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Spin- and flavor-symmetry-breaking corrections to decay constants of heavy mesons are analyzed
in next-to-leading order in the 1/mq expansion. The general structure of these corrections is derived
in an eHective-field-theory approach. The subleading universal form factors, which parametrize the
matrix elements of higher-dimensional operators in the efFective theory, are estimated using QCD
sum rules. The renormalization-group improvement of these low-energy parameters is discussed in

detail. As an application, the spin-symmetry-violating effects responsible for the vector-pseudoscalar
mass difFerence and for the ratio of the corresponding decay constants, fv/ fJ, are calculated.
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I. INTRODUCTION

Over the last few years, the study of the properties of
hadronic processes involving heavy quarks has become a
very active field of research [1—31]. In the limit of very
large quark masses, a number of exact relations can be
derived despite the presence of long-range strong interac-
tions. The reason is that for heavy quarks /CD exhibits
a spin-fiavor symmetry which is only softly broken by
terms of order AcicD/mq [5]. This symmetry relates the
hadronic matrix elements of heavy hadrons with different
spin or fiavor quantum numbers. It becomes explicit in
an efFective-field-theory formulation of /CD [8—10].

The phenomenological applications of this formalism
are numerous [32—37]. In particular, it turns out that the
description of current-induced processes like semileptonic
decays of heavy mesons or baryons becomes very simple
in the formal limit of infinite heavy-quark masses. The
large set of hadronic form factors is then reduced to a
small number of universal functions (the Isgur-Wise func-
tions), which are independent of the heavy-quark masses
[5]. They contain all long-distance hadronic dynamics.
This observation offers the exciting possibility of being
able to extract in a model-independent way some of the
weak mixing angles from the measurement of decays of
heavy hadrons, without limitations arising from the ig-
norance of long-distance dynamics [3, 36, 37].

Clearly, a thorough establishment of the heavy-quark
expansion requires a careful analysis of symmetry-
breaking corrections. Much attention has been de-
voted to this subject [11—20]. Already at leading or-
der in the 1/mq expansion, the symmetry is violated by
hard-gluon exchange. These efFects allow for a pertur-
bative treatment. The corresponding corrections have
been calculated first in leading logarithmic approxima-
tion [4, ll], and more recently in next-to-leading order
in renormalization-group-improved perturbation theory
[17—20]. At subleading order in the 1/mq expansion, one
is generally forced to introduce additional universal form
factors. The structures that arise have been worked out
for matrix elements between two heavy mesons [12] or A

baryons [14]. Some of the subleading form factors obey
nontrivial constraints arising from the equations of rno-
tion. An additional complication results from the fact
that higher-dimensional operators in the effective theory
mix under renormalization [13,16]. The pattern of rela-
tions among matrix elements thus becomes considerably
more complex than at leading order.

Many of the subtle issues related to the 1/mq expan-
sion can already be studied in the simpler case of cur-
rent matrix elements between a heavy meson and the
vacuum. These matrix elements define meson decay con-
stants, which are hadronic properties of primary theoreti-
cal and phenomenological interest. Following the analysis
of Ref. [12],we derive in Sec. II the structure of 1/mq cor-
rections in this case. It is shown that two additional uni-
versal parameters are induced at subleading order. Their
behavior under the renormalization group is derived to
one-loop order. In Sec. III, we estimate these subleading
form factors using /CD sum rules in the effective theory.
At leading order in the 1/rnq expansion, sum rules have
recently been used to calculate the asymptotic value of
the scaled pseudoscalar decay constant, fp

gamp,

and the
Isgur-Wise form factor [28—30, 35]. In this paper, we es-
tirnate the slope of the decay constants with respect to
1/mq, as well as the spin-symmetry-breaking effects re-
sponsible for the vector-pseudoscalar mass splitting and
differences in fy and fp The emp.hasis is to show that
the sum-rule technique can be extended to calculate form
factors that appear at subleading order of the 1/mq ex-
pansion. In particular, we show that the constraints re-
sulting from the equations of motion are respected. In
Sec. IV, it is demonstrated that also the running of the
universal form factors is correctly reproduced. Section V
contains the conclusion.

II. POWER CORRECTIONS TO
MESON DECAY CONSTANTS

IN THE HEAVY-QUARK EFFECTIVE THEORY

A convenient framework for a systematic analysis of
the behavior of hadronic matrix elements in the limit of
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large quark masses is provided by an effective-field-theory
approach, the so-called heavy-quark efFective theory [8].
It is based on the observation that, in the limit mq »
AqcD, the velocity v of a heavy quark is conserved with
respect to soft processes. It is then possible to remove
the mass-dependent piece of the momentum operator by
the field redefinition

with ny being the number of light-quark flavors
Any current operator J = qI' Q of the full theory can

be expanded in terms of local operators of the efFective
theory. For the vector current, the result reads

hg(v, x) = exp(imggv x) Q(x), (2.1) (2 6)

such that

i, P hg (v, z) = (g —mph') hq(v, z) —= f hq (v, x), (2.2)
In the limit m~ = 0, a convenient basis for the subleading
operators is [31]

where P is the total momentum of the heavy quark, and
k denotes its residual "off-shell" momentum, which is of
order AqcD. The fields hg annihilate heavy quarks and
create heavy antiquarks with velocity v. We shall fur-
thermore project onto quark states (as opposed to anti-
quarks) by imposing the condition g hq = hq.

Written in terms of these new fields, the renormalized
effective Lagrangian is an infinite series of local opera-
tors with increasing canonical dimension, multiplied by
powers of 1/mq [8—10]

Qi =qp„i@her,
Q2 = qvp iP /Lg

Qs ——qi D„hq,

Q4
——q( iv D)—p„hq,

Qs ——q( iv D—) v„hq,

Qs=q( iD„)h~—.

(2 7)

l'.,ir = hq iv D+ hq
(iD)'
27AQ

+ IiqnpvG""hq +. . . ,4m'
(2.3)

with D„=8„—ig,A„being the gauge-covariant deriva-
tive. To leading order in the 1/mq expansion, this La-
grangian exhibits the spin and flavor symmetries for the
heavy quarks. These symmetries are explicitly broken at
subleading order, however. In particular, the spin sym-
metry is broken by the "magnetic interaction" operator
involving the gluonic field-strength tensor G„„. The el-
lipses in (2.3) stand for operators multiplied by 1/m2&,
as well as for an operator whose matrix elements are of
order 1/m~& due to the equations of motion

v Dbms
=

0( ) .
1

mQ
(2.4)

In writing down (2.3) we have chosen a particular
renormalization scheme by not including a residual mass
term bm hq hq for the heavy quark [31], nor renormal-
ization factors for the spin-symmetry-conserving opera-
tors. In momentum space, the associated renormalized
heavy-quark propagator has a pole with unit residue
at v tc+ A: /2m' = 0, corresponding to P = m&.
In perturbation theory, therefore, the heavy quark mass-
mq in (2.1) coincides with the so-called "physical" pole
mass, which is a renormalization-group-invariant quan-
tity. This is in accordance with the interpretation of
k as an "off-'shell" momentum. The coefficient of the
spin-symmetry-breaking operator in (2.3) gets renormal-
ized, however. In the modified minimal subtraction (MS)
scheme, one finds in leading logarithmic approximation
[13]

The expansion of the axial-vector current q p„ps Q is ob-
tained by simply replacing q in (2.6) and (2.7) by —q ps.
The coefficients remain unchanged.

The effective current operators renormalize difFerently
from their /CD counterparts. In particular, they have
nonzero anomalous dimensions, such that matrix ele-
ments in the efFective theory depend on the renormal-
ization scheme. The short-distance coefficients C; and
B;, which (in dimensional regularization) contain loga-
rithms of mq/p, ensure that the final results are inde-
pendent of the renormalization procedure. At p, = mq,
they are obtained from the matching of /CD onto the
efFective theory. Their running below mq is determined
by a renormalization-group equation. The coefficients C;
in (2.6) have been calculated to next-to-leading order in
renormalization-group-improved perturbation theory [4,
17, 18]. The coefficients B, are known in leading loga-
rithmic approximation only [16,31]. Then, in particular,
B2 = Bs ——0. Without /CD corrections, Bi ——

z and
B; = 0 otherwise.

The expansion of currents in terms of operators of the
effective theory provides a separation of short- and long-
distance phenomena. The short-distance physics asso-
ciated with the large mass scale mq factorizes and can
be treated perturbatively. Long-distance effects are mq
independent and are contained in the hadronic matrix
elements of local operators in the effective theory. These
matrix elements are constrained by the heavy-quark sym-
metries and can be parametrized in terms of universal
form factors. The number of independent form factors
and the relations among matrix elements become most
transparent in a compact trace formalism [11,33]. At
leading order in the 1/mq expansion, the matrix ele-
ments defining decay constants of heavy mesons are of
the generic form [28]

.(~)
ns(mg)

P = 33 —2ny, (2.5) (0
~ q I' hg ]M(v)) = Tr( r W(v) )

+(~)
(2.8)
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~( ) g ( + g) l $5) J 0 )

2 g' J~=1 (2.9)

which satisfies gM(v) = M(v) = —M(v) I(i. The nor-
malization in (2.8) is chosen such that, apart from @CD
corrections, the universal parameter F is related to the
decay constant of a heavy pseudoscalar meson P by
F = fp vt'mp. This is the well-known scaling law which
states that, up to logarithmic corrections, fI (x 1/v)'mp.

At next-to-leading order in the heavy-quark expansion,
one has to include the 1/mq corrections to the current
[cf. (2.6)] as well as to the hsdronic wave function. The
method is described in detail in Ref. [12]. Concerning the
matrix elements of the higher-dimensional operators Q,
in (2.7) we first note that, because of the field redefinition
in (2.1), current operators in the effective theory carry
the total external momentum minus mqv. Therefore,

(0 [iB (ql'hq) [M(v)) = (mM mq)v —(0 l fr hq IM(v))
A= —F(p,) Tr( v I'~(v) ) (2.10)

and are all related to a single universal low-energy pa-
rameter F(p), which is independent of the heavy-quark
mass. The Dirac structure I' of the current is irrelevant.
In the effective theory, a heavy meson is represented by
its spin wave function

thermore relate Fq(p) to AF(p, ). To this end, we set
I' = p I' and use the equations of motion i P q = 0 for the
light quark to rewrite qp I'iD hq = iB (qp i'hq).
Prom (2.10) and (2.11) it then follows that

A
F~(p) = F2(p) = -- F(p)3

(2.12)

Matrix elements of Q4, Qs, and Qs can be evaluated
along the same lines since

(0 ~if
ytd((ql' )hq(ohq (iD) hq)„) )M(c) )

= F(p, ) Gg(p, ) Tr( I'M(v) ),

(i) ~if dytI(qI'hq)o, —*
(hqco G"'hq)o lM(") )

q (—i D ) I'hq = ql'iD hq —i8 (q I hq) . (2.13)

The 1/mq corrections to the hadronic wave function
come from insertions of the subleading operators in the
effective Lagrangian into matrix elements of the leading-
order currents. They induce two additional universal pa-
rameters Gq (p) and G2(p) defined by matrix elements of
the time-ordered products

in terms of the mass parameter A = mM —mq, which is a
nontrivisl observable of the effective theory [31]. Matrix
elements of the operators Qq, Q2, and Qs, which contain
a covariant derivative acting on the heavy-quark field,
have the general structure

(&) G, (&) T r ~„.u(v)(1+/)
2

=2dM F(p) Gz(p) Tr(I'M(v) j, (2.14)

(0~qI iD. t q ~M(v))

=
s ~( Fl(P) very + F2(p) 7)y I Pt(v) j ) (2.11)

where F (py) are new low-energy parameters. The equa-
tions of motion (2.4) imply F) (p) = Fs(p, ). We can fur-

I

with coefficients dM that characterize the heavy meson
M: dp = 3 for a pseudoscalar meson, and d~ = —1 for
a vector meson.

Using the above relations, the matrix elements relevant
to meson decay constants can be computed to subleading
order in the 1/mq expansion. We find, to all orders in

perturbation theory,

(O~~qrq(M(c)) = -'G( q) Z(y) T (r hi(c) &

m

x 1+ dM c(mq) 1+ G, (y) + 2dMZ ( ) Go(y) — b( )o.dM Z( -)
l mp P 6fAq P P

(2.15)

with @CD coefficients

C=CO+, c =
4 ' 4C'1-

B= 4By —3B2 —B3 + 3B5 + 2B62C- (2.16)

3-
6 = —B2 + B3 + 4B4 + B5 + 2B6

We use capital letters for coeKcients that were equal to
one in the absence of @CD corrections, and small letters

I

for those which are of order n, . In next-to-leading order
in renormalization-group-improved perturbation theory
the expressions for C and c are (in the MS subtraction
scheme) [17, 18, 20]

(p,)
'

1
n. (mq)

o(, (mq)

~.(p) (Z, +dM))I

(2.17)
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n, (mq)
6x

where b'Ms ——s is a scheme-dependent constant, and the
coefficient Z„~ is defined in Ref. [28] (Z4 —0.894). In
leading logarithmic approximation, expressions for B and
b can be derived from the results of Refs. [16,31]. Allow-
ing for a nonlogarithmic one-loop matching correction,
we find

These relations must be obeyed in any sensible calcula-
tion of the form factors which is sensitive to the y, depen-
dence.

As an application, we derive a relation for the ratio
of the decay constants of a heavy vector meson V and a
heavy pseudoscalar meson P, defined by

(0 I q p„ps Q I P(u) ) =ifpm p u„,
(2.22)

mq 16 n, (p) 7

p, 9 n, (mq) 9

ns(p)
b

ns+bp-
ns(mq)

(2.18)

(Olqp&@IV(&, v)) =fvmv &p.

From (2.19) it follows that

where Bp and bp are again scheme dependent. For later
purposes we have computed Bp from one-loop matching
of QCD and the effective theory. In the MS subtraction
scheme, the result is BpMs = sss if one uses the pole mass
for 1/mq in (2.6).

It is convenient to rewrite (2.15) in terms of
A

renormalization-group-invariant form factors F(mq) and

G, (mq) which, to lowest order, coincide with the low-

energy parameters F and G;, i.e.,

(OlqrqlM(~)) = 1+dMc(mq) T(ru(~))

x 1+ + 2 mg —— . 219Gi(mq) 2dM A

mg mQ 12.

In next-to-leading order in renormaliz ation-group-
improved perturbation theory, we can neglect terms pro-
portional to c (mq) and find

P(mq) =G~~ q) B(q),

G~(mq) =G, (p) — b( q) —3c( m) q(Bq)
p p, 6 '

(2.23)

The result involves the renormalized parameter Gz(mq),
which arises from the spin-symmetry-breaking "magnetic
interaction" operator in the effective Lagrangian (2.3).

III. SUBLEADING FORM FACTORS FROM
C}CD SUM RULES

After this general discussion of the structure of 1/mq
corrections to decay constants of heavy masons, we
now present a calculation of the universal parameters
A, F, Gi, and Gz using QCD sum rules in the effective
theory. Throughout this section, we shall not consider
QCD corrections. They are discussed in Sec. IV.

The application of the QCD sum rules developed by
Shifman, Vainshtein, and Zakharov [38] to the calculation
of universal heavy-quark form factors has recently been
worked out in Refs. [28—30]. The idea is to study the
analytic properties of correlators of heavy-quark currents
in the effective theory. Consider, for instance, the two-
point function

qI'M g V, q V I'MQP 0

Gc(mq) = Z ( q) G, (p)

(2.2o)
(3.1)

where the currents interpolate the heavy meson M of
interest. We choose

1 —2c(mq) B( p
—aug) J =0 )M=
fp, Vp} J 1 ~

(3.2)

—c(mq) b( ) —2
p 12

From the fact that these expressions must be p, indepen-
dent one can deduce the scale dependence of the universal
parameters. To first order in n„we obtain

According to (2.1) the total external momentum in (3.1)
is P = mq @+k, and in QCD the correlator is an analytic
function in

P2 —m~q k~
=2v k+

mQ mQ
BF a,

p
Bp 7!'

BGi 4n, —
P

Bp 3 )I'

BGz 3n, 2n, —
D = ———'Gz+ ——'A.

Bp 2x 9vr

(2.21)

arith a cut on the positive real axis starting at P = mM,
corresponding to

(3.4)

Note that for our particular choice of the dispersive vari-
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able ug there is no left-hand cut in the complex cup plane.
The two-point function I' can be written as a disper-

sion integral over a physical spectral function. Isolating
the pole contribution, one obtains the phenomenologi-
cal representation of the correlator in terms of hadronic
states

1/mq, we find

I'r o& (~q) =—F' T (r ()+1)r )
4 (A —~q —ie)

A1+ Gg + —+ 2dM G'2
mQ 2

I phen(~q)

/'). & (0]qrM hqlM(~)) (M(~)141'M ql0)
& „i mq (A —~q —ie)

Pphys ~
du "

. + subtractions,
4J —Mg —2t'

(3.5)

where one has to sum over polarizations if M is a vector
meson. For the evaluation of the pole contribution we
use (2.8) and (2.14), as well as the relation

i) IT(ru(~))T. (W(~)r )
pol.

= —mM Tr( r (y + 1) rM ) , (3.6)
which is valid for any matrix I'. To subleading order in

For large negative values of uq (i.e. , AqcD « —~q «
mq), the two-point function can be calculated in pertur-
bation theory. As (—~q) becomes smaller, however, non-
perturbative effects start to be important. The idea of
@CD sum rules is that, at the transition from the pertur-
bative to the nonperturbative region, these can be taken
into account by including the leading power corrections in
the operator-product expansion of the correlator. These
nonperturbative corrections are proportional to a small
set of vacuum expectation values of local quark-gluon
operators, the so-called condensates [38]. In the calcu-
lation of the two-point function I' we use the Feynman
rules of the effective theory [11] and include insertions
of the subleading operators in the effective Lagrangian.
The leading nonperturbative power corrections are pro-
portional to the quark condensate (dimension d = 3), the
gluon condensate (d = 4), and the mixed quark-gluon
condensate (d = 5). In terms of the dispersive variable
uq defined in (3.3), the result reads

1
r„(~q) = —- T (I'M()+1) I'M )

~~

(d
x 3 did

8w 4) —4)g —l6
0

(qq) (a,GG)
24m mq ~g

3(d1— + subtractions
2m@

~.(q~;G" q),
M 2 3 ™64)q mq

(3.8)

with dM as defined in (2.14). Note that there is no

1/mq correction to the quark condensate (apart from
the k3/mq term in urq), and that the gluon condensate
does not contribute at leading order of the 1/mq expan-
sion [28]. Its contribution is tiny and will be neglected
from here on.

The @CD sum rule is obtained by matching the phe-
nomenological and theoretical expressions for the corre-
lator. In doing this, one assumes quark-hadron duality
to model the contributions of higher-resonance states in

(3.5) by the perturbative continuum starting at a thresh-
old energy u, . Furthermore, in order to improve the
convergence and to reduce the importance of higher-
resonance states, a Borel transformation cog —+ T is

applied to both sides of the sum rule [38]. This yields

an exponential damping factor in the dispersion integral,
and also eliminates subtraction terms in the dispersion
relation. From the resulting Laplace sum rule, the pa-
rameters of the effective theory can be determined in a
self-consistent way by requiring stability with respect to
variations of T in a region where the theoretical calcula-
tion is reliable. Before presenting the result, it is conve-
nient to redefine the Borel parameter T according to

1 1 3
T T 2mQ

(3.9)

On the phenomenological side, this adds 3A/2 to Gi. On
the theoretical side, it absorbs the 1/mq corrections to
the perturbative contribution. The final sum rule reads

(3.10)
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4Jp

g, (qo„„G""q)
8~2 4T&

0
—= K(T;urp) . (3.11)

Let us Grst discuss the in6nite-quark-mass limit of this
expression [28—30, 39]

0.7

Oe6

Oe5

Oe4

I I I

i

I I I I
)

I I I I

f

I I I I
)

I

A [Gev]

I I I
i

I I I I

~p = 2.3 GeV

2.0

2.3

By taking the derivative with respect to the inverse Borel
parameter, one derives the sum rule for the asymptotic
value of the mass parameter A [cf. (3.4)]

(3.12)

0.3

0.2

0.1
0. 0.6 Oe7 Oe8 Oe9

T [Gev]

F [Gev3r ]

I I I I I I I I I I J I I I I ! I I I I I

1.7

1e1

The aim is to optimize the value of the threshold energy
urp in such a way that the right-hand side of this equation
becomes independent of T inside the so-called "sum-rule
window, " where the calcul'ation is reliable. The results
for urp and A are then used to compute F from (3.11).
For too small values of T, the power corrections blow up,
i.e. , nonperturbative effects become dominant. We use
the standard values of the vacuum condensates

(qq) = —(230 MeV)

g, (qo„„G"'q)= 0.8 GeV (qq),
(s.is)

urp 2.0 + 0.3 GeV,
A 0.50 6 0.07 GeV,
F 0.30+0.05 GeV r

(3.14)

and require that the power corrections be less than 30%
of the quark-loop contribution. This yields the lower
limit T & 0.6 GeV. According to (3.11), the perturbative
spectral density grows like urz, such that higher-resonance
contributions are important even after the Borel improve-
ment. This is a general feature of heavy-quark sum rules,
which is unavoidable. In order to reduce the sensitivity
to how well these contributions are approximated by du-
ality, we require that the pole contribution of the heavy
meson M give at least 30% of the quark loop. For typical
threshold values (dp 2 GeV, this implies T & 1 GeV. In
Fig. 1 we show the behavior of A and F in this region.
The stability is very good for values

FIG. 1. Numerical evaluation of the sum rules (3.11) and
(3.12) for difFerent values of the threshold energy ur(). The
solid lines give A(T) in units of GeV, the dashed ones F(T)
in units of GeV . In the computation of F we have used A =
0.57, 0.50, 0.43 GeV for uo ——2.3, 2.0, 1.7 GeV, respectively.

with correlated errors. Here and in the following esti-
mates the errors only reffect the variations under changes
of the sum-rule parameters. The intrinsic uncertainty of
the sum-rule approach may be somewhat larger, mainly
due to the continuum model employed.

Let us now turn to the analysis of (3.10). The "source
term" for 1/mq corrections on the theoretical side is pro-
portional to the mixed condensate. It induces changes in
the parameters ur, and A with respect to their asymptotic
values determined above

1
4)~ =Q)p 1 + (d] + M 4)g

mg

(3.15)

A=2K(lq. (6'Ay+ dMgAe)) .
mQ

Inserting this ansatz into (3.10) and expanding in 1/my
leads to sum rules for the subleading parameters b'A, and
G; [40]. We first discuss the spin-symmetry-breaking cor-
rections, which are proportional to the coefficient dM.
They obey the sum rules

~2A/T
IAe = g, (qee„Ge"q) (1+ ) + e (ee —2A)~ee '~ ),

(s.i6)
A ezAr'T g, (qo„G""q)
2T 48F~ T

9RP2 3 ~ ]T+pe

These expressions involve the quantity bcu2, which has
to be determined by requiring optimal stability of bAz
inside the sum-rule window. Using the central values for
the parameters urp, A, and F of the leading-order sum
rule, we ffnd good stability for burg —(105 6 20) MeV.
The numerical evaluation of (3.16) in this region is shown

in Fig. 2.
One can also analyze the sum rules analytically. The

optimal value for b~q is determined by requiring that
(d/dT )bAz = 0 for T = Tp, where Tp = 0 8GeV is.
the center of the sum-rule window. The solution is then
inserted back into (3.16). We ffnd
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—0.10

—0.15 hA2 [GeV]

—0.20

p, pp I I I I
(

I I I I

[

I I I I

)

I I I I

G2 [Gvv]
—0.05

I I I I
l

I I I I

I

6~2 = —85 MeV

—105
—125

—85

-105

-125

biguously reproduced from our sum-rule analysis. This
is an improvement over a recent analysis using standard
@CD sum rules, where no definite prediction for the mass
difference could be obtained [43].

Using the above value of G'2, an estimate of the ratio of
vector to pseudoscalar decay constants can be obtained
from (2.23). With mb = 4.8 GeV, m, = 1.5 GeV, and
AMs ——0.25 GeV (for nf = 4) we find

—0.25
0.5 0.6 0.7 Op8 0.9

I I I l I I I I j I I I I I I I I I I I I I I

1.14 6 0.03 1.49 0.08 .
f~gmg fg) /m))

(3.20)

T [GeV]

FIG. 2. Evaluation of the sum rules (3.16) for different
values of bu2. The solid lines refer to bA2(T), the dashed
ones to G2(T), both in units of GeV. In the computation of
G2 we have used bAq ———155, —175, —195 MeV for 6cuq ——

—85, —105, —125 MeV, respectively.

We thus expect large spin-symmetry-breaking effects in
the case of charmed mesons. Radiative corrections will
reduce these corrections slightly, as will be shown in
Sec. IV.

Because of the structure of the sum rule (3.10), the
spin-symmetry-conserving corrections can be immedi-
ately related to the spin-symmetry-violating ones. We
obtain

I+~p —'+ '-
12F~ (up —2A) Tp 2A

R)g =9K)g, bAg = 9bAg,

Gq =18Gq —2A —(2.26 60.35) GeV .
(3.21)

(3.17)

A gs (/trav G g)
12F(~p —2A) ~

~o —A ~o(~o —2&) ),op(p.x 1+ +

These equations show how the subleading corrections de-
pend on the parameters up, A, and F. It turns out that
most of the numerical uncertainties associated with the
theoretical errors in (3.14) cancel if one computes the
products ~pb~2, AbAq, and F G2 which, according to
(2.14) and (3.15), determine indeed the I/mq corrections
to ldp, A, and F. Our final results are

[ bu2 - —(106 + 20) MeV,( ~p

(2.0 GeVp

[ bA2 - —(1736 25) MeV,
A

(0.5 GeV)

, , I
G2= (70+10) MeV.

t' F
(0.3 GeVs~2 )

(3.18)

This is in agreement with the numerical analysis in Fig. 2.
An interesting test of the value of bAq is provided by

the calculation of the mass difference between a heavy
vector and a pseudoscalar meson. From (3.4), one obtains
in the mq ~ oo limit

mz —mz ———8 A bA2 0.69 + 0.10 GeV . (3.19)

This compares quite well with the mass splittings ob-
served for B and D mesons, which are m~. —m2~ = 0.48
GeV~ [41] and m~. —m2D —0.55 GeV [42] with very
small errors. Note, in particular, that the sign is unam-

Cpfp goop = Ap (I+
mQ

(3.22)

In terms of the subleading form factors, one finds from
(2.19)

cp = Gq + 6Gq —— —(2.9 + 0.5) GeV, (3.23)
2

whereas recent lattice and sum-rule computations inch-
cate c~ —1 GeV [22,23,28,30). It is important to no-
tice, however, that these empirical results have not been
obtained by directly studying matrix elements of higher-
dimensional operators in the effective theory, but by 6t-
ting the mass dependence observed in the the full theory,
which includes all orders in 1/mq, to (3.22). We are thus
led to argue that higher-order corrections are important
in these computations and mimic an effective I/mq be-
havior in the region of the 6- and c-quark masses. It is
clear, for instance, that the effective value of bAq has to
be much smaller than given in (3.21). Even for bAq = 0
one computes from (3.4), (3.15), and (3.18) mg 4.8
GeV and m, 1.5 GeV, which are very reasonable val-
ues for the pole masses of the heavy quarks. There is thus
little room for additional corrections. One can estimate

In contrast to (3.18), these numbers are by no means
small. Even for the b quark, for instance, Gq/mq 0.5.
For charm the corrections are even larger than 100%,
indicating a breakdown of the I/mq expansion. The
presence of large finite-mass corrections to the decay con-
stants fI of pseudoscalar mesons is indeed a phenomenon
well known from lattice gauge theory [22—26] and /CD
sum rules [28,30]. The corrections induced by (3.21) are
even larger than those observed in these analyses, how-
ever. As an example, we compute the slope parameter
cp which describes the mass dependence of fp
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the efFective values of Gi and cp by requiring stability of
the sum rule (3.10) under the constraint hAeP = 0. This
leads to

G'" —(0.5 +0.2) GeV cP —(1.2 +0.3) GeV .

(3.24)

The effective slope c&~ is in fact consistent with the em-
pirically observed mass dependence of fp in the region
between m, and my. However, according to (3.23) we
predict a steeper slope as very large values of mq are ap-
proached, and thus a significant curvature in the fp vs
1/mg diagram as 1/mq ~ 0. It will be interesting to see
if direct lattice computations of Gi and c~ in terins of
matrix elements of subleading operators in the efFective
theory can confirm this finding.

Let us briefiy also derive the sum rule for the param-
eters Fi and Fz, which parametrize matrix elements of
operators containing a covariant derivative acting on the
heavy-quark field [cf. (2.11)].The aim is to show how the
constraint (2.12), which is a consequence of the equations
of motion, is satisfied in the framework of /CD sum rules.
We start from the two-point function

i xe'' 0 qI'~ & g~ ~, q~ Mgo

(3.25)

the pole contribution to which involves the matrix ele-
ment (2.11). In the theoretical calculation we choose k
and v parallel, i e , k„.=. (v k)v„. On the phenomeno-
logical side, we use (3.6) to combine two traces into one.
After applying the Borel operator, the resulting sum rule
reads

FT ((F».++».)r(0+1)r )e

1= —
6

T ((v„+q„)r(liy1)r

s, .ir u. (~~..G" ~)

)
(3.26)

(b)

FIG. 3. Feynman diagrams for the spin-symmetry-
breaking radiative corrections in (4.1) and (4.2). The heavy-
quark propagators are represented by double lines. The black
square denotes the heavy-quark —gluon vertex contained in the
"magnetic-interaction" operator in (2.3).

1
Fi = Fz = K'(T;up) = ——F,6F ' 3

(3.27)

which is indeed relation (2.12). /CD sum rules thus re-
spect the equations of motion of the heavy-quark effective
theory.

IV. RENORMALIZATION-GROUP EFFECTS

We now refine the sum-rule analysis of the previous
section by including radiative corrections to the sublead-
ing form factors. We restrict ourselves to the computa-
tion of Gz(p). Besides improving the numerical estimates
obtained so far, the purpose is to show that /CD sum
rules correctly reproduce the running of the low-energy
parameters as derived in the effective theory.

We repeat the calculation of the two-point function
defined in (3.1) including radiative corrections to the
perturbative contribution and to the quark condensate.
Since we restrict ourselves to spin-symmetry-breaking
effects, we only consider insertions of the "magnetic-
interaction" operator in (2.3). Let us first present the
result of the perturbative calculation. In the MS sub-
traction scheme, we find

The right-hand side is proportional to the derivative of
the function K = F""e +'~+ defined in (3.11), and with

Ap = 2A it follows that

2

1 ——n — + p 1 + p
—A/T

Ms& fAQ

3 z ~(~ 2a, 2A 13 2x 2cu ( p 171
8m 2 Chum e 1+ '

ln + —+ + dM
~

ln —+ —
~

+ condensates, (4.1)
cu 6 9 Qmq ( u 12)

0

where F(p) is multiplied by a factor that cancels its p and scheme dependence. The nonperturbative contributions
to the sum rule are given below. In the mg —+ oo limit, the radiative corrections in the effective theory have been
computed in Refs. [28, 30, 44]. The spin-symmetry-breaking corrections proportional to n, /mq are new. They arise
Rom the diagram depicted in Fig. 3. The calculation is outlined in the Appendix. It is convenient to bring the
scheme-dependent terms in (4.1) to the left-hand side. This can be achieved by a redefinition of the Borel parameter

1 1 dM4a, ( p 171
+ ~ + lnT T mq Qn. g 2A 12) (4.2)
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which, to the order we are working, does not affect the condensate contributions. The final sum rule becomes

4dM - — A-z 3 ~ T 2n, 2A 13 27r 2u) 2A
F (2A) 1+ G2(2A) e ~ = der~ e ~ 1+ '

ln + —+ +dM ln
mQ 8vr2 vr u 6 9 9mq

0

(
~ d )

9.(9 I ~ q) (, ) (4.3)

We have introduced the renormalization-group-invariant
parameters

F(2A)= 1-—'il. "-+~Ms
i F(~),2A

(4.4)

I

densate, it is sufiicient to work with the leading logarith-
mic approximation for Z in (2.20).

The evaluation of (4.3) proceeds along the same lines
as discussed in Sec. III. Ignoring first 1/mq corrections,
we find good stability inside the sum-rule window for

1.85 + 0.3 GeV. In this region, the renormalized
low-energy parameters are

2Aa, f y,
G2(2A) = G2(p) — —'

~

ln
2A 12)

0.49 6 0.07 GeV,
(4.7)

F(my) = a, (2A) ~~ a, (my) —a, (2A)
a, (mq)

— '~ ~~)i(~A).2' (4.5)

For G2(my), we use Bp = s in (2.18) to obtain

G2(mq) =
slp-

G, (2A)
as(mq)

n, (2A) i n, 4A

a, (mq) 87r 27
(4.6)

Since Gs(2A) is proportional to n, or to the mixed con-

The choice of the reference scale 2A is, of course, ar-
bitrary. These quantities are related to the renormal-
ized parameters F(my) and G2(rnq) defined in (2.20)
by evolution equations. i For F(mq), the complete next-
to-leading-order result is

F(2A) —0.365 6 0.065 GeV ~

Note that radiative corrections have increased the result
for F, as compared to F in (3.14), by 2070. The val-
ues of A and up, on the other hand, remain almost un-

changed, since these quantities are determined from ra-
tios like (3.12), in which most of the radiative corrections
cancel. Using (4.5) we can compute the so-called static
limit of the decay constant of the B meson

f' ' = 1+ ' 200+35 MeV.
van B 2m'

(4.8)

This is slightly smaller than the value quoted in Ref. [28],
which was based on a larger value of A.

Due to the inclusion of radiative corrections, the an-

alytical expressions for the spin-symmetry-breaking cor-
rections bA2 and Gs (2A) differ from those given in (3.17).
As an example, we present the result for bA2

~2A/Tp

g, (qrr„„G""q) 1+u)p ]
—+

12Fz (2A) (~p —2A) (To

8a, 2 (up ~p —2Tp

To 2A
Tp qq ——1—

4)O

2as
7rs

~u (up —u)) — —1 ln —e3 4J ~yz
2A 2A

(4.9)

The expression for Gq(2A) is more complicated. We do
not present it here. In the numerical evaluation we use
the renormalized parameters from (4.7) together with
a, /x = 0.1. We find [cf. (3.18) and (3.19)]

When evaluating the evolution equations for mg = mb, it is

to be understood that the number nf of light quarks changes

as one crosses the charm threshold.

mv —m~ 0.46 + 0.08 GeV

G2(2A) = —(55 +8) MeV .
(4.10)

The vector-pseudoscalar mass splitting is now in excellent
agreement with that observed for beauty mesons, m&. —
m2& 0.48 GeV~ [41].

The evolution of G2(2A) up to the scale of the heavy

quark yields a reduction of this parameter due to the
terms proportional to A in (4.6), which are induced by
the renormalization group. We find the central values
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G2(m, ) —44 MeV and Gz(mg) —26 MeV. As a
consequence, the spin-symmetry-breaking effects in the
ratio f~/f J are not quite as large as estimated in (3.20).
Our final numbers are

1.07 6 0.03
*

1.36 6 0.08 .fgym' fg)pm')

are

A 050 GeV,
F(2A) =0.37 GeV ~

Gq(2A) —2.0 GeV,

Gz(2A) = —55 MeV .

(4.11)

They compare well with a recent measurement of these
ratios on a lattice, which yields 1.12+0.05 and 1.34+0.07,
respectively [23].

The renormalization of Gq(p) can be carried out in a
similar way. In this case, we restrict ourselves to the
leading logarithmic approximation and define the renor-
malized form factors [cf. (2.20)]

4Ao;, p,
Gg(2A) = Gg(p) + —'

ln
3 ~ 2A'

(4.12)
8A er, (2A)

Gg(mq) = Gg(2A) — ln
P .a' s(mq)

In leading logarithmic order, Gq(2A) agrees with the
lowest-order result for Gq in (3.21) except for the replace-
ment of uo, A and F by their renormalized values. This
gives Gq(2A) —(2.0 6 0.3) GeV. The effect of the evo-
lution from p = 2A up to the heavy-quark mass is rather
moderate in this case. Even Gq(ms) differs from Gq(2A)
by less than 0.1 GeV. Finally, we note that in the slope
parameter c~ defined in (3.23) the logarithms of mq/A
cancel, such that this parameter is independent of mq to

leading logarithmic order. Using G, (2A) as given above,
one finds c~ - —2.6 GeV.

V. CONCLUSIONS

We have presented a detailed analysis of meson de-

cay constants in subleading order of the 1/mq expan-
sion for heavy quarks. The relevant matrix elements
can be parametrized in terms of a leading-order low-

energy parameter F, two subleading parameters Gq and
G2, and the mass difference A = mM —mq, where mq
is a generalization of the "physical" pole mass of the
heavy quark. We have derived the general structure of
the symmetry-breaking corrections using effective-field-
theory techniques. The renormalization-group improve-
ment of the low-energy parameters has been discussed in
detail. Numerical values of the form factors have then
been obtained from QCD sum rules in the effective the-
ory. At the renormalization scale p = 2A, the results

A is the characteristic scale of low-energy parameters
in the effective theory. For instance, F As~2 with
good accuracy. G2 —0.1A is suppressed since this is a
spin-symmetry-violating form factor. In the framework
of QCD sum rules, it only receives contributions from
condensates of dimension d & 5, or from radiative cor-
rections. On the other hand, the large value Gq —4 A

is unexpected and leads to a breakdown of the 1/mq
expansion for decay constants of pseudoscalar mesons,
already in the region below the b-quark mass. We have
argued that higher-order terms in the 1/mq expansion
partially compensate this effect and mimic an effective
value which is significantly smaller, G~P —0.5 GeV. It
is important to emphasize that Gq does not induce spin-
symmetry-breaking effects, which therefore can be reli-

ably computed. Including two-loop radiative corrections,
we obtain for the vector-pseudoscalar mass splitting

mv —m~ 0.46 6 0.08 GeV

in excellent agreement with experiment. The symmetry-
breaking effects to the ratio of decay constants fv/ fp are
estimated to be ~ 7% for beauty and ~ 36%%uo for charmed
mes ons.

Besides obtaining these numerical results, the pur-
pose of this paper is to present a consistent calculation
of heavy-quark form factors at subleading order in the
1/mq expansion, which respects the equations of motion
and correctly reproduces the running of the low-energies
parameters. The application of the methods developed
here to the calculation of the subleading form factors
that describe transitions between two heavy mesons will
be presented elsewhere [45].
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APPENDIX

We briefly outline the calculation of the two-loop diagram shown in Fig. 3(a). In momentum space, the heavy-
quark —gluon vertex denoted by a black square is given by (gs/2mq) cr&—„k",where k is the momentum of the incoming
gluon. In D space-time dimensions, the diagram is proportional to the two-loop integral

I v~ = ~ad~t a tZ(a t), —
(u)+2v a)(u)+2v t)aztec(a —t)z 4 (
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where we have used the fact that I~@~ is antisymmetric in n and P. Using standard reduction techniques and the
integrals given in Ref. [18], we obtain

-2
dDsdDt 1

(u) + 2v . s) t2 (s —t)'I(~) =~ d s
(co+ 2v. s) sz

&D ( ~)2D —5
I' (D/2 —1) I' (3 —D) —I'(5 —2D)

(D —1)

One then relates the imaginary part of this expression to that of the bare quark loop. The ratio of imaginary parts
is proportional to

6 cos vr(D —4) ( to l I'(5 2D)I'(D/2 —1) I'(3 —D) — = —„+2 ln
47rp) I'3 —D 6 p

where I/e = 2/(D —4) + p@ —ln 4vr.

17 + O(D —4),
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