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We scrutinize the relevance of relativistic wave equations for the description of quark-antiquark
bound states. By comparing the predictions of the nonrelativistic Schrédinger equation (with only the
lowest-order relativistic corrections of the famous Breit-Fermi Hamiltonian), the spinless Salpeter equa-
tion, and a new semirelativistic wave equation (which incorporates relativistic kinematics and the com-
plete relativistic corrections to the static interaction potential) for light and heavy quarkonia within
three different potential models, we discuss the extent to which the use of relativistic wave equations is
reasonable or necessary in order to reproduce the experimentally observed meson mass spectra. We are
forced to conclude that—contrary to one’s physical intuition—a relativistic treatment of bound states in
a potential model provides no improvement at all compared to the corresponding nonrelativistic descrip-

tion.

PACS number(s): 11.10.St, 03.65.Ge, 11.10.Qr, 12.40.Qq

I. INTRODUCTION

One of the most popular approaches to hadrons is to
describe them by means of a nonrelativistic Schrodinger
equation as bound states of (constituent) quarks which in-
teract via some effective potential. The overwhelming
success of these nonrelativistic potential models not only
for heavy quarkonia but also for light mesons remains up
to now a miracle in hadron spectroscopy [1]. In princi-
ple, at least bound states consisting of light constituents
should be dealt with in a relativistic framework. In this
paper we would like to address the question of to what
extent the employment of a relativistic equation of
motion for the description of fermion-antifermion bound
states is meaningful or even unavoidable.

The strategy of our investigation (and simultaneously
the outline of this paper) is the following. We solve the
nonrelativistic Schrodinger equation, the spinless Salpeter
equation, and a new semirelativistic wave equation, all of
them introduced in Sec. II, with the help of the numerical
method briefly sketched in Sec. III for some typical inter-
quark potentials presented in Sec. IV. Comparing in Sec.
V the output of our fits to the experimentally observed
meson mass spectra, we are, in Sec. VI, unambiguously
led to the conclusion that, as far as the confrontation
with experiment is concerned, an increase of the relativis-
tic consistency of the bound-state wave equations makes
things worse.

II. WAVE EQUATIONS

We are interested in Schrodinger-type eigenvalue equa-
tions of the form

Hy(x)=Mi(x) , (1)

where H is the Hamiltonian governing the dynamics of
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the bound state under consideration and #(x) the
configuration-space representation of the corresponding
state vector. In the center-of-momentum system of the
bound state, the energy eigenvalue arising from this equa-
tion is, of course, nothing else but the mass M of the com-
posite particle.

We shall consider bound states consisting of fermions
with equal masses m;=m,=m and spins S,,S,, respec-
tively, which interact via a spherically symmetric poten-
tial ¥ (r), r=|x|, where x denotes the relative coordinate
of the bound-state constituents.

A. The nonrelativistic Schrodinger equation

The Hamiltonian containing the relativistic corrections
up to order 1/c? is called the generalized Breit-Fermi
Hamiltonian (for a recent review see, for instance, Ref.

[1)):

2 4

H=m+E P41y, @)
m  4m

where the potential ¥ (r) contains, in addition to the stat-

ic interaction Vg, (r), all relativistic corrections,

V(r)=V,(r+Hg+H +Hs+Hr . (3)

The interaction between the fermionic bound-state con-
stituents may be viewed as being generated by a (maybe
only effective) exchange of a boson after integrating out
the degrees of freedom corresponding to this virtual par-
ticle. The static potential V,,(r) may be decomposed ac-
cording to the spin of this boson. For bound states con-
sisting of quarks (and antiquarks) there is very strong evi-
dence that the static interquark potential—originating
from quantum chromodynamics—receives, at least
within a nonrelativistic analysis, predominantly a vector
and a scalar contribution (for a very recent review on the
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phenomenological aspects of the forces acting within
bound states of quarks see, e.g., also Ref. [1]):

V(P =Vy(r)+Vs(r) . 4)

The relativistic corrections to the static potential Vi, (r)
discriminate between different spin structures. They con-
sist of (1) the spin-independent term

Hy = ;2 2AVy(r)— % VVy(r)Vx
dvVy(r)
—f—an:V-ri v7 Vs
r dr
+2xVV5(r)Vx |, (5)

where for a generic operator @ the expression between
stars is the shorthand notation for

*VOV*=A0+2VO-V+OA , (6)
(2) the spin-orbit term
dvy(r) dVg(r)
12 3 v _ S ]L-S ,
2m*“r

Hys= ™

dr dr

where S=S§,+8, is the total spin of the bound state and
L=xXp is the relative orbital angular momentum of its
constituents; (3) the spin-spin term

HSS=%S1-SZAVV(r) , (8)
m

and (4) the tensor term

o= L 1 dVy(r) _d*y(n
T m2lr dr dr?
(sl'x)(SZ'X) 1
—rz———gsl-sz 9)

For bound-state constituents of spin S| =S, =1, the sca-

J

lar product of their spins, S;-S,, is given by

—3 for spin singlets, S =0,

3
3
518~ | 41 (10)

for spin triplets, S =1 .

B. The spinless Salpeter equation

The spinless Salpeter equation may be regarded as the
Schrodinger equation generalized to relativistic kinemat-
ics. For the case of two particles with equal masses m in-
teracting via a spherically symmetric potential ¥ (r), the
configuration-space representation of the spinless Sal-
peter equation in the center-of-momentum system of the
two particles reads

2V —A+m*+V(r)]p(x)=Mi(x) . (11)

In spite of the—hopefully not misleading—designation
customary for this wave equation, the potential ¥ (r) may
contain all the relativistic corrections given in Egs.
(5)-(9), some of which depend, of course, on the spins of
the involved bound-state constituents.

C. The semirelativistic wave equation

In principle, there is no obstacle to taking into account
the complete relativistic corrections to the static poten-
tial Vg, (r). Introducing the kinetic-energy operator in
coordinate space,

E;=V —A+m?, (12)
where
_d*  2d 1U+1)
PR r (13)

denotes the action of the Laplacian on states of definite
orbital angular momentum /, the semirelativistic equation
of motion for the radial part R(r) of the bound-state
wave function ¥(x)=R ()Y, (0,4) with a static poten-
tial consisting only of vector and scalar contributions is
given by [2-4]

1 dvy(r) dVs(r) | 4
(M_ZEI)R(")=4_E1 (E;+m)[Vy(r)+Vg(r)(E;+m)—2 |2 o ar E_Z[ZVV(I‘)—VS(?)]AI
(E)+m)Vy (1) — A (r)E,+
M) T m v B m)
T 1 szv(r) szs(r) d2
E;+m dr? dr* | dr?
dvy(r) dvs(r) | [ 4 d , 1(I+1)
dr dr drAI+AIE+ r3
F[Vy(P+Vs(MAA, |—— LR
v ST E+m | E
L | d Ly a2 m (= 42—y () E, )
4E, dr dr virS: irm VrEF”m E,tm viIrkEtm
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1 d*Vy(r) d*s(r) |[2.d 1U+1)
—_ —+— =z = - -7
E,+m dr? dr? r dr r?
1 [ dVy(r) dVg(r) d? 1 1
+ + £ —-48,-S,R e
r dr dr dr? "I'NE+m | E S8R (r)+ (14)
[
Here the dots denote terms which do not contribute for such as
spin-singlet states, i.e., S =0, or states with vanishing or- d
bital angular momentum, i.e., / =0 (see, for instance, [1]), E,A,, e

and hence can be omitted from the equation of motion
for the subsequent discussion.

This semirelativistic bound-state wave equation follows
from the Bethe-Salpeter equation [5] under the assump-
tion of a static integral kernel—which corresponds to an
instantaneous interaction between the bound-state
constituents—and after dropping one term—which de-
scribes particle-antiparticle annihilation and their subse-
quent production and thus has no clear interpretation in
terms of a potential—in the resulting Salpeter equation
[6] for the suitably defined equal-time wave function (for
more details see, for instance, Ref. [7]).

III. THE METHOD OF ORTHOGONAL COLLOCATION

For the numerical solution of the (semi)relativistic
wave equations in Secs. IIB and IIC, we use a matrix
method [8] which is closely related to the method of or-
thogonal collocation. The basic idea of this procedure is
to approximate the nonlocal square-root differential
operator \/—A+m2, which enters in the spinless Sal-
peter equation (11) or in the semirelativistic wave equa-
tion (14), and all functions of this expression, by suitably
defined matrix representations.

These matrices give the action of all operators showing
up in the equations of motion on some set of basis func-
tions for L,(R™"), evaluated at some points {r,,,

m =1,2,...}. Following [8], we choose as our basis
functions {f,(r), n=0,1,...,N} the (complete, if
N = o) orthonormal system
172
| nna ! ) Ar | an
[a(r):= n 32t r'exp — |L,*(Ar), (15)
where L\*’(r) are the generalized Laguerre polynomials

with parameter 2/ [9]. The points 7, where these ma-
trices are defined are conveniently chosen as the N zeros
{(Fs m=1,2,...,N} of fy(r): fy(r,)=LF (Ar,)=0.
The parameter A serves to accumulate the values of 7,, in
the region where the wave functions we are interested in
are significantly different from zero. Empirically, it is
roughly given by [10]

()
PN

- Tm(r)’
where pl is the largest zero of L{Z(r).

With the help of this set of basis functions, to every
operator O, including the potential ¥ (r) and derivatives

A (16)

an N X N matrix O may be associated by the prescription
N

(0)n= 3 [Ofi(r,) U Dy a7
k=1

where f is the N X N matrix f,,,:=f,(r,,).

In order to find an (approximate) matrix repre-
sentation _of the square-root differential operator
E,=V—A,+m?, introduced in Eq. (12), consider the
operator

Q,EE,ZZ—A1+m2 (18)

and its associated matrix Q;. This matrix is equivalent to
the diagonal matrix q;=diag(q,,q,, . - . ,qy) of its corre-
sponding eigenvalues {g,,, m =1,2,...,N},

Q,=UqU!'. (19)

Since the operator Q; is the formal square of E;, the ma-
trix representation E; of the operator E, is defined by the
square root of Qy,

E;:=Q}’=Uq}/?U"} . (20)

The matrix representations of other nonlocal operators
involving E; may be defined in a similar manner, for in-
stance, for E;” ! by

E; =Uq, '?U !, 21)
for (E;+m) by

(E;+m):=U(q}*+m)U" !, (22)
or, for (E;+m) ! by

(E;+m) 1:=U(q})?+m)" 'U" . (23)

In this way any relativistic equation of motion is convert-
ed to a simple matrix eigenvalue problem for the wave-
function vector R, =R (r,,).

We use the method of orthogonal collocation since the
analytical method developed in Ref. [11], although some-
what faster in rate of convergence, is not well suited for
the treatment of potentials involving transcendental func-
tions like, e.g., the error function.

IV. SOME SAMPLE POTENTIALS

Let us apply the previously developed ideas to hadrons,
considered as bound states of (constituent) quarks which
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are bound by the strong interaction. We have at our
disposal a generally accepted quantum field theory of the
strong interaction, namely, quantum chromodynamics
(QCD), a non-Abelian gauge theory for quarks and
gluons. Nevertheless, because of the intrinsically nonper-
turbative nature of the bound-state problem in non-
Abelian gauge theories, it is, up to now, not possible to
derive the forces acting between the quarks inside a had-
ron from first principles, that is, QCD. Consequently, the
corresponding interquark potential has to be determined
phenomenologically.

A. Funnel potential

The reasoning leading to the various proposed poten-
tials ¥ (r) is rather simple. For small distances between
the quarks, one expects from one-gluon exchange—by
analogy to one-photon exchange in quantum
electrodynamics—a Coulomb-like contribution to the
potential, that is, V' (r)<1/r. For large distances, in or-
der to be able to describe confinement, the potential has
to rise to infinity. From lattice-gauge-theory computa-
tions there are hints that this rise is a linear one, that is,
V(r)<r. The most reasonable possibility to construct an
interquark potential which satisfies both of the above
constraints is to simply add these two contributions.
This leads to the so-called funnel (or Cornell) potential
[12-14]:

V(r>=—§+ar ) (24)

which depends on just two parameters, viz., on the
Coulomb-like coupling constant « and on the slope a of
the linear term. This funnel-shaped potential represents
the prototype of all of the proposed realistic interquark
potentials. A closer inspection reveals that all phenome-
nologically acceptable “QCD-inspired” potentials are
only variations around the funnel potential [1].

As should be evident from its above-mentioned origin,
the Coulomb-like part of the funnel potential is of vec-
torial spin structure. In contrast to this, the majority of
all investigations of this question points towards a scalar
spin structure of the (linear) confining part. Consequent-
ly the splitting of the funnel potential, according to the
respective spin structure, into vector and scalar contribu-
tion reads

Vv(r)=—§, Vs(r\=ar+V, . (25)

Usually, a constant ¥, is added to the confining contribu-
tion. The origin of this constant may be traced back to
the infrared divergence of the momentum-space expres-
sion of this part of the potential, which makes a regulari-
zation of the involved integral necessary [1,15]. This con-
stant has to be regarded as an additional arbitrary param-
eter in the potential, its arbitrariness being induced by
the arbitrariness in the choice of the renormalization
point. In the case of a linear confining potential, and for
a special choice of the renormalization point, the con-
stant ¥V, is related to the slope a of the linear potential by
(1,15]

Vo=—2Vaexp(—yp+1), (26)

where y;=0.577215. ..
stant.

The appearance of a Coulomb-like contribution ~1/r
in the vector part of the potential causes, however, some
problems since in this case, because of the involved
derivatives of the potential, the relativistic-correction
terms in the Breit-Fermi Hamiltonian (2) become singu-
lar. For instance, due to the relation Al/r = —4783)(x),
the spin-spin interaction (8) derived from a pure Coulomb
potential involves a § function,

is the Euler-Mascheroni con-

_ 8k
3m?

which makes, for one of the two possible spin alignments
in Eq. (10), the Breit-Fermi Hamiltonian unbounded from
below. This unlucky circumstance would prevent a non-
perturbative treatment of the Breit-Fermi Hamiltonian.
Of course, these singularities are only a consequence of
the nonrelativistic approximation inherent to the Breit-
Fermi Hamiltonian. They are not present in the com-
pletely relativistic form of the bound-state wave equation
discussed in Sec. II C.

One way out is to smear the 8 function in the spin-spin
term by replacing it by a function which converges weak-
ly towards the & function, like, e.g.,

HSS S]'SZS(B)(X) ’ (27)

3) 1 r?
8 (x)—>—exp |—7— |, (28)
ro o
which entails the modified spin-spin interaction
87k r?
Hy=——-=S,S,exp | —7m— (29)
Ss Im2r (3) 1°92 €Xp , (2)

In Sec. V, for the numerical applications of the funnel po-
tential with the regularization (28) of the 8 function, the
characteristic length scale r, will be parametrized in
terms of the quark mass m by two constants K ;,K,:
K,

ro=K,m (30)

B. The erf potential

Another possibility is to modify the (potentially
dangerous) Coulomb interaction by introducing a factor
which provides some sort of damping, like, e.g., the error
function erf(r) [16]:

Vv(r)=—§erf(\/7mr), Vs(r\=ar+V, . 31)

Then, because of

M=_L_exp(“"2) ) 42

Ar Vi

the Laplacian acting on the vector part of the potential
generates no singularity at all in the spin-spin interaction,

87r2 ku’S,-S, exp( —mu?r?) . (33)

He .=
SS 3m
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As before, for the numerical applications of this potential
in Sec. V, the scale factor p will be parametrized in terms
of the quark mass m by two constants K ,K,:

p=K,m"* . (34)

C. Smooth-transition potential

Still more sophisticated is the potential [10]

Vy(r)=

F(r)—brexp

y

——I:—f(,urH—d —ar

(35)
Vs(r)=ar +V, .

Here, the singularity of the Coulomb part is regularized
by

1+

fx)=1— 5

e . (36)

The transition from the vector to the scalar part of the
potential is described by the Fermi-Dirac function

1

F o = ol —4k(r—R )]

(37)

where kK =F'(R,) characterizes the width of the transi-
tion region. In the limit k— — o, F(r) reduces to the
Heaviside function,

1 forr<R,,

lim F(r=6(R,—r= |, forr >R, .

k-—>—o

(38)

The potential parameters d and R; may be determined by
requiring the short-range part of the vector potential [the
term in parentheses on the right-hand side of Eq. (35)]
and its first derivative to vanish at the point R :

d=aR,+——f(2) (39)
R,
and
e i (40)
z? oz 2 z°  Kku

with the dimensionless variable z defined by
z=uR, . (41)

Again, for the numerical applications of this potential
in Sec. V, the scale factor u will be parametrized in terms
of the quark mass m by two constants K ,K,:

K

p=K,m"* . (42)

V. RESULTS AND CONCLUSIONS

A. General procedure

In this section we investigate the relativistic equations
of motion, in particular, on the one hand, the spinless
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Salpeter equation of Sec. II B and, on the other hand, the
semirelativistic wave equation of Sec. II C, with respect
to their significance for the description of bound states of
fermion-antifermion pairs. To this end we compare the
predictions of these relativistic wave equations for the en-
ergy levels of quark-antiquark bound states with those re-
sulting from the nonrelativistic Schrodinger equation,
amended by only the lowest-order relativistic corrections
of the generalized Breit-Fermi Hamiltonian, as given in
Sec. IT A. We shall simultaneously consider bound states
of light quarks, like (u#) and (s5), as well as the char-
monium (¢¢) and bottomonium (bb) systems. The corre-
sponding energy spectra are obtained by performing in
each case a fit which minimizes the quantity

AM (43)

1]

M, —Me® ’2

X'=3

where M; and M/™® are the theoretically predicted and
experimentally observed [17] values for the meson
masses, respectively, and AM; the corresponding experi-
mental error [17].

In the following, the ‘“‘center of gravity” (COG)
denotes the average mass of the (S =1, / =1) states, for
heavy quarkonia usually called x, (§=¢,b,...),

COG(CP;)=L[5M(CP,)+3M(CP)+M(CP,)], (44)

where we recall the usual spectroscopic notation 25 %1/,

for a state with orbital angular momentum /, spin S, and
total angular momentum J; S,P,D,F,. .. corresponds to
orbital angular momentum / =0, 1,2,3, . . ., respectively.

Since the spin-singlet / =1 states of the heavy quar-
konia, i.e., cc( 1P1 ) and bb( lPl ), have not yet been unam-
biguously confirmed by experiment [17], we use as a first
estimate of their experimental masses the center of gravi-
ty of the corresponding spin-triplet / =1 states, as defined
above. Our justification for this is that (at least within a
perturbative treatment) the center of gravity COG(3P]-),
for which perturbatively the contributions of the spin-
orbit and tensor interactions separately add up to zero,
equals the mass M('P,) of the (S =0, [ =1) state, which
does not receive a contribution at all from the spin-orbit
and tensor interactions because of S =0 (see, e.g., Ref.
[1D.

For the remainder of this section our aim will be a
simultaneous description, by one and the same interquark
potential, of light mesons, such as 7 and p, as well as
heavy quarkonia, such as the charmonium and botto-
monium systems. According to the concept of a running
gauge coupling constant, in these potentials we allow for
different values of the Coulomb-like parameter « for light
(k;) and heavy (k,) quarkonia, or even for charmonium
(k,) and bottomonium (k) systems. However, in view of
the well-known difficulties one encounters when taking
into account also the spin-independent relativistic correc-
tions (5) of the Breit-Fermi Hamiltonian, we take the li-
berty to ignore these terms for the investigations based on
the Schrodinger and spinless Salpeter equations.
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TABLE 1. Quarkonium mass spectra (in units of GeV) pre-
dicted for the funnel potential by the Schrédinger and spinless
Salpeter equation, respectively, as well as the corresponding
values of y? obtained by the fit.
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TABLE III. Quarkonium mass spectra (in units of GeV) pre-
dicted for the erf potential by the Schrédinger and spinless Sal-
peter equation, respectively, as well as the corresponding values
of x? obtained by the fit.

Nonrelativistic Spinless Nonrelativistic Spinless
Experiment Schrédinger Salpeter Experiment Schrédinger Salpeter
State [17] equation equation State [17] equation equation
s5(1S) 1.004 1.004 1.004 T 0.138 0.138 0.139
s5(28) 1.620 1.782 1.676 p(770) 0.768 0.769 0.768
7.(18) 2.980 2.998 2.985 7.(18) 2.980 2.976 2.965
J/P(1S) 3.097 3.097 3.097 J/P(1S) 3.097 3.097 3.097
cc(1'Py) 3.525 3.507 3.522 ce(1'py) 3.525 3.524 3.522
P(2S) 3.686 3.686 3.686 P(2S) 3.686 3.686 3.686

Y(1S) 9.460 9.459 9.460 1¥(4040) 4.04 4.021 4.05
Y(2S) 10.023 10.028 10.024 Y(1S) 9.460 9.460 9.460
x? 1831 78.3 Y(2S) 10.023 10.023 10.022
Y(3S) 10.355 10.355 10.357

x? 16.3 160.9

B. Spinless Salpeter equation
versus nonrelativistic Schrédinger equation

As a first step, we investigate the effect of the incor-
poration simply of relativistic kinematics into the bound-
state equation of motion. To this end we compare the
predictions of, on the one hand, the Schrédinger equation
of Sec. I A and, on the other hand, the spinless Salpeter
equation of Sec. II B, obtained from a separate numerical
fit for each of the potentials sketched in Sec. IV. The re-
sults of these fits are presented in Tables I, III, and V, re-
spectively, with the corresponding parameter values
given in Tables II, IV, and VI. In all cases, the additive
constant ¥, in the confining part Vg(r)=ar + V¥, of the
potential is assumed to be related to the slope a of the
linear rise by Eq. (26) and is thus not varied independent-
ly.

For the funnel potential (25) with regularization (28), it
is not possible to obtain a satisfactory fit which also in-
cludes the light mesons 7 and p. Nevertheless, in order
to get at least an idea of the range of validity of this po-
tential model, we consider, in addition to the heavy quar-
konia (c?) and (bb), the (spin-averaged) 1S and 2.5 states
of (s5).

The results obtained with relativistic kinematics are
significantly better than the ones following from the non-
relativistic Schrodinger equation (Table I). For the latter

TABLE II. Quark masses and potential parameters obtained
from a fit of the quarkonium mass spectra with the Schrodinger
and spinless Salpeter equation, respectively, for the funnel po-
tential.

equation of motion, however, the relative magnitude of
the Coulomb-like parameter « is in accordance with the
ideas of asymptotic freedom as is expected for the strong
gauge coupling constant of quantum chromodynamics,
that is, k; > «,. In contrast to this (and to one’s physical
intuition), this is no longer the case for the spinless Sal-
peter equation (Table II). The incorporation of relativis-
tic kinematics thus improves the description of the
empirically found meson spectrum, but at the price of re-
quiring unacceptable values for the parameters of the po-
tential.

For the erf potential (31), in spite of reasonable fits ob-
tained from both nonrelativistic and relativistic kinemat-
ics (Table III), a similar behavior is found for the
Coulomb-like parameter: «; <k, <k, in both cases,
which is again in clear conflict with asymptotic freedom
(Table IV). It is highly unlikely that, within this potential
model, hadronic features such as decay rates or masses of
excited states may be reproduced.

For the smooth-transition potential (35), the incorpora-
tion of relativistic kinematics reduces the quality of the fit
drastically (Table V) and entails parameter values the rel-
ative magnitude of which is once more in conflict with
the expectations of quantum chromodynamics (Table VI).

TABLE IV. Quark masses and potential parameters obtained
from a fit of the quarkonium mass spectra with the Schrédinger
and spinless Salpeter equation, respectively, for the erf poten-
tial.

Nonrelativistic Spinless Nonrelativistic Spinless

Schrédinger Salpeter Schrodinger Salpeter

State equation equation State equation equation
m; (GeV) 0.573 0.551 m. (GeV) 1.996 1.959
m, (GeV) 1.797 1.800 m; (GeV) 5.387 5.325
my;, (GeV) 5.187 5.176 Ky 0.136 0.092
K 0.606 0.364 K. 1.293 1.063
Ky 0.506 0.456 Kp 1.600 1.227
a (GeV?) 0.187 0.211 a (GeV?) 0.095 0.130
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TABLE V. Quarkonium mass spectra (in units of GeV) pre-
dicted for the smooth-transition potential by the Schrodinger
and spinless Salpeter equation, respectively, as well as the corre-
sponding values of y? obtained by the fit.
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TABLE VII. Quarkonium mass spectra (in units of GeV)
predicted for the funnel potential by the spinless Salpeter and
semirelativistic wave equation, respectively, as well as the corre-
sponding values of y? obtained by the fit.

Nonrelativistic Spinless Spinless Semirelativistic
Experiment Schrodinger Salpeter Experiment Salpeter wave

State [17] equation equation State [17] equation equation
™ 0.138 0.138 0.138 T 0.138 0.138 0.451
p(770) 0.768 0.768 0.767 p(770) 0.768 0.768 0.474
7.(18) 2.980 2.987 2.975 7.(1S) 2.980 2.957 3.094
J/P(18S) 3.097 3.097 3.097 J/P(18S) 3.097 3.097 3.100
cc(1'Py) 3.525 3.505 3.495 ce(1'py) 3.525 3.525 3.519
P(2S) 3.686 3.686 3.685 P(2S) 3.686 3.686 3.686
¥(4040) 4.04 4.028 4.12 ¥(4040) 4.04 4.11 4.10
Y(1S) 9.460 9.460 9.461 Y(1S) 9.460 9.461 9.462
Y(2S) 10.023 10.022 10.017 Y(2S) 10.023 10.018 10.019
Y(3S) 10.355 10.358 10.375 Y(3S) 10.355 10.362 10.368
X 70.3 2163.7 X’ 759.0 744 663

C. Semirelativistic wave equation
versus spinless Salpeter equation

As the next step towards full relativistic consistency,
by employing the semirelativistic wave equation (14) for
the description of fermion-antifermion bound states, we
take into account the complete relativistic corrections to
the static potential Vg, (7). Since the semirelativistic
wave equation is not plagued by the (spurious) singulari-
ties generated by a nonrelativistic expansion in powers of
1/¢, no regularization of the Coulomb part is required
and one may deal with the pure funnel potential (25).

The results of the fits for the predicted energy levels
and the corresponding sets of parameters are summarized
in Tables VII and VIII, respectively. While in the previ-
ous subsection the additive constant ¥V in the linear part
of the funnel potential was determined by the slope a, we
now regard it as an independent parameter. Its variation
may be used to optimize the numerical fit.

While now the spinless Salpeter equation (with the ad-
ditional free parameter V) produces a more or less
reasonable description of the experimental data, the fit
based on the semirelativistic wave equation has to be

TABLE VI. Quark masses and potential parameters obtained
from a fit of the quarkonium mass spectra with the Schrédinger
and spinless Salpeter equation, respectively, for the smooth-
transition potential.

called simply a disaster (Table VII). The Coulomb-like
parameter k now follows only for the spinless Salpeter
equation the trend demanded by asymptotic freedom,
K;> K. >K,, whereas in the case of the semirelativistic
wave equation no general tendency may be recognized
(Table VIII). We conclude that the semirelativistic wave
equation—which, in contrast to the Schrdodinger and
spinless Salpeter equation, incorporates also the spin-
independent relativistic corrections to the static
potential —is not able to describe successfully the spectra
of quark-antiquark bound states, at least, not with such a
simple form of the quark interaction as is represented by
the funnel potential.

VI. SUMMARY

Motivated by the impressive success of nonrelativistic
potential models for the description of hadrons as bound
states of constituent quarks, we analyzed the changes
brought about by a relativistic treatment of hadrons,
where the nonrelativistic Schrédinger equation, on which
the former investigations are based, is replaced by a rela-
tivistic equation of motion which incorporates relativistic
kinematics, such as the so-called spinless Salpeter equa-
tion, or even the full relativistic corrections to the in-

TABLE VIII. Quark masses and potential parameters ob-
tained from a fit of the quarkonium mass spectra with the spin-
less Salpeter and semirelativistic wave equation, respectively.

Nonrelativistic Spinless Spinless Semirelativistic
Schrodinger Salpeter Salpeter wave

State equation equation State equation equation
m, (GeV) 1.841 1.711 m, (GeV) 0.336 0.336
m,;, (GeV) 5.214 5.099 m. (GeV) 1.351 2.060
K 0.475 0.623  m, (GeV) 4.751 5.430
K 0.475 0.723 Ky 1.768 0.452
b (GeV?) 1.948 0.591 K. 0.692 0.718
¢ (Gev™)h 0.866 0.790 Ky 0.647 0.628
k (GeV) —3.335 —9.251  a (GeV?) 0.189 0.201
a (GeV?) 0.121 0.228 Vo (GeV) 0.036 —1.345
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teraction potential, such as the semirelativistic wave
equation of Sec. II C.

Our results are somewhat strange and contradict the
naive feeling one might have when moving from a non-
relativistic to an (at least more) relativistic treatment of
systems which by no means can be regarded as nonrela-
tivistic. As may be seen from the achieved minimal
values of y?, introducing into the bound-state equation of
motion the relativistically correct kinetic term
V' — A+m? either deteriorates the quality of the fit drast-
ically or leads to an unrealistic dependence of the poten-
tial parameters on the relevant energy scale. Similarly,
taking into account, in addition, the relativistically con-
sistent form of the interaction between the bound-state

constituents, as is done by the semirelativistic wave equa-
tion, enlarges the discrepancy between the theoretically
predicted mass spectra and experiment still more. Our
paradoxical findings thus confirm the conclusion of Refs.
[3,4] without any restriction: A relativistic treatment of
quark-antiquark bound states, by means of a semirela-
tivistic wave equation or its static-interaction approxima-
tion, does not imply any improvement in the description
of meson mass spectra. Rather, the opposite seems to be
true: The nonrelativistic potential-model approach to
bound states of quarks appears to be superior to its
(semi)relativistic extensions which necessarily involve the
troublesome spin-independent relativistic corrections to
the static potential.
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