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Quantitative evaluation of first-order retardation corrections to the quarkonium spectrum
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We evaluate numerically first-order retardation corrections for some charmonium and bottomonium
masses under the usual assumption of a Bethe-Salpeter purely scalar confinement kernel. The result de-

pends strictly on the use of an additional effective potential to express the corrections (rather than to
resort to Kato perturbation theory) and on an appropriate regularization prescription. The kernel has

been chosen in order to reproduce in the instantaneous approximation a semirelativistic potential sug-

gested by the Wilson loop method. The calculations are performed for two sets of parameters deter-
mined by fits in potential theory. The corrections turn out to be typically of the order of a few hundred

MeV and depend on an additional scale parameter introduced in the regularization. A conjecture exist-

ing in the literature on the origin of the constant term in the potential is also discussed.

PACS number(s): 12.40.gq, 11.10.St, 14.40.Gx

I. INTRODUCTION KV„„=——+C +or, (1.2a)

In this paper we want to evaluate quantitatively first-
order corrections to the instantaneous approximation for
a quark-antiquark Bethe-Salpeter (BS) kernel with a pure-
ly scalar confinement part.

As is well known in the positronium case [1,2], very-
high-order corrections to the zero-order instantaneous
approximation have been systematically evaluated. To
our knowledge, no similar result exists in the literature
for a confining kernel. In fact, only very rough order-of-
magnitude estimates are considered in this case [3].

Theoretical analyses of heavy quarkonium are usually
given in terms of an effective relativistic or semirelativis-
tic two-body Hamiltonian:

H= m, +m 2++m t+pf +Qm2+p~ + V

=m +m + +1 2
2m 1 2m 2 8m

1

+ Vstat + VSD + VvD

where the second line is intended as a first-order expan-
sion in 1/m of the first one, V„„denotes a zero-order
purely static term, VsD and VvD are 1/m order spin-
dependent and velocity-dependent terms.

In principle, the potential V should be obtained in the
framework of QCD. In practice, starting from a pioneer-
ing work by Wilson [4], a method has been developed
which works in terms of a 1/m expansion and gives the
various contributions in the form of functional integrals
in the gauge field only. Explicit analytical expressions
can be obtained in the two limit situations r~0 and
r~ ~, admitting the significance of the weak-coupling
expansion in the, first case and of the strong-coupling ex-
pansion in the second one and making some additional
plausible assumptions.

Adding simply the two contributions and restricting to
the equal-mass case, one obtains [5—7], in the center-of-
mass system (pt= —p2=q),

3 K 1
V = (S+S )L —— or—SD

2 2 2 1 2

h k

m r r

8m.K+ S, S253(r),
3m

(1.2b)

VvD =
z 5(r) —
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(1.2c)

C 2 1 o
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q + o h h

m
(1.2c')

This differs from Eq. (1.2c) for the terms in o and in C; it
has been suggested by considerations on the BS equation
[see discussion following (1.8)] but cannot be derived in
the context of the systematic Wilson loop approach.

By the use of potentials, remarkable successes have
been obtained 1n understanding the spectrum and many
properties of heavy quarkonia. However, in the context
of QCD, the most appropriate tool for a complete treat-

where K= —', e„o denotes the string tension, and the
terms in C are perimeter terms which have been essential-
ly introduced to make a smooth connection between the
two asymptotic regions r ~0 and r ~ ac. More elaborate
contributions could obviously be introduced on phenome-
nological ground to describe better the intermediate re-
gion.

Equation (1.2c) has been derived in Refs. [6,7]. Notice
that an alternative form which has also been proposed for
VvD is the so-called Barnes-Ghandour potential [8]

2~1 h+ 1 lrL
VD 2 2 r 2 2 3
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ment of the problem should be the Bethe-Salpeter equa-
tion. In particular, it becomes necessary to resort to such
an equation in order to extend the analysis to the case of
the light mesons. Actually, a number of attempts have
been made in this direction recently [9].

In this order of ideas, in analogy with the potential, we
can write the BS kernel as the sum of a short-range per-
turbative term, a confinement term, and an intermediate
one:

Ip,„,= (2~) —a,34 1

3 '2772

(&) (2)
Vo 7Q

Q2

(1.3)

where Q denotes the four-dimensional momentum
transfer p ', —p &

and t stands for Q . On the contrary, in

the lack of a sufficient understanding of the confinement
mechanism, no general criterion exists to determine I„„f
and I;„„,. The only possibility seems to resort to phe-
nomenological expressions and/or to a comparison with
the potential (1.2).

The usual tool to establish a connection between the
BS equation and the potential formalism is the so-called
instantaneous approximation on the kernel. Introducing
the center-of-mass variables

P&
= P2=q ~ P&

= P2=q

p)o =60+ 2+S, p )o =CO +T~v S

p2o
= N+ —v s, p2&&

= co +—+s

(1.4)

the BS kernel can be written as I(ro', q', ro, q;s). Then the
instantaneous approximation consists in setting co =co' =0
in I and in the off-shell amplitude G. If one also replaces
the quark propagator with its free particle expression and
makes a comparison between the BS equation and the
corresponding Lippmann-Schwinger (LS) equation for
the Hamiltonian (1.1), it turns out

2

(q'o', o'2~ V(s)~qo, o2)=, , u",'(q')
(2~)' w q w q'

Xu",'( —q')I' '(q', q;s)

with

Xu'"(q)u' '( —q)o l 472
(1.5)

I' '(q', q;s)=I(ro'q', roq;s)I = =o

w(q)=+m +q
For an appropriate choice of the kernel, potential (1.2)

should be obtained from (1.5) by an expansion in 1/m .
In fact, if we replace the perturbative kernel (1.3) in (1.5)
we obtain the correct terms in K.

I=
IPerf +IzoIIf +IIIIfer

The structure of the perturbative part is obvious and in

the Coulomb gauge at the lowest order it is given by

Let us pay attention instead to the terms in o. and take
into account that

&q'~or~q& =—0. 1
2 Q4

(1.6)

The simplest assumption on I„„twhich reproduces (1.2a)
and (1.2b) turns out to be

—o. 1I„„t=(2n)
7T' t' (1.7)

What suggests the choice of a purely scalar confinement
kernel is the structure of the 0-dependent terms in Eq.
(1.2b); alternative possibilities, however, are given in Ref.
[10]. Of course, being infrared divergent, Eq. (1.7) has to
be supplied with an appropriate regularization prescrip-
tion (cf. Sec. II}.

We notice now that the form of the o -dependent term
in VvD which derives from the kernel (1.7) coincides with

Eq. (1.2c') and not with (1.2c). To obtain formally Eq.
(1.2c) from (1.5), it is necessary to add a I/m term to
(1.7} [11]:

I„„t=(2n)
0. 1 1

~2 t2 3m 2

21 1u+3t 2t'

1 v+—
2 t 3

(1.8)

where

C 2

I;'„,'„=(2m.) 5 (Q) 1+
2772 2m

(1.9)

for the instantaneous limit of I;„„,. It is clear that such a
term cannot be obtained from a function of the variable t
alone. Then we are left with various alternatives.

(1) We may notice that in Eq. (1.2) a variation 5C of C
in the term C —(C/2m )q can be compensated, to the
order 1/m, by a variation of the mass 5m = —

—,'5C in
the kinetic term. So, we could conjecture that, in a full
relativistic treatment, it can be taken C =0.'

(2) We could replace C everywhere in (1.2) with a more
regular expression, e.g. , Ce "". In fact, this choice would
correspond to take

Using potential (1.2), the fit of the bb spectrum is practically
unmodified changing C from the usual phenomenological value
C = —0.8 GeV to C =0 (cf. Ref. [7]); this is obviously no longer
completely true in the cc case.

"=(P2 Pl } U=(P1 P2)(P2 P2) ~

The unsatisfactory aspect of Eq. (1.8) is that it is given in
terms of a I/m expansion rather than in a closed form.
For definiteness in this paper we shall assume (1.8). Be-
cause of the approximation involved, however, the results
do not depend critically on such a choice.

Coming to the terms in C occurring in (1.2), we observe
that they should require an expression of the form
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7r (t —r) ) 8m
(1.10)

where 8', ' is the eigenvalue obtained by the numerical
resolution of the ordinary Schrodinger equation for the
static potential (1.2a), W,"' equals the expectation value

p / m + VsD+ VvD on the numerical "unper-
turbed" eigenfunction 4, (and possibly includes the pair
creation effects) and the retardation correction W,""is ex-

pressed by

W:"=&+.
i V,",,'ie. & . (1.12)

Our basic result is an evaluation of (1.12). Actually,
again for numerical practicability, we have replaced in
this equation the numerical 4, with eigenfunctions of the
harmonic-oscillator type and we have restricted ourselves
to a limited number of states. We have considered only
the first three S states both for the bb and the cc systems.

We have performed our calculations for two assign-
ments of the parameters coming from phenomenological
fits previously obtained with potential (1.2). In the first
assignment it was taken C =0 [7] and in the second one
CWO [14]. The value of W„'z' depends on a scale parame-
ter p introduced in the regularization prescription. For
@=50 MeV it comes out typically of few hundreds MeV
and so it cannot be said to be small. Because of the
methodological character of the present work and of the

(3) According to a suggestion by Gromes [12], the con-
stant C could arise automatically from I„„fas a com-
bined effect of the infrared regularization prescription
and the instantaneous approximation. As we shall dis-
cuss later, in our framework this would amount to stating
that C represents a leading contribution to the retarda-
tion corrections.

In practice, we shall assume (1.3) and (1.8) for I~„, and

I„„fand we shall put I;„„,equal to zero or alternatively
take it directly in the instantaneous form (1.9), thinking
of it possibly as the limit of a more elaborate expression.
Then we shall evaluate first-order corrections to the in-
stantaneous form of the term (1.7) alone, while we shall
neglect not only the corrections to (1.9) but also those to
the spin part in (1.3) and to the 1/m part in (1.8), con-
sidering them as higher-order ones. In this connection
we may observe that the leading term of the vectorial
kernel in Eq. (1.3) is already instantaneous while retarda-
tion effects appear only in the spin-dependent part [13].

Since, even in the direct applications of the BS equa-
tion, only instantaneous confining kernels have been em-

ployed for numerical practicability, it should be interest-
ing to work out retardation corrections in full relativistic
kinematics. Here, however, we restrict ourselves to the
semirelativistic perspectives of potential (1.2). Further-
more, rather then referring to usual Kato perturbation
theory [2], we have found it convenient to work in terms
of an additional effective potential V,",,'. In this philoso-

phy we think of the mass M, of the meson a as obtained
from

2m + ~(0)+ arel+ ~ret
a m a a a

small number of states taken into account, we have made
no attempt to readjust the parameters to fit the data
again. Therefore, more work would be necessary in order
to draw a really definite conclusion about the phenome-
nological consistency of the kernel. However, for the
first choice of the parameters, the results do not seem to
support our simple assumption on the kernel while the
situation becomes better for the second choice. In this
second case for p=135 MeV, all states considered but
3Scc differ from the data by less than 50 MeV without
any readjustment of the parameters and the agreement
can be improved if m, is reduced by a few tens of MeV.
To test the conjecture of Gromes [12], we have also re-
peated the calculations with the second choice of the pa-
rameters but taking C=0. The results do not seem to
support the conjecture.

As we mentioned, nothing essentially changes if kernel
(1.7) is used instead of (1.8).

It should be stressed that our success in obtaining a
quantitative evaluation of the retardation corrections de-
pends strictly on the particular regularization prescrip-
tion we have adopted and on the use of the effective po-
tential V'„",.

The plan of paper is the following one. In Sec. II, we
discuss the regularization procedure and Grornes' conjec-
ture; in Sec. III, we perform the explicit calculation of
W„'z' for the two choices of parameters and present the
results; in Sec. IV we discuss the results and make some
additional remarks. In the Appendixes we derive the ex-
pression of V'„,", and discuss some important analytic
matter.

II. THE REGULARIZATION PROCEDURE

1

( Q2+ s2 }2

4c

( Q2+ e2 }3
(2. 1)

where the limit E —+0 is implied. Equation (2.1) amounts
simply to consider o.r as the limit of o.re '". A possible
definition of I /r consistent with (2.1) is

1 1 0 c 0 1—Eln-
t „2 BE JM BE t —p+iO

(2.2)

where p is a constant with the dimension of a mass that,
in practice, we shall treat as an additional fitting parame-
ter. Notice that the second term appearing in (2.2) has
no effect in the instantaneous limit,

e
c ln — = —c. ln —r e '"~0,

p QE3 r p
(2.3)

and it has no counterpart in (2.1). It is, however, essen-
tial to make I„„ffinite in the coordinate space and to

As we mentioned, the right-hand sides of Eqs.
(1.6)—(1.8) have to be explicitly regularized so that they
correctly define well-behaved distributions, respectively,
in ordinary space and in Minkowski space. An obvious
regularization of 1/Q is provided by

1 a'
Q4 2 g&2 Q2+ E2
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subtract residual logarithmic divergences otherwise ap-
pearing in (1.12). With definitions (2.1) and (2.2), some of
the integrals occurring in the expression V,",,

' can be
analytically performed and the right-hand side of (1.12}
becomes numerically calculable.

For completeness we remark that the term in 1/t ap-
pearing in (1.8) should also be regularized; a possible
choice would be t 2

reg

(2.8)

Equation (2.7) contains correctly only a logarithmic
singularity in x and so is of the desired type.

Let us now briefly discuss the conjecture by Gromes

[12,3] in our frainework. This author starts from the an-

alytic regularization

t3
reg

a' 1 e a'+—c 1 —3ln—
24 ()g~ 2 p ac.'

1 2 s a 1——c in-
@as t —s

(p being a constant with the dimension of a length) and
obtains the same equation (2.7) with
@=1/p=(1/2p)er '~ (y=0.577 being the Euler
constant). Then he rewrites this equation in the form

0 xo 1 lO
I(x)= ln2' x p

I(x)= —(2n ) e
cr dO
n (2n} 2

reg

As we mentioned, however, we neglect the noninstan-
taneous corrections to this term and we do not need to
use explicitly this equation.

To show that the prescription (2.2) is correct, it is
sufficient to check that the kernel in the coordinate repre-
sentation is a locally integrable function in the limit
c~O. Indeed, one has

0
l

0x —
p

—iO

2' p
(2.9)

o(r —p), (2.10)

he argues that the second term can be neglected for a
sufficiently large p and takes the instantaneous approxi-
mation on the first one.

The result is a contribution to the static potential of
the form

8~~DP M ~ Ig'zd4Q

(2n )

8moD", bt—;(x,e),
where x =x

&

—x2 and

Q a+i 0—

1 aD"=— —sin
2 as2

r

e a

p as

Recalling the explicit expression

E,(s+ x+io)—
bF(x)= 5(x )+

4~ 4~ + x+io—
(cf. [15]),one obtains

2

b F(x,e)~in(s+x )+const,
BK

1
3 bF(x, s)~

Bc

and, hence,

I(x}=o in(p x } .

(2.4)

(2.5)

(2.6)

(2.7}

which corresponds to C = —crp (Gromes also suggests
p=l/&a and so C= —2e 'r ' '&tr, a formula which
is phenomenologically successful). The procedure is
motivated by the fact that the instantaneous limit defined
as f +„"dxoI(x) is not finite for the whole (2.7). In our

framework, the difficulty does not arise since, in the spirit
of the distribution theory, we perform the limit c~O
only after the instantaneous approximation has been tak-
en. Furthermore, using prescription (2.2) rather than
(2.8), as we mentioned, we become able to evaluate
analytically certain integrals which are essential for an
actual calculation of the retardation correction. By a
comparison of the two procedures, it is apparent that, if
the two approximations in (2.9) were legitimate for some
value of p, the quantity C would correspond to a dom-
inant contribution in such retardation corrections. That
is to say, the correction should turn out approximately
independent of the state.

The above statement becomes particularly clear if we
rewrite Eq. (2.9) in momentum space using our regulari-
zation and not taking the limit c~O in a first moment.
We have

1 1
—iQ'p

' g2 Q' &2+—&0 — ' g,' Q' e'+—iO — g', Q' e'+—to—
—i Q'p

+5 (Q)D", Jd Q'
Q02 —Q

' —e +io
(2.11)

Actually Gromes used a Euclidean metric.
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In fact, if, in the right-hand side of this equation, we neglect the second term, put Qo =0, and now actually perform the
limit e~O, we obtain again (q ~cr(r —p) ~q). Consequently, such a quantity should equal the corresponding one pro-
vided by the whole left-hand side in (2.11), i.e., ( q'

~
err + VI,",

~ q), and we should have W„'I"= —c7p = C.

III. CORRECTION TO THE INSTANTANEOUS APPROXIMATION

As we mentioned, we have found it convenient to express the corrections to the instantaneous approximation in
terms of additional contributions to the potential. Such contributions can be obtained by an iterative procedure based
on a comparison between the BS and the LS equations (cf. Appendix A).

To lowest order one finds

m

(2n. ) w(q)w(q')

d k mXRe u', ' q' u', ' —q'
(2m. )' w(k)

dNI
X / Ip q, k

X I, (cok', k, q)
[cok —&s /2+ w(k) —iO][cok+&s /2 —w(k)+iO]

+It (co& ,'q', k )

A"'(k)A"'( —k)
X Io(k, q)

[cok —&s /2+w(k) t'0][—coz+&s /2 w(k—)+iO]

Here

A' "(—k)AI "(k)
+Io(q', k) Io(k, q) u"'(q)u' '( —q) .

s +2w(k)
(3.1)

I
&
(co;q', q) =I(0,q', co, q) —Io(q', q),

I, ( co', q', q ) =I( co', q'; 0, q )
—Io ( q', q ), (3.2)

A'g' and A'J' are the Dirac spinor positive- and negative-energy projectors and the prescription Re stays properly for the
self adj oint part of-the following matrix element.

For the kernel and in the approximation discussed in the Introduction, we have

I, (co', q', q) = —(2n ) 2
D",

1 1

2 q2 2 q2+, e2
(3.3)

Then, performing explicitly the integration in cok in (3.1) and neglecting all contributions of order 1/m (included the
third term containing A A ), we end up with

(q', ~&~&IVI.", Iq, ~&~2&=&, &, Re Jd'k
2~ c)E 2m. (q' —k) +e

X DP. —&s +2w(k)+2+(k —q) +E' —iOx, , +(q'~~q)1

(k —q) +e' (3.4)

(obviously, in the first factor inside the integral D", has been replaced by c) /c)E ). The resulting leading retardation

As is well known, prescriptions different from co, co'=0 have been proposed as zero-order approximations in the BS equations.
Such prescriptions, which consist in taking co and c0 as appropriate functions of the momentum (see, e.g. , [8]), should amount to tak-
ing into account some part of the retardation effect. The contact with our approach would be made by simply substituting our
current variable &uk with the assigned function of k.
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correction to the energy levels can be expressed as [cf. (1.12)]

W"'=(e ~V'"~e )

after setting s =s, = (2m + W,' ') .
Using the Schrodinger equation,

a2f d q — 4, (q) = [2w(k) —Qs, ]4,(k),
2m BE 2' (k —q) +s

Eq. (3.5) becomes

(3.5)

(3.6)

Qs.
W,'"=Refd q f d k ~ 4,"(k) w(k)— 0 1

—Qs, /2+w(k)+V (k q—) +s ' i0—

X, , 4, (q)+P(k)~(q)
(k —q) +s ' (3.7)

This equation can be further simplified if we introduce both the momentum and the coordinate-space wave functions

4, (k) and 4, (r):

C'.( (r) =4.((r) I'(m("r» @n(~(k)=4"((k)I'(m(k»

use the nonrelativistic approximation for w (k), and perform the trivial angular integration. Restricting to the S-wave
case, we are left with

2
W„'s'=2 D", f dk k f dp p f dr P„s(k)

„s(0)

2
sin(kr )sin(pr)P„s(r)

1 1

—W„' '/2+k /2m++p +s p +&
(3.8)

„s(r)= 1 2(n —1)!
I'(n +1/2)

where now P stays for the principal Ualue prescription.
In order to carry on the analytical calculation as far as possible, getting rid of some integrals, we replace P„s with the

radial eigenfunction of the harmonic tridimensional oscillator
1/2

(3.9a)
~nS

g3n 2(n —1)!
I ( +1/2)

k =A,
1/2 —kA, /2

L 1/2 (g2 k2)e &s (3.9b)

where the standard notation for the Laguerre polynomials has been used and the parameters A.„s have been determined
variationally by minimizing the expectation value of the zero-order Hamiltonian. Inserting (3.9) in Eq. (3.8), we can
perform analytically the integration in r and are left with the double integral

kW„'s=2C„sf dk k
0 2' e " f dp pe " g„s(p, k)

XD",P 1 1 =2C„sD",I„s(E),—W„'s'/2+k /2m++p +e p +&

(3.10)

where C„s and g„s(p, k) are a coefficient and a function
that depend on the particular n. For n = 1 we have

~1S
g&s(p, k)=sinh(kpA, &s), C(s=4V2

~3

The analogous expressions for n =2 and 3 are reported in

Appendix B and Table I.
Because of the delicate interference between the princi-

pal part and the regularization prescriptions, a direct nu-
merical evaluation of the integral in the second member
of (3.10) is possible only if W„s is negative. In the general
case, however, we can obtain the same result drawing the
simpler quantity I„s vs c and taking advantage of the ex-
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TABLE I. Analytical expression of the constant C„s and of the coefficients 3 &, 82, A3 for the first three S states. Here
z =A+ —mW„'i' and $(x)=(2/&vr) I dt e

State

2S

3S

C.s

4&201/m.

8&2crk, /(3m )

15 —0'A,
2m'&2

g ns
1

3/2

8A,

3/2

16k

3/2

15K,

gns
2

—mA, Re[1—&furze' [1—4(z)]]
2

mA. Re[&m.e' [1—4(z)]( ——z —3z —z')

+ —+ —z+z]2 2

—m)«m. Re[&ere' [1—4(z)][—z —
—',z' ——','z' ——",z' —,'~', z']

g ns
3

l 3/2g
32

7 3/2g
64

pansion (Appendix C)

I(e}=A~+A,e+Aie +A&e

+ +(B E+B E+ . )ln —.2 4 E
2 4 (3.11)

In fact, replacing (3.11) in (3.10) and taking explicitly the
limit E~O, one obtains

W"'=C (2A" +3B" )nS nS 2 2 (3.12)

W"'(p)= W"'(p )+C B" ln
Po

(3.13)

In practice, we have performed the calculation for the
states 1S, 2S, and 3S of the bb and ce systems for the
three assignments of the parameters reported in Table II.
Here CH1 coincides with choice II of Ref. [7], CH2 with
column 2 of Table III of Ref. [14], CH3 is considered to
test Gromes' conjecture and it coincides with CH2 but
with I;„„,set equal to 0. In the CH3 case, the value of C
in CH2 should be supplied by a dominant contribution in
the retardation correction; i.e., we should find
8'„'&'-——0.7. In the cases CH2 and CH3, even the pair-
creation effects have been added to W„'t' in Eq. {1.11).

In the fits we have put po=0. 05 GeV, fixed A& A3,

Notice that, from {3.11},the need of the logarithmic term
in D", is again apparent.

The coefficients A i, A3, . . . and Bz in (3.11) can be ob-
tained in a closed form and are reported in Table I; Ao
coincides with I(0); the remaining coefficients have to be
determined by a fit of the numerical I(e.) for some
definite value (uo of p. Notice that, since I(e) does not de-

pend on p, we must have

A 2(p') A 2(p'0}+ 2
p
Po

and so, for an arbitrary p,

and Bz on their "analytical" values and treated Az or
Az, A4, and 84 as free parameters; all other coeScients
have been neglected. An example is illustrated in Fig. 1,
while the value obtained for A z are reported for CH1 in
Table III together with the variational values of k„z, the
corresponding "analytical" values of Bz, A, , A 3, and the
"numerical" value of A& obtained treating also this
quantity as a free parameter. The di6'erence between A,
and A ",

" tests the reliability of the calculation and it is
of the order of a few percent in all the cases with the ex-
ception of 3Sbb. For this last state the discrepancy is
about 30% for CH1, and even 300% for CH2, making
meaningless the evaluation along this way in this second
case [however, W(3s'(bb ) (0 and so the calculation can be
performed by direct evaluation of the integral in (3.10)].

The error reported for A &has been estimated as a com-
bination of two different quantities, 5i A z and 5z A ~, relat-
ed mainly to the numerical error in the absolute value of
I(E) and to the uncertainty in the fit, respectively. The
first quantity 5, A z is defined as

~ Az i
A

&

—A ",
™

i /~ A, ~;

the second one 5& A & is set equal to the difference between
the values obtained for A z including or not including
terms in 84 and A 4 in the fit.

The final expressions for 8'„'z' are reported in Table IV
as function of (=In@/po; in parentheses there are also re-
ported the values of W„'t"{po) obtained by direct calcula-
tion of the integral (3.10) where available. A comparison
between the results obtained by the two methods shows
that they are essentially consistent. This was not obvious
a priori because of the complexity of the calculations.
The discrepancies could suggest, however, that the errors
reported in Table IV have been underestimated for some
states.

A plot of the resulting masses M„z is shown in Figs.
2 —5 together with the error bands as resulting from
Table III. In Figs. 2—5, wider error bands are also re-
ported for the 1S states related to the use of the varia-

TABLE II. The three assignments of the parameters CH1, CH2, CH3 as explained in the text. The
energy is expressed in Gev.

4—a
3 s

CH1
CH2
CH3

0.5
0.587
0.587

0.189
0.146
0.146

0
—0.707

0

1.357
1.913
1.913

4.770
5.268
5.268
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TABLE III. Values of A,„s (in GeV ') and A &, A z, B2, A „as an example for the first three bb and cc
S states for choice CH1 of the parameters. The coeScients A&, A3, B2 are calculated according to
Table I, A2 is obtained from the fit. A &" denotes the values obtained for A

&
leaving even this quantity

as a free parameter in the fit for a comparison with the exact value. The errors reported for A& are es-

timated as described in the text (energy in GeV).

1S bb
2S bb
3S bb

1S cc
2S cc
3S cc

0.9
1.4
1.6
1.8
2.3
2.6

Ai

—0.773
0.746

—0.464
—0.387

0.454
—0.285

A llUm
1

—0.779
0.727

—0.603
—0.369

0.450
—0.238

3.44+0.08
—2.40+0.06
—2.82+0.84

0.60+0.10
0.39+0.08
0.24+0.07

B2

—1.501
—0.697

0.800
0.567

—0.597
0.270

A3

—0.157
0.853

—1.080
—0.313

1.400
—1.770

tional wave function. Again, this additional error is es-
timated by the formula

&3~Ps= ~Psl:(II'Ps' -.—(II'Ps')- i (~os' —~Ps'

Notice that (W„'s))„„—(8'„'s')„„ turns out to be a few
MeV for the states 2S and 3S, while it is larger for 1S.
For instance, in the CH1 case, it amounts to 17 MeV for
1Scc and to 47 MeV for 1Sbb. This corresponds to an es-
timated error on W&s of about 5% for cc and 7% for bb

IV. CONCLUSIONS

Let us make some final remarks and try to draw some
conclusions. First of all, we stress again that the success
of our calculation depends strictly on the use of the
efFective potential (3.1) and on the possibility of obtaining
a simple result such as Eq. (3.10). Had we applied the
usual Kato perturbation theory for the BS equation [2], it

0.0

would have been impossible to obtain a simplified equa-
tion of the form (3.7) involving only two three-
dimensional integrals. We also notice that, as it is ap-
parent from Table IV, the magnitude of the retardation
corrections depends linearly on the value of g and it turns
out typically of the order of few hundreds MeV. It is evi-
dent that, as an effect of the regularization, the naive esti-
mate Qo/i@i =q/m is not correct. For certain values of
g, the corrections to the bb states can even exceed the cc
ones.

Furthermore, as we already mentioned, no attempt has
been made in this paper to fit again the experimental data
by readjusting the quark masses and the potential param-
eters after the inclusion of the retardation corrections.
Such an attempt would have not been significant because
of the small number of the states which we have been
able to handle. We can, however, gain some indications
by trying to reconcile the results with the data by adjust-
ing the scale parameter p alone.

In the CH1 case, as it is apparent from Figs. 2 and 3,
all the cc curves cut the data nearly g= —2. 15. For such
value of g, however, all values of the bb masses and sepa-
rations differ from the data by more than 200 MeV. It
does not seem possible, therefore, to restore the con-

-0.02

-0.06

TABLE IV. Values of the retardation corrections 8'„'s' as ob-
tained by Eq. (3.12) as a function of g=lnplpo (Iuo=50 MeV)
for the three different assignments of parameters considered. In
parentheses are reported the values of W„"P for (=0 obtained by
direct calculation of (3.10) where available. The result reported
for the 3Sbb state in the CH2 case is obtained only by the
second method. In this case energy is expressed in MeV.

-0.08

I I I I I I I I I I I

1S

CH1

74+5 —93(
(80)

CH2

51+8—17(
(44)

CH3

60+4—37(

0.0 0. 1

FIG. 1. Fit of I„s vs c for the first three cc S states and pa-
rameter assignment CH1 as an example. Solid lines represent
the values of I(c) as obtained by numerical integration; dotted
lines represent the same quantity obtained by interpolation by
Eq. (3.11) at small c,. The coefficients A „A3, and B2 are calcu-
lated according to Table I, A2, A4, B4 are introduced as free
parameters in the fit. The energy is expressed in GeV.

cc 2S —53+9—63/

3S 109+12+45(

bb 2S —222+4 —45$

3S —168+87+83(

1S 180+12+70(

—68+6+33/
( —90)

57 —75$

62+6—27(
(79)

—33+8+ 129$
( —40)

161+16+5(

—23+ 12+81$

274+36—47(

—73+4—67(

42+8+ 54(
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Q

I I I I
f

I I I I
]

I I I I

3S

4. 0

I I I I
f

I I I I
f

I I I I
f

I I I I

35

ns
3.6

3 4

3.0
-5. -2

~ 0.0

1S

3.Q I I I I I I I ( I I I I I I I I I I I I I I I I

FIG. 2. Masses (in GeV) of the cc S states as obtained by Eq.
(1.11) and the value of 8'„'z' reported in Table IV for choice CH1
of the parameters. The solid horizontal straight lines represent
the experimental data; the dashed lines represent the error
bands as given in the text.

sistency with the data by a small readjustment of the po-
tential parameters.

In the CH2 case, on the contrary, for (=1 (Iu=136
MeV) all states differ from the data by less than 50 MeV
except the 3S cc state, which differs by about 150 MeV.
As is apparent from Fig. 4, the disagreement of this last
state can be reduced to less than 80 MeV without disturb-
ing the agreement of the other five states by diminishing
the mass of the quark c of about 30—40 MeV. Taking
into account that the retardation correction to the cc 3S
mass is presumably less accurate than those for the other
states (cf. Fig. 1), the situation seems satisfactory
enough.

FIG. 4. Masses (in GeV) of cc S states as above for choice
CH2 of the parameters.

Finally, in the CH3 case, on the basis of Gromes' con-
jecture, we should expect W„'I' to turn out close to —700
MeV for every nl. In fact, such a result would restore the
consistency with the data which was destroyed by setting
C =0 at the potential level. However, a look at Table IV
shows that this is not the case. Indeed, the best agree-
ment among the various W„'&' occurs nearby (=0 and for
such a g they do not exceed 100 MeV in modulus but for
one state and they occur with opposite signs.

We notice that the above results do not change essen-
tially if we use kernel (1.7) rather than (1.8). As a matter
of fact, for choice CH1 with C =0, the differences in W„'I'

turn out to be of few MeV.
We also notice that, having chosen the intermediate

kernel directly in the instantaneous form (1.9), rather
than, e.g. , in the form (1.10), we have actually neglected

10.&
I I I I

f
I I I I

/
I I I I

f
I I I I

J
I I I

3S

'IO. 2
10.4

10.0 2S 10.2

ns

9.6

9.4 I I I I I I I I I I I I I I I I I I I I I I I I

-3. -2. -1. Q. 0

1S

9.4 I I I I I I I I I I I I l I I I I

1S

FIG. 3. Masses (in GeV) of the bb states as above for choice
CH1 of the parameters.

FIG. 5. Masses (in GeV) of the bb S states as above for
choice CH2 of the parameters.
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the corresponding retardation corrections. However, be-
cause of the less singular character of that term, such
corrections are generally expected to be small. In fact,
for CH2 assignment, taking, e.g., g=0. 1 GeV, they turn
out typically of about 20 MeV. A more detailed analysis
does not seem appropriate in the present context.
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APPENDIX A

Q(co&co')=2(co&co'} —f dcok J(co&cok }S(cok)(&(cok&co')

= J(co&co') —f dcok Q(co&cok )S(cok )J(cok&co') .

We use free one-particle propagators and set

y"'[co +(I/2)&s ]—y" .k+m
S(cok)=—

2~ [cok+(1/2)&s ]' —k —m'+iO

y() '[ —cok+(I/2)~s ]+y' 'k+m

[ —cok+(I/2)&s ] —k —m +iO

(Al')

The instantaneous approximation consists in replacing
S(co,co') by 2( )=S(0,0) and S(cok) by S' '(cok),

g(o) —g(0) f d g(o)S(0)( )g(0)
COk QPk

In an abbreviated form, the BS equation for the off-
shell amplitude 9 can be written (9 equals the connected
and amputated four-point function multiplied by i) being

—g(0) g(0)/(0) g(O) (A2)

A(+)(k)A(+)( —k)S' '(cok)= ™
2w(k)2 [cok+&s /2 w(k—)+iO](cok —[~s/2 —w(k)] —iO)

&"'=fd~kSO(~k)
w(k) &s —2w(k)

In order to obtain corrections to this approximation we can write

S(co,co') =2' '+ S"'(co)+J"'(co')+ S' '(co, co'),

S(cok ) =S' '(cok }+S"'(cok),
(A3)

having defined

2")(co)=J(co,O) J(0,0—), 2'"(co)=S(O,co) —S(0,0),
2' '(co, co') =S(co,co') —J'(co, O) —S(O, co')+ S(0,0) .

Then, by setting

9(co ) = Q(co 0 ) =9' '+ 9' "(co) +
and taking into account

fd~ S(1)(~ )
—+(1)

A'"( —k)A' '(k)

w(k) &s +2w(k)

one finds

g())(~)—g())(~) fd~ [[g(1)(~)+P())(~ )]S(0)(~ )g(0)+g(0)S(1)(~ )g(0)+g(0)S(0)(~ )g(1)(~ )]

Iterating such an equation, taking co =0, and using (A2), one obtains finally, after suitable rearrangements,

g())(0) f d [g(1)( )S(0)( )g(0)+g(o)S(0)(~ )g(1)(~ )] g(0)~(1)g(0)

(A4)

+ f dco [2"'(co )S' '(co )2( )+2( 'S' '(co )2"'(co }]+2()A("S' ' A' 'O' ' —2( )A' 'Q (0} (A5)

Comparing the Lippmann-Schwinger equation
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1=V—VR( ]T R' '= 1

2w(k) —Vs

with (A2), one obtains the potential defined in (1.5). Setting, however,

V= V"'+ V"'+-

7 =T"'+T'"+
one has

V(&)R (o) T(o) V(o)R (o)T(&)

which, compared with (A5), provides the expression (3.1) for s &4m . Notice that, for s )4m, one must have
ImQ(co, co'}~0for a~0 under the assumption of confinement. The Re prescription in (3.1) anticipates this fact. Such a
prescription is essential to make the use of the free propagator [Eq. (Al )] consistent with confinement. Above, Re and
Im stay properly for the self-adjoint and anti-self-adjoint parts.

APPENDIX B

The explicit expressions for the functions g2z, g3z in Eq. (3.10) are

g2s=[ —,'+Ass( —,'p +k ) —A2sk (k +p')]sinh(kp~zs)+[ 3Azskp+2k pkzs]cosh(kpAzs)

g3s= [
—

—', +—', k A33s 45k X3s 2A3s(k'+p')( ——', +—9'k'A3s yak A3s)

+( —,', —
—,",k A3s+ —,",, k A3s)[3 —6A3s(k +p }+A3s(p +6k p +k )]}sinh(kpA3s)

+ [(—,', —
—,",k A,3s+ ,",, k A3—s)[12K,3skp

—
,4A, 3s(kp +k p)]

+4A, ,s kp (
——', + —", k k3s —

—,",k A, 3s ) }cosh( kp A, 3s ) . (Bl)

APPENDIX C

As an example we derive expansion (3.11) in detail and obtain A „A3,82 for the state 1S. To this aim we shall in-

troduce the quantity

Qo

J(e, W)= f dk k —W e " dppe " sinh(kpA, „) 2 2 2 2+0 2fPl 0 —W/2+k /2m+ p +s p +s

to be studied as an analytical function in W. The quantity I,z(s) is afterwards obtained as

Iys(s}=ReJ(s~ W)l &o& .
1S

We choose a p )0 and write

J(E, W)= f dk f dp+ f dp . . =Jo(s, W)+J„(E,W) .0, 0 JM

Then we notice that J„(s,W) is a regular function of s and can be expanded as

4

J„(e,W)= AD +s A2 +—A4 +

(C 1)

(C2)

(C3)

and gives contribution only to the coefficient Ao Ap c44, . . . .
To study Jo(s, W), let us make the position ak =k /2m —W/2, take ReW & —4p, E & p, and expand the integrand

inp:
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1 1

a„+&p'+s' p'+E'

kp A,

ak&P'+E'

f (k,p):=pe ~" sinh(kpk, )

—kz4 k3X'

6
1 kpA,

k p2+~2

We have

kl, p kk ~~ 2+ p+ kA,

ak

P
p2+ ~2

p4 k3g6 p4+ + . . .
ak Vp'+ e' a'„

f dp f(k,p)= kA.2p kA, 2p2

2ak2
kz2p4

4a4 2ak ak 3 3a2k 8a2k

kA, +62+ ak) 2 ak
' 8 ak 2ak

k 3g6 1 kg4

6ak 8 ak

+aln
p

kk, 2
+~3

2ak

kA, k'As+
2ak 6ak 2

+3 ki,
3akp' 16 a2kp2

3 kA,

32 a4
kA, ' k'A, ' I
2ak 6ak p 32 2ak

(C4)

By integrating in k the terms proportional to s, e, and s 1n(s/M), we arrive at the expressions reported in TaMe I for
the state 1S:

3/2
dk k exp( —

A, k~)=—
2 0 8A.

a' = —mz2
Oo

0 1S

= —m & ReI I —A Q srm WIo&)—e 's
[ I —@(gQ—p'(to&m )]],

2
(C5)

2 0 2 6 32

2
where @(&)=&&&~jodt e ' . Notice that, in the case W(t~z'& 0, one can write exphcitiy

~Fr ( —X'W(0)m)
[I+t~V sr~$~s~me ' @(iA,/WPg'm )] .

Notice also that the coefFicients of the terms in 1,c,c, cannot be obtained in a closed form. Of course, a similar
method with a little bit more technique can be applied to the states 2S 3S. the second and the third line of Table I are
obtained in this way.

[1]For a general review see, for example, N. Nakanishi, Prog.
Theor. Phys. Suppl. 43, 1 (1969).

[2] M. A. Stroscio, Phys. Rep. 22, 215 (1975); E. Remiddi, in
Theory of Fundamental Interactions, Proceedings of the
International School of Physics "Enrico Fermi, "Varenna,
Italy, 1980, edited by G. Costa and R. R. Gatto (North-
Holland, Amsterdam, 1982); T. Murota, Prog. Theor.
Phys. Suppl. 95, 46 (1988).

[3] For a review of the BS approach in QCD see D. Gromes,
in Spectroscopy ofLight and Heavy Quarks, Proceedings of
the International School of Physics "Ettore Majorana" In-
ternational Science Series, Vol. 37 (Plenum, New York,
1989), p. 67; W. Lucha, F. F. Schoberl, and D. Gromes,
Phys. Rep. 200, 127 (1991).

[4] K. G. Wilson, Phys. Rev. D 10, 2445 (1974); L. S. Brown
and W. I. Weisberger, ibid. 20, 3239 (1979).

[5] E. Eichten and F. Feinberg, Phys. Rev. D 23, 2724 (1981);
cf. also M. A. Peskin, in Dynamics and Spectroscopy at
High Energy, Proceedings of the 11th SLAC Summer In-
stitute on Particle Physics, Stanford, California, 1983,
edited by P. M. McDonough (SLAC Report No. 207,
Stanford, 1984), p. 151.

[6]A. Barchielli, E. Montaldi, and G. M. Prosperi, Nucl.
Phys. B296, 625 (1988);B303, 752(E) (1988).

[7] A. Barchielli, N. Brambilla, and G. M. Prosperi, Nuovo
Cimento 103A, 59 (1990).

[8] J. Barnes and G. I. Ghandour, Phys. Lett. 118B, 411
(1982); see also R. McClary and N. Byers, Phys. Rev. D



1108 N. BRAMBILLA AND G. M. PROSPERI

28, 1692 (1983); M. G. Olsson and K. J. Miller, ibid. 28,
674 {1982);D. Gromes, Nucl. Phys. 8131,80 (1977).

[9] For the papers published by the end of 1987 see the gen-
eral bibliography reported in Murota [2]; among the most
recent works we may quote, e.g., A. Gara, B. Durand, and
L. Durand, Phys. Rev. D 42, 1651 (1990); 40, 843 (1989);
K. K. Gupta, A. N. Mitra, and N. N. Singh, ibid. 42, 1604
(1990);P. J. de A. Bicudo and J. E. F. T. Ribeiro, ibid. 42,
1625 (1990); K. Aoki, M. Bando, T. Kugo, M. Mitchard,
and H. Nakatani, Frog. Theor. Phys. 84, 683 (1990); K.
Aoki, M. Bando, T. Kugo, and M. Mitchard, ibid. 85, 355
(1991); also G. M. Prosperi and A. Zecca, Phys. Lett. B
181, 150 (1986); University of Milan, Report No.

IFUM328/FT, 1987 (unpublished); A. Zecca, Nuovo
Cimento 100A, 139 {1988).

[10]J.-F. Lagae, Phys. Rev. D 45, 305 (1992); 45, 317 (1992);
W. Buchmiiller, Phys. Lett. 112B,479 (1982).

[11]N. Brambilla, Nuovo Cimento A (to be published).
[12]D. Gromes, Z. Phys. C 11, 147 (1981).
[13]~. Celmaster and F. S. Henyey, Phys. Rev. D 17, 3268

(1978).
[14] N. Brambilla and G. M. Prosperi, Phys. Lett. B 236, 69

(1990).
[15] N. Bogoliubov and D. V. Shirkov, Introduction to the

Theory of Quantized Fields (Interscience, New York,
1959), p. 151.


