range roughly corresponds to 0.6 GeV q 1.9 GeV;
the values overlapping with this range from these refer-
ences are the values used in the fits, which are listed in
Tables X and XI. The y& values for the experimental re-
sults, which are more precise than the lattice measure-
ments, show that more parameters are really required in
this energy range to produce reasonable phenomenologi-
cal fits. We have y&=1.99 and 10.7 for the dipole and
monopole fits, respectively, of the proton electric data in
Table IX. Similarly, we obtain g& =3.39 and 35.5 for the
dipole and monopole fits, respectively, of Table VIII. In

TABLE V. Proton and neutron form factors at v=0.140 as a function of lattice four-momentum-
transfer squared.

Form factor

G~
G~
Gn

e
G"

(qa) =0.152

0.791(8)
1.44(3)
0.0030(10)

—0.927(22)

0.300

0.646(14)
1.12(3)
0.0043(16)

—0.726(25)

0.444

0.539(18)
0.895(41)
0.0048(22)

—0.582(30)

0.584

0.484(21)
0.740(37)
0.041(28)

—0.476(22)
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0. 8

0 7
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0 5
Gm

O. 4

O. 3
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0.8 0 0. 1 0.2 0.3 0 4

a)'
0.5 0. 6 0.7 8'. 0 0. 1 0.2 0.3 0. 4 0.5 0. 6 0. 7

FIG. 4. Electric form factor of the proton at ~=0.154 as a
function of lattice Minkowski four-momentum-transfer squared.
The solid and broken lines represent the best simultaneous di-
pole and monopole fits, respectively, of the proton electric, mag-
netic, and neutron magnetic form factors. The parameters of
the fits are listed in Table VI.

comparing the two experimental fits, we notice that the
dipole mass ratio is slightly larger when the magnetic
data is included (Table VIII) than when it is not (Table
IX). Experiment shows that the proton and neutron
magnetic form factors fall o6' significantly more slowly
than the proton electric form factor in our energy regime
[22]. This explains the tendency of the experimental di-

pole fit which includes the magnetic data, to produce a
larger value of m~/mz than a similar fit of the proton
electric data alone. It is encouraging that the same ten-
dency seems to be present in the lattice dipole results in
Tables VIII and IX, although the overall value for the ra-

FIG. 6. Magnetic form factor of the neutron at ~=0.154 as a
function of lattice Minkowski four-momentum-transfer squared.
The solid and broken lines are simultaneous dipole and mono-
pole fits, respectively, as explained in the caption to Fig. 4.

tio seems to be about 7%%uo low in either case. However, as
in the magnetic moment case, the larger ~ values of this
ratio prefer to lie above the linear fit, and therefore a
more satisfactory value of this ratio could result from a
deeper exploration of the chiral limit.

IV. COMPARISON AND CONCLUSIONS

We have investigated the functional forms of the nu-
cleon electromagnetic form factors as given by quenched
lattice QCD. Although our results are not sufficiently ac-
curate to distinguish between monopole and dipole fits to
the data, we have seen that the error bars on these quan-

0.15

0.10'

Gm

0.05

Z. O 0.1 0.2 0. 3 0 4 0.5 0. 6 0.7

0 Og 0 1 0.2 0 3 0. 4 0 5 0. 6 0. 7

FIG. 5. Magnetic form factor of the proton at ~=0.154 as a
function of lattice Minkowski four-momentum-transfer squared.
The solid and broken lines are simultaneous dipole and mono-
pole fits, respectively, as explained in the Fig. 4 caption.

FIG. 7. Electric form factor of the neutron at x=0.154 as a
function of lattice Minkowski four-momentum-transfer squared.
The lines shown represent the phenomenological form Eq. (69)
using either dipole (solid line) or monopole (broken line) fits of
the neutron magnetic form factor from Table VI.
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TABLE VI. Combined dipole and monopole fits of the proton electric and magnetic, neutron mag-
netic form factors.

Dipole

Monopole

mDa

mg) /mN
G~ (0)
6"(0)

Xd
2

mMQ

m~ /m~
G~ (0)
6"(0)

Xd

re=0. 154

0.609(31)
0.823(61)
2.51(18)

—1.59(13)
1.36
0.364(31)
0.492(49)
2.63(22)

—1.68(18)
0.70

0.152

0.688(21)
0.809(31)
2.22(10)

—1.45(10)
1.45
0.427(19)
0.503(26)
2.26(10)

—1.46(11)
0.25

0.148

0.832(18)
0.743(17)
2.09(6)

—1.34(5)
0.66
0.539(16)
0.481(15)
2.09(6)

—1.33(5)
0.64

0.140

1.09(3)
0.675(19)
1.77(5)

—1.14(4)
1.63
0.725(24)
0.447(15)
1.77(6)

—1.13(5)
3.57

0.10 0.10

Ge

0.05 0.05

0.0$ 0 1 0. 2 0. 3 0. 4 0. 5 0. 6 0. 7

(qa)

0.0g 0. 1 0.2 0. 3 Q. 4 Q. 5 0. 6 0. 7

FIG. 8. Same as Fig. 7, except at ~=0.152.

1 0

FIG. 10. Same as Fig. 7, except at a =0.140.

0. 10
0. 9'

0. 8'

0 7

Ge

0.05

Ge
0. 6

0. 5

0. 4

0 3

0 2

0. 1

0-6' 0 0 1 0 2 0 3 0. 4 0 5 0 6 0 7

(qa)'
0 Og 0 1 0 2 0 3 0 4 0 5 0. 6 0 7

FIG. 9. Same as Fig. 7, except at sr=0. 148.

FIG. 11. A comparison at re=0. 152 of the proton electric
form factors calculated by averaging all equivalent momentum
transfers (0) and by not averaging (0). The solid and broken
lines represent the best dipole and monopole fits of the proton
electric factor, respectively, from Table VII.
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TABLE VII. Dipole and monopole fits of the proton electric form factor.

Dipole

Monopole

mDa
R /a

mD!m~
Xd

mla
Rp /a

mM /m~
Xd

v=0. 154

0.593(32)
5.84(32)
0.801(61)
0.25
0.359(31)
6.82(59)
0.485(49)
0.30

0.152

0.679(20)
5.10(15)
0.799(30)
2.24
0.426(18)
5.75(24)
0.501(25)
0.41

0.148

0.832(16)
4.16(8)
0.743(16)
1.97
0.542(16)
4.52(13)
0.484(15)
0.42

0.140

1 ~ 12(3)
3.09(8)
0.688(19)
0.41
0.744(23)
3.29(10)
0.459(15)
0.49

G (0) G (0)

b'. O 0. 1. 0. 2

ma
0.3 0. 4 6'. O 0. 1 0.2 0 3 0. 4

FIG. 12. The magnetic moment of the proton at four values

of m~, which is defined by Eq. (71). The values from the simul-

taneous fits given in Table VI (0) are contrasted with the ex-
tracted values from Eq. (70) (0).

FIG. 14. Linear chiral extrapolation in mq of the neutron

magnetic moment from the simultaneous fits of Table VI.

j. . 0

0. 9

0 8

0. 7

Gm (O)

0. 6

mD/mN 0. 5

0. 4

0 3

0 2

0 1

h'. O 0. 1. 0 2

ma
0 3 0 4

0-h' o 0 1. 0.2

rn 8
0. 3 0. 4

FIG. 13. Linear chiral extrapolation in mq of the proton
magnetic moment from the simultaneous fits of Table VI.

FIG. 15. Linear chiral extrapolation in m of the dipole-to-
nucleon mass ratio from the simultaneous fits of Table VI.
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TABLE VIII ~ Chiral extrapolation of the proton, neutron

magnetic moments, and the mass ratios from Table VI. The ex-

perimental data is from Tables X and XI. q [(GeV/c)'] G, (q ) G (q)

TABLE X. Experimental data for the proton from Ref. [20].

Dipole mD /mz
G~ {0)
G" (0)

Monopole mM /m&
G~ (0)
G" (0)

Value

0.836(31) 0.39
2.44(11) 0.64

—1.59(11) 0.23
0.516(31) 0.06
2.48(10) 0.81

—1.59(12) 0.51

Experimental fit

0.900(5)
2.87(4)

—2.02(5)
0.448(4)
3.22(6)

—2.33(6)

0.65
0.72
0.78
0.94
1.1
1.35
1.75

0.265(12)
0.270(17)
0.217(7)
0.196(8)
0.141(5)
0.114(5)
0.0713(64)

0.767(8)
0.690(10)
0.647(6)
0.523(6)
0.452(4)
0.352(3)
0.248(3)

tities are encouraging and that the magnetic moments as
well as the dipole-to-nucleon mass ratio are reproduced
to within about 15%, similar to spectrum calculations.
We have also seen an indication that the chiral limit pro-
ton and neutron magnetic form factors have a slower fal-
loff in q than the proton electric form factor, which is
similar to experiment in this energy regime. In addition,
the neutron electric form factors come out to be positive,
but their values are poorly represented by a popular phe-
nomenological form at intermediate to small ~ values.
Finally, we have investigated a zero-momentum tech-
nique for extracting magnetic moments, but found that
this method yields unrealistically small values as ~„is ap-
proached.

In agreement with the results of Ref. [5], which used
12 X24 lattices at p=5.9, we have found that the mag-
nitudes of the proton and neutron magnetic moments are
small compared to experiment, and, indeed, that the neu-
tron value is more badly represented than the proton.
The small improvement over the Ref. [5] values could be
due to the larger P value used here. Alternatively, we
have seen a hint in Figs. 13 and 14 that perhaps better
values simply await a closer approach to ~„rather than
requiring larger p values. Another, more interesting,
possibility is the unknown contribution to the magnetic
moments from disconnected quark loops due to current
self-contractions [23]. The Ref. [5] calculation also gave
positive values for the neutron electric form factor as was
found here. There does seem to be a difference in the
physical size of the nucleons in these two studies, howev-
er. Corresponding to the dipole and monopole chiral ex-
trapolations in Table IX, we find that the dimensionless
quantity R~mz has a value 4.23(18) from the dipole fit
and a value 4.80(35) from the monopole fit. If we simply
divide these results by the experimental (average) nucleon
mass, equivalent to the procedure adopted in Ref. [5], we
then obtain a charge radius of 0.89 (4) fm from the dipole
fit and 1.01(7)fm from the monopole fit as compared to
the estimate 0.65(8) fm from Ref. [5]. The experimental
result is 0.862(12) fm [24]. The Ref. [5] result corre-
sponds to a dipole-to-nucleon mass ratio which is larger

TABLE XI. Experimental data for the neutron from Ref.
[21].

q' [(GeV/c) ] G (q)

than the experimental result by about 25%, whereas the
result here is about 7% low compared to experiment. It
is unlikely that the physical box size plays an important
role in this difference since, assuming renormalization
group scaling, the box dimensions of these two calcula-
tions are very close (comparing with the shortest box di-
mension of Ref. [5]). The systematics associated with the
different techniques of extracting the form factors could
be responsible for these rather different results.

Recent studies of scaling show that both the dimen-
sionless ratios of the string tension [25] and the scalar
glueball mass to the chiral condensate [26] have scaling
violations of -20% from P=5.7 to P=5.9 and —10%
from p=5.9 to p=6.0. Although glueball mass studies
on large lattices seem to show scaling from p=5.9 to
p=6.2 [27], hadron masses and f ratios still show a de-
viation of the order of -10 to 20%%uo [28]. Therefore,
masses and magnetic moments measured at p=6.0 are
subject to a scale-breaking systematic error which could
be as large as -20%%uo, although our use of mass ratios in
the monopole and dipole fits would be expected to
significantly reduce the systematic error in the extrapola-
tion of the functional forms to the chiral limit.

The overall message of form-factor measurements to
this point seems to be that the quenched approximation
adequately represents the bulk of the physics of these
quantities; however, we are still far from being able to test
@CD in a precise experimental way on the lattice. At the
same time, we should keep in mind that another major
theme of such calculations is the increased physics under-
standing that will be afforded through increasingly so-
phisticated parametrizations of lattice laboratory data.
This has the potential of teaching us about the dynamics
associated with quark masses, current self-contraction
graphs, and the quenched approximation. It is clear that
significantly larger computer resources will be necessary
to make substantial progress in our understanding of

mD /mN
mM /mN

Value

0.818{35)
0.510(37)

Xd

0.31
0.08

Experimental fit

0.883(6)
0.472(4)

TABLE IX. Chiral extrapolation of the dipole and monopole
proton mass ratios from Table VII.

0.60
0.78
1.0
1.0
1.17
1.53
1.80

—0.629{20}
—0.434(23)
—0.345(27)
—0.322(18)
—0.284(26)
—0.203(11)
—0.185(17)



1122 WALTER WILCOX, TERRENCE DRAPER, AND KEH-FEI LIU

these issues; we therefore look forward to the benefits of
improvements in computer technology, such as proposed
in Ref. [29].
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