
PHYSICAL REVIEW D VOLUME 46, NUMBER 3 1 AUGUST 1992

Nonleptonic weak decays of charmed baryons

Hai- Yang Cheng
Institute ofPhysics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

B.Tseng
Physics Department, National Cheng Kung University, Tainan, Taiwan 70101, Republic of China

(Received 10 January 1992)

Two-body nonleptonic weak decays of charmed baryons are analyzed in the framework of the pole

model, which is more general and pertinent than current algebra since its use is not restricted to the soft

meson limit and to the pseudoscalar-meson final state. The s-wave amplitudes are dominated by the —,

baryon resonances. Special attention is paid to the parity-violating 2
- —,
'+ baryon matrix elements,

which are evaluated using the MIT bag model. For definiteness, we compute the a asymmetry parame-

ter and the branching ratios for the decay modes A,+~pK (K ), A~+(p+), X n'+(p+), X+n (p ), pP,
and find a good agreement with experiment. We conclude that (i) there is no color suppression in—0 —40
A, ~pK (K ) and pP, (ii) nonspectator contributions are in general smaller than the factorizable ones

for the decay modes which receive contributions from the factorizable diagram, and (iii) the predicted

branching ratios will be too small if the wave functions of the heavy-quark bag model are employed. A

comparison of our work with current algebra and other theoretical calculations is made.

PACS number(s): 13.30.Eg, 11.40.Ha, 12.40.Aa, 14.20.Kp

I. INTRODUCTION

Contrary to the significant progress made over the last
ten years or so in the studies of the heavy meson decay,
advancement in the arena of heavy baryons, both theoret-
ical and experimental, has been very slow [1]. Froin the
theoretical viewpoint, the dynamics of nonleptonic weak
decays becomes simpler and simpler as the meson be-
comes heavier and heavier. For example, the well-known
factorization approach has been applied successfully to
heavy meson decays. However, the situation is the other
way around for the baryon decay: While the hyperon de-

cay can be tackled with the help of current algebra, a
rigorous and reliable approach suited for investigating
the weak decays of heavy baryons does not exist thus far.
This is attributed to the fact that neither current algebra
nor the factorization approach is the ultimate tool for
analyzing heavy baryon decay.

In the past few years, new and high-statistics measure-
ments of the nonleptonic decay of A,+ became available.
Apart from symmetry considerations [2—5], the phenom-
enology of two-body nonleptonic decays of charmed
baryons is conventionally studied by the technique of
current algebra [6—13]. However, the use of this ap-
proach is rather limited for the following two reasons.
First, the technique of the soft-meson theorem works
only if the two-body decay consists of a baryon plus a
pseudoscalar meson (B,~BP); decay modes with a
vector-meson final state are beyond the realm of current
algebra. Second, the pseudoscalar-meson final state in
charmed baryon decay is far from being "soft." This is
particularly true in bottom and top baryon decays. Con-
sequently, it is no longer justified to assert that the s-wave
amplitude is dominated by the commutator terms and the

p-wave amplitude arises from the ground-state pole
terms. On the other extreme, weak decays of heavy
baryons, e.g., Ab~A, n(p), A, D„h vae been recently in-

vestigated using the heavy-quark approximation and the
factorization assumption [14]. An important question
which must be addressed is whether nonfactorizable con-
tributions are negligible compared to the factorizable
ones. This issue together with the aforementioned prob-
lems with current algebra calls for a systematic approach
for describing heavy-baryon weak decays.

In the present paper we adopt an old-fashioned ap-
proach, namely, the pole model in which the baryon de-

cay amplitude is approximated by baryon- and meson-

pole contributions, including resonances and continuum
states. In general, nonfactorizable s- and p-wave ampli-
tudes are dominated by —,

' low-lying baryon resonances

and —,
'+ ground-state intermediate states, respectively,

while factorizable amplitudes receive contributions from
meson poles. Evidently, the estimate of the s-wave terms
in the pole model is a diScult and nontrivial task since it
involves weak baryon matrix elements and strong cou-
pling constants of —,

' baryon states. However, the calcu-

lation of the s waves is greatly simplified in the light
strange baryon (i.e., hyperon) decay where it is appropri-
ate to take the soft-meson limit. The parity-violating
pole amplitude of the hyperon decay is reduced, in the
soft pion limit, to the familiar equal-time commutator
terms, which are much easier to handle. (In current alge-

bra, the p-wave amplitude is represented by baryon poles
for B~B + A„.) However, this simplification is no

longer applicable to heavy-baryon weak decays. The
merit of the pole model now becomes clear: Its use is

very general and is not limited to the soft meson limit and
to the pseudoscalar-meson final state. Recently, this ap-
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II. POLE MODEL

A. General framework

In general there are three distinct pole contributions
(two baryon poles and one meson pole) to baryon weak
decays (see Fig. 1 and Ref. [17] for a general discussion).
Let us postpone the discussion of the meson-pole contri-
bution for the moment and focus on the baryon inter-
mediate states. We first consider the baryon decay
8; +Bf+P (P: p—seudoscalar meson) and write [18]

M (8;~Bf+P)= iuf ( A

+By~~

)u;, (2.1)

proach has been applied to the baryonic B decays, e.g.,
8 ~pp [15,16]. In this paper we illustrate how to apply
the pole model to the decay modes A,+~BP,
BV( V =vector meson). The same technique can be gen-
eralized to the nonleptonic decays of bottom baryons.

The main task we have to embark on in the pole model
is to evaluate the parity-violating (PV) weak transition
elements and strong vertices involving —, baryon inter-
mediate states. We shall employ the wave functions of
the MIT bag model. In the bag model the lowest-lying
negative-parity baryon states are made of two quarks in
the ground 1S,/2 eigenstate and one quark excited to
1P, /2 or 1P3/2 The estimate of strong and weak vertices
thus becomes somewhat involved because of the presence
of 1P, /2 and 1P3/2 bag states.

The layout of this paper is organized as follows. The
description of the charmed baryon decay within the
framework of the pole model is given in Sec. II. We cal-
culate in Sec. III the branching ratios and the asymmetry
parameter a for some selective Cabibbo-allowed two-
body nonleptonic decays of A,+. A comparison of our re-
sults with current algebra and other works is made in
Sec. IV. Section V contains conclusions and outlook.
Details of the general expressions for the baryon-baryon
matrix elements and strong coupling constants evaluated
in the MIT bag model are presented in Appendixes A —D.

f g n i fn g i
b . b

B„(1/2 )
m; —m mf m

1

gB B Pani afngB B.Pf n n i

(2.2)

Bn m; —mn mf —mn

B„(1/2 )

gBfB ~P
n

m; —m +

af„+gB,B,.P
+

mf —m

where a;J, a.+., and b.+. are the baryon-baryon matrix
I J / J

elements defined by

(8;~&„~B;) =u;(a;~+b,~y5)uj,

(8,'(-,' )~&a, ~8, ) =ib, , rc, u, ,

&8,"( ,'+)~&~~c~B-, ) =a, ,,u, ,y, u, .

(2.3)

Note that b. .+= b, . We—did not include in Eq. (2.2)
JL l J

the 8'( —,
'+) pole contribution for s waves and the

8'( —,
'

) term for p waves. It is well known that the PV
matrix elements b; can be disregarded in hyperon non-
leptonic decays since they vanish in SU(3) limit. It is also
true in charmed baryon decays that b, «a, , as shown
explicitly in Refs. [8b,9]. Since 0(b +.)=0(a;. ) (see Sec.
III) it follows that b; «b, and likewise a., «a,".

I J I J
Consequently, the s-wave amplitude of charmed baryon
decay is expected to be dominated by the —,

' baryon
states, and the p-wave amplitude by the ground-state —,

'+
poles. [This is reinforced by the consideration of the
denominator terms in Eq. (2.2).]

As for the decay B;~Bf+ V, its general amplitude is
of the form

where A and B are the s- and p-wave decay amplitudes,
respectively. It is straightforward to show that the con-
tributions due to the low-lying 8„(—,

'+ ),8„'(—,
'

) and

8„*(—,
'+

) poles are

gB B P ni fngB BPA=+ +
m, +mn mf+mn

M
/

/
/

/

M(8; ~Bf+ V) =iuf (pf )e'"( A, y„y, + A ~pf„y, +8,y„

+Bzpf„)u;(p; ), (2.4)

where e„ is the polarization vector of the vector meson V.
The vector part of the BBV coupling constant leads to

A, =—
B„(1/2 )

gB B gV n*ib

m; —m +

fn +gB ~B.V

+
mf —m +

/
~/
/

/
/

HF

FIG. 1. Pole diagrams for the baryon weak decay

B;~Bf+M.

gBfBn V ni

8, = —g
mi mn

n

fngB B.V
+ n i

mf —m„
(2.5)

32=B2=P,
where only the leading contributions are kept. In princi-
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pie, a tensor BBV coupling of the form

1 fB~B, V

&Io „Q;(r)"V d—"V" )
v

(2.6)

is also allowed. Contributions due to this coupling are

A)= 1

2mv
(m, —mI) g

n

fBIB a, V a*i
n

m; —m +

bI„afB,B, v
+

mf m

A2 =2A, /(m; —mi ),

1
(m, +m~) g2mv 8„

8z
= —28, j(m; +m& ) .

(2.7)

fB B V~n( ~ fnfB B V.f n n i

m; —m„~nf —mn

Nevertheless, we will neglect the tensor BBVcoupling in
ensuring calculations.

CA +2 ByBa
A = g(g„~ "b„;+bg„g„' ")

pa

2 BIB ~ 8 eBi

8„(1/2 )

(2.9)

which is equivalent to the familiar commutator relation

(2.10)

where A = lim o A is the current-algebra result of A.
We keep the term ( A —A ) to ensure that A is an on-
shell amplitude. Using the usual Goldberger-Treiman
(GT) relation for the coupling constants gBBP and the
generalized GT relation (D3) for g a coupling con-

stants, it is not difficult to show that, in the soft meson
limit, the s-wave amplitude becomes (f = 132 MeV)

B. Current algebra

A = A'"+(A —A'"), (2.8)
I

Since current algebra is the most common approach
employed before for the study of the nonleptonic weak
decay B,~B+P', it is worth examining the relation be-
tween this approach and the pole model. For the s-wave
amplitude, we write

In general, the s-wave amplitude is dominated by the —,
'

baryon resonances. The advantage of current algebra is

that, when it is appropriate to take the soft pion limit, the

parity-violating amplitude is reduced to a simple commu-

tator term, whose evaluation does not require the infor-

mation of —,
' poles. It follows from Eqs. (2.2) and (2.9)

that

A CA

8~8„
2 g„"b„,

(m; —mi )
m, +m„

B„B,.
bfng~

mf+m„
+ (m; —m&)

pa

8 ~B,.

g~ b g. b gg~n i + fn

m; —m+ mf —m+
(2.11)

. &2 „.&2
Mf Mf iq„'T" +i'q„T"

pa fpa
(2.13)

It is known that because of the presence of the ground-
state baryon poles, neither Mf, nor q„T" is defined in the
limit q„~0, but their difference has a well-defined limit

[19]. Therefore, the current-algebra expression for the
PC amplitude is given by

M~,. = lim M~,. i q„T" —+i q„T" . (2.14)cA

f ~
" f ~

"

Since the evaluation of q„T" is well known, we simply
quote the result [20]

We shall see in Sec. III that the correction term
(A —A ), the difference between the pole model and
current algebra for the s-wave, is important for charmed
baryon decays.

For the p-wave amplitude, we define

T„= dxe' Bf TA„'x ~0 B; 212

so that

BCA m&+m„"
a„,

fpa B m; m„

m, +mn 88
+af. ' "

gA
mf m„

(2.15)

C. Factorizable contribution

The meson-pole contribution depicted in Fig. 1 is usu-

ally identified with the factorizable amplitude. This can
be argued based on the fact that the factorization ap-

proach empirically works well for meson decays [21] and

hence also for meson-meson transition elements. There-

fore, meson-pole contributions are dominated by factoriz-
able diagrams. Consider the decay 8, ~Bf+P. Its se-

parable contribution is of the form

(a~ A„~o&(a~~ V&+ A~~a, & . (2.16)

The vector and axial-vector form factors of

The deviation of current algebra from the pole model for
p-waves comes from the extrapolation of (M i&2I—
fpq„T") from q =0 to physical q .
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GF
cos Hc(c 0 +c+0+ )

2 2
(2.17)

with 0+ =(sc )(ud)+(sd )(uc), where (q, q2)
=q, y„(1+y5)q2, and Oc is the Cabibbo mixing angle.
The Wilson coefficients are evaluated at the charm mass
scale to be c+ =—0.73 and c =-1.90. For A,+~Bf+P
decay, the factorizable amplitudes are given by (k = 1,2)

A "=— GFcos Hcfpck(m + —mf )f i' (mp),
2 C

(Bf I V„+A„IB;) are dominated by the low-lying 1+ and
1 meson states, respectively. For example, K'(892) and

K, (1270) poles give rise to the factorizable s- and p-wave
amplitudes, respectively, for hyperon decay. Likewise,
there are D, (D) and D,*(D* ) meson-pole contributions to
charmed baryon decays. Because of the lack of experi-
mental information on the weak matrix elements
(n.I%~ID' ), etc., we shall rely on the factorization ap-
proach.

To proceed, we shall consider the QCD-corrected
effective weak Hamiltonian for the Cabibbo-allowed
charmed baryon decay:

rac F 2
G +

A, = — —cos Occkfvmv gi (mv)
A Bf

2

A+B—g2' f(mv)
m + —mf

C

m +
C

GF A+a
A 2 cos ~cckfvm v[2g2' (mv)/mA+ ]

2 C

GF A+B
—cos 'acckfvmv f i' (mv)
2

(2.21)

according to the usual vacuum-insertion method, but not
so in the 1/N, approach. We shall see later that the ex-
perimental observation of A,+~pP and the ratio of
I (pK )/I (Air+ ) strongly support the latter expectation.
Before proceeding, it is worth clarifying a point here.
The value of c2 is chosen in Refs. [11,12] to be in the
range of 0.4 to 0.7 with a sign opposite to ours. This sign
difference will affect the predicted decay rate of
A,+~pK,pE*, as we shall discuss in Sec. IV.

For the decay A,+~Bf+V, it is easily shown that
(k =1,2)

(2.18)

1 2 A Bf+
B = —GFcos ecfpck (mAy +mf )g i (mp )

2 C

A+a+f ' f(m')
m ++mf

C

m +
C

where fp is the decay constant of the ineson P, c, (c2) is
for m. + (K ) emission, and f, as well as gi are the form
factors defined by

&Bf(pf)l v„+A„IB,(p, ) &

GF A+B
B2

—cos Heck fvm v [2f2
'

( m „)/m A+ ]
2 C

where form factors are evaluated at q =m v,fv is defined

by
f2 . „ f3

=pf(pf ) fiy„— io„~"+ q„
m,. m,

( &I(qiq2)I0) = ifvmvp. „",—

and c i (c2) is for p+ (K' ) emission.

(2.22)

+g&r�pX-
sm.

Io.„„q ys
D. Kinematics

+ qI ys u~(pi) ~

m,
(2.19)

with q„=(p; —pf )„. In the conventional vacuum-
insertion method, c, =(2c++c )/3 and c2
=(2c+ —c )/3. However, we have learned from the
nonleptonic decays of charmed and bottom mesons that
the naive vacuum-saturation approximation, in which the
Fierz-transformed terms are taken into consideration,
fails to account for the bulk of data, especially for those
decay modes which are naively expected to be color
suppressed (see Ref. [21] for a review). The discrepancy
between theory and experiment is greatly improved in the
large N, version of the factorization approach [22]. It
amounts to dropping the Fierz-transformed contribu-
tions. Hence,

with p, being the c.m. three-momentum in the rest frame
of B;, and the up-down asymmetry a reads

2v Re( A *B)

I
A I'+ ~'I BI'

(2.24)

Two quantities of experimental interest are the partial
decay rate and the asymmetry parameter a. We quote in
this subsection the basic formulas needed for calculation.
For the decay B;~Bf+P, the unpolarized decay rate is
given by

p, (m;+mf )
—mp (m; —mf ) —mp

l l

(2.23)

c, =
—,'(c~+c ), c2= —,'(c~ —c ) . (2.20)

Note that (c+ —c ) /2 = —0.59 and (2c+ —c ) /
3 = —0. 15. This means that the decay modes, e.g.,+ 0A, ~pK, pP are color and QCD-correction suppressed

with a.=p, /(Ef+mf ).
The kinematics of B;~Bf+ V has been analyzed in de-

tail in Ref. [11](see also Ref. [2]). The total decay rate in
the unpolarized case is given by
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'P, 2(ISI'+IP I')
8m E;

E2+, (IS+DI'+ IP, I'), (2.25)
mv

for nLJ= IS,&2 quarks [23],

x„=3~ 81, x, =3.96, R =5.3 GeV

for 1P„,quarks, and

x„=3.20, x, =3.65, R =5.2 GeV

(3.2)

(3.3)
with

P =—
1

p, mi+mf 1™i 2B +mB
V f mf

PcP2= —B, ,
Ef +mf

PcS=A, , D= — (A, —32m;),
EV(Ef +mf )

(2.26)

for 1P3/2 quarks. The eigenvalue x is determined by the
transcendental equation Eq. (A5).

Since the four-quark operator 0+ is symmetric in
color indices, it does not contribute to the baryon-baryon
matrix element. In Eq. (B4) the PC 0 -induced —,

'+ —
—,
'+

weak transitions are expressed in terms of two four-quark
overlap bag integrals X, and X2, defined in Eq. (B3). Us-

ing the bag wave function given in Appendix A, we find
numerically

where Ev and Ef are the energies of the vector meson
and the daughter baryon, respectively. Note that we
have neglected the contributions due to the tensor BBV
coupling. The up-down asymmetry is [11]

4m &Re(S*P& )+2EvRe(S +D)*Pia= (2.27}
Z(ISf'+IP I')m'+(fS+Df'+fP f')E'

III. NONLEPTONIC WEAK DECAYS
OF CHARMED BARYONS

The general expression for the two-body nonleptonic
decay of charmed baryons consists of three ingredients:
the PC (PV) baryon matrix elements a,, (b +. ), the c.ou-

t J
pling constants gasp gggy and the form factors f, and

g, . In the following we will discuss the evaluation of
these ingredients in order. For definiteness, we choose in
this paper the decay channels: A,+~Arr+ (p+ ),

pK (K* ), X+vr (p ), X rr+(p+).

X& = —3.58X10 GeV

X2 =1.74X10 GeV
(3.4)

a,, = &a, fo"fa, &,
2 2

b, = i —(B,(1/2 )IO I81 ) .

(3.5)

The factor of Gzcos 0& will be put back when necessary.
It follows from Eqs. (B4) and (3.4) that (in terms of c
GeV ) [24]

a + + =a p p= —3.76X10
C C

a + + =a p p=6. 58X10
C C

(3.6)

For later convenience, we will factor out the common
factor GFcos Oc in Eq. (2.3}, so the new baryon matrix
elements become

A. Baron-baryon matrix elements

The evaluation of the PC baryon matrix elements a;
and PV ones b. , within the MIT bag model is presented

1 J
in detail in Appendixes B and C. For numerical esti-
mates we use the bag parameters

m„=m„=0, m, =0.279 GeV, mc =1.551 GeV,
(3.1)

x„=2.043, x, =2.488, x, =2.948, R =5 GeV

The evaluation of the —,
' —

—,
'+ baryon matrix elements

b.+. is much more involved. This is because the physical
1 J

baryon states are linear combinations of ( S i z2 ) P i z3

and (Sii2) P3/3 quark eigenstates. Consequently, the
number of the relevant bag overlap integrals [Eqs. (C9)
and (C15)) is largely increased. Assuming that the —,

'

pole contributions are dominated by the low-lying nega-
tive parity (70, L =1) states, we obtain (in units of GeV )

Xi:2.433 X 10 X2 = 1.771 X 10 X& = 1-350X 10

Xi:9.651 X 10 X2 = 1 ~ 624X 10 X& =4.077X 10

X&.:2.782X 10 X2:1.427X 10 X]5 = 1.423X 10
It follows from Eqs. (A7}, (C8), (C14)—(C19) and (3.7) that (in units of c GeV3)

C C

&p( &]&p
= 1.56 X 10, b&p(48]&o

= 1.72 X 10, 6&+[2&0]Ap
= 7.97 X 10

C C

p= 2.95X 10, 6 p 4 p= 2.86X 10 6 p 2 p=1.46X 10
C C C

{3.7)

(3.8)

C C C
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where X+( 8) is the short-hand notation for
X+(70,—,', 8&&2},etc. It should be stressed again that at-
tention should be paid to the indices of the —,

' —
—,
'+ ma-

trix element as b.». = —b ..».
l J Jl

B. Coupling constants

The strong coupling constants gBBp and gBB& are given
by Eqs. (Dl) and (D2), respectively. As for the couplings

gB'Bp and gB'Bv, the former is related to the axial-vector

coupling g'» via the generalized Goldberger-Treiman
I

Y1 =0.056 Y1 =0.05 1

We quote our final results for gB Bp..

(3.9)

relation Eq. (D3), while the latter can be connect-
ed to ~~~v through Eq. (D8). Since
(B (P3&2)~blab&(cr, r, ) ~B(S&&2)) =0, it is clear from Eq.
(D4) that g", is determined by the matrix element

fdQ(, B*~b b&B ) (see Appendix A for the notation q
and q} and the overlap integrals Y, and Y„[Eq. (D13)],
whose values are

X+( 8) K 5 p gX+ 48) K
2 49 g + 2 p 0 8 1

gX+( 8)Ao~+ X+('8)A'~+ ' ' X+('1p)A'&+

gX+( 8)Xp + 1 55 ' X+( 8)Xp + ' 8 ' X+(21p)X

8)A+~+
——0.72, gX ( 8)A+ + 43 ~ gXp(z1p)A+ + = 0 72,

C C C C c c

where uses have been made of Eq. (A.7), m n -2.75 GeV, and [25]
c

mx(28) =1620 MeV, mx(48) =1750 MeV, mx(21p) 2 GeV .

(3.10)

(3.11)

It is worth noting that althoughg" n = —g "n, the coupling constant g n (alsog n ) is the same asg n

To compute g n, we need to evaluate the matrix elements fd Q (B '
~
b b~ o, ~

B ) and f d Q(B '
~ b» b r, ~

B ) [see Eq.
(D8)]. The numerical results are

gx+(28) K»p= —5.41X10 g + -» ' +( 8) K» 3.49X10 g + —»p,X ( 8)pK X pK

gX+(21p) K»p ' 1 10 g +»p p gX+(28)A + 9 06 X 10 gX+A +X Ap

—2 —2
gX+(48)A + 10 gX+Ap+ f gX+(21p)A + 1 53 X 10 g + +

p p Ap

—1 —2
X+(28)Xp + — 1.39X 10 gX+Xp + gX+(48)Xp + =2. 18X 10 gX+Xpp p p p

—3 —1
gx+(21p)xp + 8.80X10 gx+xp +, gxp(g8) + + 1.12X10 g p + +,p p c cp c cp

—2 —2
gXp(48)A+ + = —4.66X 10 gXpA+ +, gXp(21p)A+ + = 1.87 X 10 g pA+ +

c cp c cp c cp c cp

(3.12)

where we have used the bag integrals [Eq. (D9)]

Y2 = 1.87 X 10, Y2s 8.86 X 10

Y1 =4.31 X 10 Y1 =2.07 X 10
(3.13)

Assuming universality for the vector BBV coupling,
namely, g, =g =g, it is clear from Eqs. (D2) —(D4) and

(D8) that all BBV and hence B'BV coupling constants
appearing in the pole amplitudes can be expressed in
terms of g +=g/&2=5. 583 extracted from experi-

pnp
ment.

static-bag and quark-model wave functions best resemble
the compound hadron states. Note that in this frame the
four-momentum transfer squared is maximum; that is,
q =(m; —mf ) . In fact, based on the heavy quark sym-
metry one can make first-principles predictions for the
form factors which appear in heavy hadron-hadron tran-
sitions in the limit of maximum q [27].

Once the form factors at q =(m,. —mf ) are evaluated
using the quark or bag model, their values at q =0 can
be obtained by assuming a monopole or dipole q depen-
dence of the form factors

C. Form factors

Contrary to the conventional quark- or bag-model cal-
culation of the form factors at q =0, the form factors f;
and g; defined in Eq. (2.19) are evaluated by Perez-
Marcial et al. [26] in the Breit frame where

p; = —pf =q/2. Furthermore, they choose q=0 so that
both baryons are static in the Breit frame and thus the

f, (0) g;(0)
2y 2 )n

' ~ (1 2ym2 )n

(3.14)

with n =1 or 2. The evaluation of f, (q ) and g;(q ) in
the MIT bag mode was already done in Ref. [26]. The re-
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suits relevant for our purposes are

f, ' (0)=0.46, f2' (0)=0.19,
w+~ a+A

g, ' (0)=0 50, gz' (0)=—0 05,
(3.15)

for n =2,m~ =2. 11 GeV, mz =2.54 GeV [25]. With
these values of form factors, the branching ratio of the
exclusive A,+~A decay is predicted by the MIT bag
model to be 1.5% (see Table VIII of Ref. [26]; corrections
due to the updated A,+ lifetime have been made), which is
in good agreement with the recent ARGUS measure-
ments [29] B(A,+ —+Ae+X)=(1.6+0.7)% and
8 (A,+ ~A@+X)=( l.5+0.9)%.

To compute the facto rizable amplitude of
A, ~pK (K* ), one will encounter the matrix element
(p ~J„~A,

+ ), whose form factors are related to that of
A,+ ~A by the SU(3) relation

Before proceeding to compute the decay rates of the
Cabibbo-favored decay of A, , we first pay attention to
the Cabibbo-suppressed mode A,+~@(t. This decay is of
particular interest because it receives contributions only
from the factorizable diagram and because it is naively
expected to be color suppressed in the conventional
vacuum-insertion approach. The calculation is very
straightforward. From Eqs. (3.14)—(3.16), (2.26), and
(2.21) with cos 8C replaced by sin8ccos8c we obtain
(h' = GFsin8&cos8c )

f ' (0)= —
( —')' f ' (0),

(3.16)

g
' (0)= —

( —')' 'g ' (0)
for m, =2.01 GeV and m„=2.42 GeV [25]. The minus
sign appearing in Eq. (3.16) is due to the negative relative
sign between the wave function of A,+ and p [cf. Eq.
(A 10)].

D. Color nonsuppression

ford (ACCMOR) Collaboration (CERN NA32 experi-
ment) with the result 8 (A, ~p(t ) =(0.04
+0.027)B(A,+~@K rr+) [30]. Using the current value
[31]of B(A,+ ~@K rr+ ) =(4.3+1.1)%, it is evident that
theory is in good agreement with the central value of the
measured branching ratio.

There are two important consequences we can learn
from this exercise. First, color suppression is not opera-
tive (at least for the factorizable diagrams). If c2 were
equal to (2c+ —c )/3 as advocated in the vacuum-
insertion approach, the decay rate of A, ~p(t would
have turned out to be too small by a factor of 15, in
violent disagreement with data. Second, apart from the
MIT bag model, form factors and baryon-baryon matrix
elements have also been evaluated in the so-called heavy
quark bag model in which the single heavy quark occu-
pies the center of the bag and light quarks move around
it [32]. The heavy-quark bag model tends to give smaller
values for form factors, coupling constants and weak
transition elements [gc]. Obviously, the experimental
measurement of A,

+ ~p(t favors the MIT bag model's re-
sults of f, and g, for A,

+ ~p transition.

E. Branching ratios

Having all the necessary ingredients evaluated in Secs.
III A —III C, we are ready to compute the branching ra-
tios and the a asymmetry parameter for the two-body
nonleptonic weak decays of A,+. The results are exhibit-
ed in Tables I and II. To illustrate the calculation, we
consider the decay modes A,+~pK, X m+, and Ap

A,+~pK . The factorizable amplitudes obtained from
Eqs. (2.18), (2.20), and (3.16) are

A "=—5.73 X 10 h 8 "=0.143h, (3.19)

with h—:GFcos 0&. Note that 3 and 8 are dimension-
less, and GF is in units of GeV . The pole amplitudes
are given by

S = —0. 106h', P) =8.39X10 h',

P2= —4.59X10 h', D =1.27X10
(3.17)

g pole
X ( 8)pK X ( 8)A

m ~ m

where uses of f&
=230 MeV extracted from the measured

P~e+e rate and the I/N, relation cz=(c+ —c )/2
have been made. It follows from Eq. (2.25) that

gy+(48) KO g+(48)~-&
+

X (48)

8 (A,+ ~pP) = l.95 X 10 (3.18) gr+(210)pKO X+(210)A
+

where we have used I (A,+ ~all) =3.45 X 10 ' GeV
[25]. Experimentally, this channel has been measured by
the Amsterdam-Bristol-CERN-Cracow-Munich-Ruther- =3.91X10 'h,

mr+('io)

(3.2O)

TABLE I. Numerical values of the predicted s- and p-wave amplitudes of A,+~8+P decays in units of GFcos 0& X 10 GeV .
The theoretical and experimental branching ratios (in percent) and the predicted n asymmetry parameter are given in the last three
co1umns. The lifetime of the charmed baryon A,+ is taken to be 1.91X10 ' s (Ref. [25]l.

Reaction

A, ~pK
A,' ~Avr+
A, Xm+

A,+ X++

g fac

—5.73
—5.40

0
0

g pole

3.91
1.95
2.44

—2.44

g tot

—1.82
—3.45

2.44
—2.44

g fac

14.33
18.09
0
0

g pole

3.23
—4.87
14.63

—14.63

g tot

17.56
13.22
14.63

—14.63

—0.49
—0.96

0.83
0.83

(BR)theory

1.2
0.87
0.72
0.72

{BR)„,
2. 1+0.6
0.8+0.3

0.80+0.35
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TABLE II. Same as Table I except for A,+~B+ V decays. The upper (lower) entry is for P=0( —').

Reaction

A,+ ~pK

g fac
1

—7.12
—7.12

g ~ale

—0.28
0.14

g fac
2

—0.58
—0.58

g ~ole g fac
1

—11.32
—11.32

8 ~ale

—3.64
1.82

g fac
2

2.58
2.58

8~ole

—0.15
—0.05

(BR)theory

3.3
1.8

A,+ ~Ap+ —8.64
—8.64

0
0.36

—0.71
—0.71

—13.33
—13.33

0
0.40

2.99
2.99

—0.19
—0.19

2.6
2.3

A,+ X p+ 0.29
—0.13

—5.15
2.11

0.06
0.07

0.19
0.03

A,+ X+p —0.29
0.13

5.15
—2.11

0.06
0.07

0.19
0.03

and

gX+ gp A+X+
=3 23 X 1Q

mx+
C

(3.21)

A l"= —8.64X10 h, A "=—7.08X10 h,
(3.26)

B l
= 0. 133k B2 =2.99 X 10 h

As for the pole diagrams, we find

where we have applied the results of Secs. III A and III B.
Therefore, the total s- and p-wave amplitudes turn out to
be

gX+A + X'+A+P Cg ~ale
m A+

—mxy+x C

b AxApgA+ x40 +
c c c

mA —m
C C

A'"= —1.82X10 h, B"'=0.176' .

Consequently,

8 ( A,+ ~pK ) = l.2%, a =0.49,

(3.22)

(3 23) and

0 for P=O,
3.63X10 h for P= —,', (3.27)

to be compared with the experimental value
8(A,+~pE )=(2.1+0.6)% [31].

A,+~X ~+. This decay does not receive factorizable
contributions and hence provides a measure of the non-
spectator diagrams. The pole amplitudes are

g pole
gXPX~+ + b X~+A+

X (1/2 ) Ac
m + m

b XOXQpgXAOA+ +
=2.44X10 'h,

X ( l /2 )
mxp mxgp

C

(3.24)

Bpole
gXQX+ + &X+A+ aXQXpgXQA+ +

C + C C C

m + —m +
C

mxQ mxP
C

=0.146h,

which lead to

8(A,+~X ~+)=0.72%, a=0.83 . (3.25)

A very recent CLED experiment [33] measures
8 (A,+ ~X ~+ ) =(1.0+0.2+0. 1)8 (A,+ ~An+), which is.
equal to (0.80+0.35)% with 8 (A,+ ~Am. +

)

=(0.8+0.3)% [31].
Note that the decay amplitude of A,+~X m. +(p+) is

the same as A,+~X+m (p ) except for an overall sign
difference.

A,+ ~Ap+. Using f =f o =0.221 GeV and Eqs.
(2.21) and (3.15) we get

8 ~ole
gx+A + x+A+ Ax gA+x +

P C C C C

m + —m
C

mA —m p
C

0, for P=O,
4.02X10 h, for P= —,',

(3.28)

It is clear from Tables I and II that the pole-model pre-
dictions are in good agreement with experiment. We also
see that the nonspectator (pole) contributions are usually
smaller than the factorizable ones for the decay modes
which receive contributions from the factorizable dia-
gram. This is particularly true for A,+~B+ V.

IV. DISCUSSION

A. Comparison with current algebra

Since the decay B,~B +P is traditionally studied by
the method of current algebra, it is pertinent to compare
our pole-model results with the former approach. The
predicted branching ratios based on current algebra are
summarized in Table III. We see that current algebra

where the parameter p measures the mixing of the F- and
D-type couplings (see Appendix D). The branching ratio
and the a asymmetry parameter are predicted to be

2. 560004, a = —0. 193, «r p=O,
+ +

2 330004,. a= —0. 189, for p=-,' .

(3.29)
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TABLE III. Comparison between various theoretical calculations and experiments for the branching ratios (in percent) of
A,+ ~B +P decays. Calculations of Ref. [13]are done in (a) MIT bag model, (b) heavy-quark bag model with MIT-bag parameters,
and (c) heavy-quark bag model with heavy-quark bag parameters. The lifetime of the charmed baryon A,+ is taken to be 1.91
X 10 "s (Ref. [25]).

Guberina et al. [6]

Hussain aud Scadron [7]
Hussain and Khan [7]

Ebert and Kallies
(a) MIT bag [8a,8b]
(b) heavy-quark bag [8c)

Cheng [9]

Kalinovsky et al. [10]
(a) without 1

+—meson poles
(b) with 1

—meson poles

Pakvasa et a!. [11]

Kaur and Khanna [12]
(a) symmetric couplings
(b) broken couplings

Turan and Eeg [13]
(a)
(b)
(c)

Korner and Kramer [41]

Current algebra
(this work)

Pole model
(this work)

A, ~pI(

2.2

0.7

3.2
0.3

1.8

5.7
4.0

5.3

7.6
8.6

2.4
0.03
0.02

2.6

3.5

1.2

14

1.5

7.2
0.6

6.8

3.4
1.9

1.9

1.9
2.8

30.7
0.18
0.16

1.4

0.87

A,+ X m. +

4.2

2.3
0.4

1.9

0.03
8X10

11.2
11.2

10.7
1.7X 10

0.2

1.7

0.72

A+ 2+m

4.2

0.03
8 X10--'

14.9
0.08
0.02

1.7

0.72

Experiment [31,33] 2. 1+0.6 0.8+0.3 0.80+0.35

predicts larger branching ratios than the pole model. Let
us examine this channel by channel.

A,+~pK . Equation (2.15) leads to (fx =1.22f )

Therefore,

g tot g fac+ g cA —0. 102h (4.4)

BcA
P2p+I

g~ ~a + + =2.04X10 h,

fthm

m y m ~ c
C

(4.1)

where the axial-vector form factor g~ ~ can be evaluated
either directly by the MIT bag model (see Eq. (12) of Ref.
[9]) or by applying the Goldberger-Treiman relation to-
gether with Eq. (D 1). For definiteness, we have used in

g+
Eq. (4.1) the bag-model value g„~=—,'(0.71). Adding the

pole amplitude (4.1) to the factorizable contribution Eq.
(3.19), which vanishes in the soft-meson limit but survives
otherwise, yields

to be compared with the pole-model PV amplitude
A"'= —1.82X10 h [Eq. (3.22)]. The discrepancy be-
tween current algebra and the pole model for the PV am-

plitude arises from the fact that the corrections due to
( A —A ) given by Eq. (2.11) are already included in the
pole-model calculation. Comparing Eq. (2.11) with Eq.
(2.9), it is easily seen that the sign of ( A —A ) is oppo-
site to A and that

~
A —A

~
)

~
A ~. This explains

why A and At"" [Eq. (3.20)] have opposite signs. In
other words, the s-wave amplitude of this decay is no
longer dominated by the commutator terms. From Eqs.
(4.2) and (4.4) we get

B"'=Bfac+BCA 0 164' (4.2) 8(A,+~pK )=3 5%, a= —0.9. 0 . (4.5)

gcA & 4 44X 10
—

2A
1

f A, X
(4.3)

which is very close to the pole-model result B"'=0.176h
[See Eq. (3.22)].

As for the s-wave amplitude, it follows from Eq. (2.10)
that

Recall that the corresponding predictions in the pole
model are 1.2% and —0.49 [Eq. (3.23)].

A,+ ~Am +. Since the commutator term

(A~[g, ,gf~]~A,+) vanishes, the s-wave amplitude in
current algebra receives contributions solely from the fac-
torizable diagrams. We find
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A'"= A "=—5.40X10 h
(4.6)B"'=B"+B =0.178h —0.0414h =0.137h,

and hence

parity-violating amplitude, its prediction for the branch-
ing ratio of A,+~8+P is smaller than that of current
algebra. The two approaches disagree on the sign of the
a asymmetry parameter for the decays A,+

y0 + y+ 0

8(A,+~Art+)=1.4%, a= —0.98 . (4-7)

In the pole model A ~"' is nonvanishing and contributes
destructively to the PV amplitude (see Table I). This ac-
counts for why the pole model predicts a smaller branch-
ing ratio of 0.87%. Nevertheless, the asymmetry param-
eter a is predicted by both current algebra and the pole
model to be close to —1, in accord with the measured
value —1.0+o o by CLEO [34] and —0.96+0.42 by
ARGUS [35].

A,+~X ~+. The current-algebra amplitudes are

+ + = —7.66X10 h
v'2

gCA
mXp+mX+

X X
g~ aXf ttl C

C

m ++m p
C C X', A+

a XoXpggm p m p c
X X

=6.39X10 h,
where we have used [9)

XoA+ o +
g

c c — 1gx x —
(

P )1/2(0 65)
2 ~ 3

(4.8)

(4.9)

Comparing Eq. (4.8}with Eq. (3.24), we see that the rela-
tive sign of PC and PV amplitudes flips from the pole
model to current algebra. The latter approach predicts

8(A,+~X n.+)=1.7%, a= —0.49, (4.10)

whereas a is calculated to be 0.83 in the pole model.
Consequently, even a measurement of the sign of the up-
down asymmetry parameter a in the decay A,+~X ~+
(or 2+m } will help discern various models.

To summarize, since the pole model takes into account
the destructive contribution due to (A —A ) for the

B. Comparison with other theoretical
calculation

Since current algebra is also the framework employed
in Refs. [6—9, 11—13] for the study of A,+~8+P, it is
important to elaborate the differences between our
current-algebra calculation and others. We first note that
the results of Hussain and Scadron [7], though very simi-
lar to ours (see Table III), are obtained by ignoring QCD
corrections to the Wilson coefficients c+ and c . The in-

clusion of short-distance QCD effects will enhance, for
example, the baryon-baryon matrix elements by a factor
of c =1.9, and thus affects significantly their original
predictions.

Guberina, Tadic and Trampetic [6], Ebert and Kallies
[8(a),8(b)], Cheng [9],Turan and Eeg [13]have done their
calculation by using the wave functions of the MIT bag
model. The salient features of their results are as follows:
(i) the predicted A,+ ~An+ rate is too large by an order
of magnitude or even more, as depicted in Table III, and
(ii) the ratio of I'(An. +)!I'(PE ) is considerably larger
than unity, ranging from 2.3 to 13, while experimentally
it is only (0.41+0.09) [31]. The partial width of Am. +

was overestimated before for two reasons. First, the con-
ventional method of evaluating the form factors directly

A+A
at q =0 gives too large values, f &

' (0)=0.95,
A A

g&' (0)=0.86 (see, e.g. , Ref. [9]). If form factors are
first evaluated at maximum q and then extrapolated to
q =0 by assuming a monopole or dipole q dependence
(see Sec. IIIB), they tend to be smaller. For example,

A+A A+Af, ' (0)=0.46 and g, ' (0)=0.50 are found in the MIT
bag model [26]. The latter approach is more reliable be-
cause static-bag and quark-model wave functions best
resemble the hadron state at q =(m; —mf ) . Second, the
pole diagrams contribute destructively to the p-wave am-
plitude [see Table I and Eq. (4.6)] [36]. As a consequence,
we find that the branching ratio of A,+~A~+ is

TABLE IV. Same as Table III except for A,+~8+ Vdecays.

+ ~+ ++ +~+ ++ ~o~+ A ~+~p

Kalinovsky et al. [10]
(a) g «=g =&12vr

(b) g «/g =m «/m

20.7

2.9

5.9

0.6

Pakvasa et al. [11]

Korner and Kratner [41]

Pole model
(a) P=o
(b) P= —,

'

0.45

10.9—27.3

3.3
1.8

2.8

2.6
2.3

0.19
0.03

0.19
0.03

Experiment (see Sec. IVB)
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significantly reduced. The fact that the naive expectation
of color suppression for the ratio of 1 (Am+)/I (pE ) is
not seen experimentally is not surprising: We have
shown in Sec. III D the evidence that the color-
suppression mechanism is not operative in A, ~p P, as in

the case of charmed-meson decays. Note that the previ-
ous predictions made in Refs. [6,8(a),8(b),9,13] for the ab-
solute decay rate of A,+~pE are not far from our
present current-algebra results because color suppression
[i.e, . cz =(2c+ —c )/3] in previous calculations is partly

compensated by the large form factors f, ' (0)
= —&3/2(0. 88) and g&' (0)= —&3/2(0. 77) used be-
fore. In short, in order to compute the factorizable con-
tributions reliably it is important to employ the large-N,
approach for the Wilson coeScient functions and the
q=0 Breit frame for the evaluation of the form factors.

Since the naive estimate of the A,+ ~Am+ decay rate is
too large, this motivates Ebert and Kallies [8c] to apply
the heavy-quark bag model in which the heavy charm
quark occupies the center of the bag so that v, =0. As a
result, the numerical values of any quantities involving
the charm quark will be drastically reduced. It follows
that although A,+~Am+ can be accounted for by the
heavy-quark bag model, the branching ratio of pE turns
out to be too small. In general, the predicted decay rates
of A,+ —+B+Pbased on this model is too small by at least
an order of magnitude [8(c),13] (see Table III). We con-
clude that the wave function of the charm quark de-
scribed by the heavy-quark bag model does not work for
charmed-baryon decays.

We next turn to the work of Pakvasa, Tuan and Rosen
(PTR) [11], Kaur and Khanna (KK) [12]. They em-

ployed a large value of c2 ranging from 0.4 to 0.7 and
thus avoided the problem of aforementioned color
suppression. However, their cz is positive [37], contrary
to ours, cz ———0.59 [Eq. (2.20)] implied by the 1/N, ap-
proach. This sign difference will affect the partial width
of A,+~pE (K" ) since its factorizable amplitudes are
proportional to c2. This explains, for example, the large
discrepancy between our pole-model prediction of
B(A,+~pK' )=3.3% and the PTR result 0.45% (both
corresponding to P=O, i.e., the p coupling being of the
pure F type). While PTR found a large destructive in-

terference between the pole contribution B~'" and the
factorizable term B "for the p-wave amplitude, we argue
that this interference should be constructive as theory
suggests a negative c2. Unfortunately, the experimental
measurement of this decay mode is still quite uncertain:
The ratio of I (pI7* )/I (pK ~+) was previously deter-
mined to be 0. 18+0.10, 0.35+0.11, and 0.42+0.24, re-
spectively, by Mark II [38]. ACCMOR [30], and R415
[39] Collaborations, and less than 0.59 by ARGUS [40].
Note that the u asymmetry parameter is predicted by
PTR to be 0.14 for pK*, while we get a= —0. 15. So a
measurement of the up-down asymmetry will furnish a
clean test on various models. As to the work of KK, we
find that their expression for the commutator terms is too
large by a factor of &2 (our f„=132MeV). KK obtained
a very large branching ratio for A,+ ~X m. + due partially
to a wrong sign in their formula for B~'" and partially to

their too large commutator term (see Eq. (16) of Ref.
[12]).

In a series of papers, Kalinovsky et al [.10] have ap-
plied phenomenological chiral Lagrangians to the weak
decays of charmed baryons. Strong interactions are de-
scribed by an SU(4) X SU(4) chiral Lagrangian, while non-
leptonic weak interactions are constructed based on cer-
tain selection rules. In their scheme, the s-wave ampli-
tude receives contributions from the direct weak-decay
diagrams, whereas it arises from the —, pole states in our
pole model. The chiral Lagrangian approach predicts too
small decay rates for A,+~X ~+(X+~ ) (see Table IV),
in contradiction with experiment.

Historically, the first systematic and thorough study of
two-body nonleptonic decays of charmed baryons was
done by Korner, Kramer and Willrodt (KKW) [2]. They
evaluated the charmed-baryon decay amplitudes (not just
two-body transition elements) directly by using a quark
model with U(2, 2)-type wave functions. In addition,
KKW also used current algebra and an SU(4) model for
their calculation. The updated quark-model results
presented by Korner and Kramer [41] fit the data well ex-
cept for the decay A+ ~pE' which comes out too large.

Finally, it is noteworthy that Deshpande, Trampetic,
and Soni [15] and Jarfi et al. [16] have investigated
baryonic B meson decays using the pole model. Our con-
sideration of charmed-baryon decays shares many
features of their calculation. The only crucial difference
is that our work is based on the wave functions of the
MIT bag model while they employed the harmonic-
oscillator quark model.

C. Theoretical uncertainties

We have shown in the present paper that the pole-
model predictions for some selective A,+~B+P and
B + V decay modes are in good agreement with experi-
ment. Nevertheless, we should not consider our predic-
tions as firm results; it is important to discuss and sum-
marize all possible theoretical uncertainties which one
may encounter during the course of calculation.

(i) Wave functions of the MIT bag model. We have
employed the MIT bag-model wave functions to evaluate
baryon-baryon matrix elements and coupling constants.
The lightest negative-parity baryon states are obtained
from the configurations (1S,&z) 1P&zz and (1S,~z) 1P,&z,

in which two quarks are in the ground 1S»2 state and
one quark is excited to an I =1 state. The MIT bag mod-
el can reproduce the qualitative behavior of the spectrum
of negative-parity baryon resonances, but is not so suc-
cessful in reproducing the quantitative features of the ob-
served spectrum [42,43]. It is thus expected that the ma-

jor uncertainties of the bag-model calculation come from
the weak transitions b, and the strong couplings g
and g + which involve excited —„' baryon states.

Furthermore, we have neglected the mixing effect of
SU(6) eigenstates (see discussion in Appendix A). Never-
theless, a real advantage of the bag model is that the in-
volved computation is relatively simple and straightfor-
ward: All PC and PV baryon matrix elements and
relevant couplings are expressed in terms of some bag
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overlap integrals which in turn can be easily evaluated in
a numerical way.

(ii) Coupling constants at nonzero momentum transfer.
For simplicity, strong coupling constants have been thus
far evaluated only at q =0, though they should be taken
at q =m~ (or mv) in the pole amplitudes. It is possible
that our approximation does not work well for g, for

instance, since q =m + is not close to the static limit

q =0. In practical calculations, the q dependence of the

gzzz coupling constants can be determined by expanding
the exponential term in Eq. (D7) to the desired order.
For previous efforts along this line, see Ref. [44].

(iii) BBV coupling constants. The vector BBV cou-
plings given by Eq. (Dl) are parametrized under SU(3) or
SU(4) symmetry in terms of two parameters P and g.
While the parameter g is related to the strong pnp cou-
pling, P is essentially unknown. We have carried out cal-
culation with two favored values P=O and —', . A tensor

coupling of the form given by Eq. (2.6) is allowed for the
BBV interaction and its contribution to the factorizable
amplitudes is summarized in Eq. (2.7). It is not clear to
us if the effect of the tensor coupling is negligible.

(iv) Baryon-baryon matrix elements at nonzero
momentum transfer. In order to evaluate the baryon ma-
trix element (B;~&„~Bf) in the context of the static bag
model, it is required to assume that both baryons B; and

Bf are at rest. However, as pointed out by Jarfi et al.
[16],the three-momentum transfer k in the rest frame of
one of the baryons is not small, k —1GeV in charmed
baryon decay. A technique for computing the baryon-
baryon transition elements at nonzero momentum
transfer was developed by Jarfi et al. within the
harmonic-oscillator quark model. A generalization of
this work to the MIT bag model is required.

(v) Contributions of the parity-violating matrix ele-
ments to the s-wave amplitude. To compute the s-wave
amplitude we have thus far focused on the —,

' pole terms
and ignored the —,

'+ pole contributions by assuming that
the PV matrix elements biz -(B(—,'+)l&~ ~B'( —,'+)) is

negligible compared to b + —(B(—2+)~&~ ~B'( —,
' )). It

is known that the weak transition biz vanishes in the
limit of SU(4) symmetry, but this symmetry is badly bro-
ken. A calculation in the MIT bag model [9,8c] reveals
that b~z /a~~ ranges from 0.1 to 0.4 for various charmed
baryon decays. Corrections to the parity-violating ampli-
tudes due to b~~. should be studied in further detail. It is
expected that the PV matrix elements biz play an impor-
tant role in bottom baryon decays since a priori they are
of the same order of magnitude as PC ones.

(vi) Higher excited baryon resonances and low-lying
states with high spin. To estimate the decay amplitudes
in the pole model, the ground —,

'+ states and low-lying ex-

cited —,
' resonances are assumed to give the most impor-

tant contributions for s- and p- wave amplitudes, respec-
tively. However, as pointed out by Turan and Eeg [13],
because the mass of the charmed baryon B, is rather
large compared to hyperons, excited baryon states with
masses close to that of B, could give significant contribu-
tions. For example, in Sec. III E we only consider low-

lying (70, L =1) excited states of X+ for the parity-
violating amphtude of A,+ —+pE . But, it is possible that
higher excited states of X+ or lowest-lying spin —', states
with masses close to A,+ may contribute sizably to the s-
wave decay amplitude. When the wave functions of the
MIT bag model are utilized, Turan and Eeg [13] claimed
that the lowest-lying spin —,

' baryon poles dominate the s-

wave amplitude of A,+~B+P decays [45]. In light of
this, further careful work on the effects of higher reso-
nances should be pursued.

V. CONCLUSION AND OUTLOOK

In the present paper we have analyzed the nonleptonic
weak decays of charmed baryons within the framework
of the pole model. Contrary to current algebra, this ap-
proach is operative even if the final-state meson is not
soft and of the pseudoscalar type. We have employed the
wave function of the MIT bag model to evaluate weak
transition elements and strong vertices. Apart from the
factorizable contributions, the s-wave amplitudes are ap-
proximated by low-lying negative-parity baryon reso-
nances.

For definiteness, we have limited ourselves to some
selective decay modes of A,+ for illustrative purposes.
We conclude that (i) the naive expectation of color
suppression for A,+ ~pP and for the ratio of
I (pE )II ( An+ ) is not seen by experiment, as in the case
of charmed meson decays, (ii) nonspectator (pole) contri-
butions are in general smaller than the factorizable ones
for the decay modes which receive contributions from the
factorizable diagram, and (iii) the predicted branching ra-
tios based on the wave functions of the heavy-quark bag
model are too small. We have compared our work with
current algebra and other theoretical calculation. It
turns out that current algebra tends to predict larger de-

cay rates for A,+~B +P decays. Furthermore, we found
that the s-wave amplitude of A,+~X m+, 2+m. is no
longer dominated by the commutator terms. A measure-
ment of the sign of the a asymmetry parameter for the
decays A,+ —+X m. + and 2+m. will provide a discerning
test between current algebra and the pole model.

In the future it is natural to extend our present work
to (i) other Cabibbo-favored decay modes,

+0 (1 ) transitions, e.g. , A,+ b, +I7,b, ++K
X(1350)p+, . . . , and (iii) nonleptonic weak decays of X,
and:-, . New measurements on charmed baryons are
now carried out by ARGUS and CLEO, and by several
on-going experiments at Fermilab and CERN. With
more and more data becoming available in the near fu-
ture, we are certainly beginning to comprehend the un-

derlying mechanism for charmed baryon decays.
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APPENDIX A: BAt WAVE FUNCTIONS

In the MIT bag model the quark spatial wave function
is given by [23]

for 1r= —1, 1, —2, respectively. In Eq. (A3) p is the
usual spherical harmonic spinor [46]. For the 1P3/2
quark state,

N ij 0(xr /R )y

(4~R 3)1/2 &—ej, (xr/R)rr ry

iu (r)Jt'

u(r)cr ry

(A 1)
43/2, 3/2 ()

3/2/3 Y10

03/2, 1/2 + 1 /3 Y11

3/ I /3 Y,
43/2, —1/2 3/2/3 Y

(A6)

for the quark in the ground (1S,/2) state, and

ij, (xr/R )a rg

(4aR )1/2 +MOJO(«/R)X

iu(r)o"rJ(

u(r )y

as well as [42,43]

iJ1(xr/R )03/2,

—v

F�2�(xr

/R )o".r$3/2

(A2)

For the 1S
& /2 and 1P»2 states, the spherical harmonic

Yoo is already absorbed in the normalization factors N
and Ni.

The low-lying negative-parity noncharmed baryon
states (70, L =1) are made of two quarks in the ground

1S&/2 state and one quark excited to 1P, /2 or 1P3/2 The
SU(6) wave functions for the baryon (70,L =1) states in

terms of the P, /2 ——(1S,/2) 1P»2 and P, /2

=(1S1/2) 1P3/2 wave functions are given by [43]

iu(r)$3/2

Lu(r)cr r$3/2

(A3)

for quarks excited to an l =1 state 1P&/2 and 1P3/2 re-
spectively, with the j„' spherical Bessel functions. The
normalization factors read

x
tanx =

1 —mR —(x +m R )'

tanx =
mR +(x2+m 2R 2)1/2 (A5)

tanx =
1+x /(co+mR —3)

x
[2'(co—1)+mR]'/ sinx

x
(A4)

[2'(co+ 1)+mR]' (sinx —x cosx)

x
[2'(m —2)+mR]' (sinx —x cosx)

where e(co —mR)/(co+mR), x =(co —m R )'/ for a
quark of mass m existing within a bag of radius R in
mode to. For convenience, we have dropped in Eq. (A4)
the subscript x(= —1, 1, —2) of x, co, and R. The eigen-
value x, is determined by the transcendental equations

I70, 'g1/2& = —I'ig~ I' »/2 &
—-', lg, z,P1/2 &a

+ —. I
g —.

'
P1/2 & b

P3/2) 3 lg 2 Pl/2 &a

&P1/2 )b (A7)

~70 11/2) =
~
1 — &P 1/)2

It should be stressed that the physical —,
' resonance

states are mixtures of SU(6) eigenstates found in the bag
model owing to SU(6} mixings. The mixing matrices are
given in Ref. [43]. Nevertheless, we find in practical cal-
culations that the SU(6) mixing eff'ects do not affect the
values of weak transition elements and strong vertices in

any significant way. Hence, we will neglect such eA'ects

for simplicity.
The wave functions for quark states P, /2 and P3/2 can

be worked out from Refs. [42,43]. As an example and
also for later purposes, we write down explicitly the wave
functions for the —,

' resonance states of X+:

g+(g, —,', P1/2), = [2[u tu s +u u s +u u s ]
—u u s

—u u 1st —u u s"—u1u ts —u "u "st —u1u s +(13}+(23)],

X+(8 —' P ) = —[2[ututs +u uist+u1u "st]—utu1st1'I ' 1/2 b ~54

—u u

tsar

—u tu

tsar

—u1u ts —u u 1st —u "u st+(13)+(23)],
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g+(g '—,P )= [2[@'3u ~u est —(u u +u u )s +u u s ]
V'108

—u'3u 'u &s'+u 'u 's'+u 'u 's' —u 'u 's'

—v'3u ~u ~st+u u s +u u s —u u s +(13)+(23)],

g+(10 —' P )= —I2[ututs +u u s +u u s ]—u u s1/2 ~~4

—u tu ts t —u tu ~s t —u tu ts ~ —u "u ts t —u ~u ts t+ (13)+(23)],

X+(10 —' P ) = —[&3[u ~u ~s t+u u ts +u ~u s ]

—(u tu t+u tu ")s t+u tu ts~ —u tu ts ~ —u ~u ~st

+u "u ~st —u tu ts" —u tu ~st+u tu tsar+(13}+(23)], (AS)

where the 1P,/z(1P3/2) quark is denoted by a tilde (un-

tilde), the s, = 3 quark state is mark
means permutation for the quark in place i with the
quark in place j. The wave function of the —,

' charmed
baryon can be constructed in the same way. However,
since the charm quark is heavy, it should be treated
differently: The charm quark in the low-lying resonance
states does not get excited. Consequently, the wave func-
tion of, say, X, ( —,

' ), has a simple expression, for exam-

ple,

X,(8, z, P&/2 ), = —I2(d "d c ~+d td tc t
) —d td ~c"

—d~d ct dd ct ——d "d ct} .

(A9)

To fix the relative sign of the coupling constants, form
factors, parity-conserving and -violating matrix elements,
it is very important to employ the baryon wave function
consistently. In the present paper, we use the isospin
baryon-pseudoscalar coupling convention given in Ref.
[47] (see Appendix D} to fix the sign of the baryon wave

functions. In the following, we list those wave functions

relevant to our purposes:

p = —[uudX, +(13)+(23)],1

3

&q'~ Ao~q) = i(u'v —v'u)o —r,
(q'~V~q ) = —(u'v+ v'u)o Xr i (u'v——v'u )r,

(Bl)

&q'I Alq ) =(u'u —v'v)cr+2v'vnr r .
The four-quark operator 0 (x) given by Eq. (2.17) can
be written as 0 (x)=6[(sc)&(ud)z —(sd), (uc)2], where
the subscript i indicates that the quark operator acts only
on the ith quark in the baryon wave function. It follows
from Eq. (B1) that the parity-conserving (PC) matrix ele-
ments have the form

f r dr(qIqg(sc))(ud)2~q)qq)

=( —X)+X~)——,'(X(+3X )c2r, o2,
(B2)

r r ~192 s 1 Qc 2~192
=(X)+Xp)——'( —X, +3X,)o, o, ,

where X1 and X2 are the four-quark overlap bag integrals
[13]

APPENDIX B: PARITY-CONSERVING
MATRIX ELEMENTS

In terms of the large and small components u (r) and
v (r) of the 1S&/2 quark wave function [see Eq. (Al)], the
matrix element of the two-quark operators V„(x)=q'y„q
and A „(x)=q'y„y 5q are given by

&q'~ Vo~q) =u'u+v'v,

X+ = — —[uusX, +(13)+(23)],+
u'3

X = [(uds+dus)X, +(13}+(23)],p 1

6

A = — —[(uds —dus)X +(13)+(23)],p 1
A (A10)

R
X, = r dr(uqv, —vdu, )(u, v„—v, u„),

(B3)
X2= r dr QdQc+VdVc QsQu+VsVu

0

and use of fdQ(o, rcr2 r)= —,
' f'dQ(o'.

&
o'2) has been

made. After evaluating the matrix eleme tns(cr
& o2), we.

find the PC bag matrix elements to be

A,+ = — —[(udc —duc)X, +(13)+(23)],1

2

X,+ = —[(udc+duc)X, +(13)+(23)],1

v'2

yp =ddCy, ,

where abc', =(2a b c —a b c —a b c )/'

+6, abc/& =(a tb ~c t —a ~b tc t)/+2. Note a negative

relative sign between the wave function of X+ and p.

4—(X, +3X2 }(4'},v'6
(B4)

(y+(oPC)y+ ) (yO[oPC(yO)

2&2
( —X, +9X2)(4m. ) .

Note that the sign of each PC matrix element is fixed by
the baryon wave functions given by Eq. (A10).
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APPENDIX C: PARITY-VIOLATING MATRIX ELEMENTS

The evaluation of the parity-violating (PV) matrix elements for —,
—

—, transitions is much more involved. From
Eq. (A 1) it is straightforward to show that

&q', qz l

V. A + A. Vlq, qz &
= i —(u'v —u'u)1(u'u+ v'u)2+i(u'u+u'u), (u'u —u'u)2

—i (o, o'z)[(u 'u +v'u}1(u'u —v'v)z —(v'u —u 'u), (u 'u + u'u )z]

—2i(o, rcrz. r)[(v'u), (u'u }z
—(u'u), (v'u)z+(u'u), (u'u )z

—(u'u ),(u'u)2] (Cl)

and

&q', qz l
V A+ A Vlq, qz &

= (—cr, Xo ) r[(u'v+w'u), (u'u —u'u)z —(u'u —w'u), (u'v+u'u ), ]

+i(o, —oz) r[u'u+w'u), (u'v —u'u )z
—(v'u —w'u ),(u'u +u'u)z] .

Note that

&q1qz I
V A+ A Vlq 1qz &

= —
& q1qz I

V A + A Vlq1qz &,

(C2)

(C3)
&q1qzl V A + A Vlq1qz &

= —
&q1qz I

V A+ A Vlq1qz & .

In the following we will consider the PV matrix elements &X+(8,P, /z), lO "lA,+ & and &X+(8P3/z)lO lA,+ & as an
example of evaluation. First, we note that

& X+(8,P, /2), l(sc )(ud ) lA,
+

& =6& X+(8,P, /2 ), l(sc )3(ud )1lA,
+ &+6&X+(8,P, /2), l(ud}1(sc )3lA,

+
& .

The flavor operator in the first term on the right-hand side (RHS) of Eq. (C4) is of the form b, „b,db3, b3„where b3,
denotes a 1P,&2 strange-quark construction operator acting on the third quark in the baryon wave function. Likewise,
we have the operator b

&
b &d b 3,b 3, in the second term. Using the relation

ol oz (ol+oz —+o1—oz+ )+ol oz

with o+ =o,+i o, and the wave function of X+(S,P, /z), and A,+ given before, we find

f dQ& X+(S,P1/z), lb1„b1db3 b3, (o'1 a3)lA,+ &
= — —(4m),

3 2

f dQ&X+(8, P1/2), lb1 b1db3, b3, (o1 cr3)lA,+ &
= — —(4n ) .

(C5)

(C6)

It follows from Eqs. (C4), (C6), and (Cl) that

& X+(S,P, /z ), l(sc )(ud) lA,
+

& =i —[ —,'(v, u, u„—u, u, v„)—(v, u, u„—u, u, u„)——,'(v, u, —u, u, )u„u„]
2

+i —[ —,'(u„u„u, u, u„u„v, u, ——V„u„u,u, +u„v„u, u, )v'2

+(u„u„u, u, —u„u„v, u, +u„u„u, v, —u„u„u, u, }] .

Repeating a similar evaluation
& X+(S,P, /z ), l(sd )(uc ) l A,+ &, we then obtain

& X+(8,P, /z), lO lA,
+

&

for
I

we note that the r„and r components of (o1Xo'z) r and
(o, —o z) r make no contributions, so that

z} (o1+oz— o1—oz+) .2

with
2

X, = dr(u„v, —v, u, )(u„u, +u„v, ),

=i2V'2(4n)( —
—,'X, +Xz+ —,'X„+Xz,) (C8) (o, —oz).r~(o„—oz, )r, .

The orthogonal condition

f dQ Y(* (0,$)Y, (0,$)=6u.5

(Clo)

(C11)

Xz= f r dr(u„u, +v„u, )(u„u, —v„v, ),
X„=f r dr(u„u, —u„u, )(u, u„+u, u„),

(C9)

together with

1 0
dQr 43/2, 1/2 (} dQ r P3/2, —1/2 1

X2, = r dr u„u, +U„U, u, u„—U, u„

For the matrix element of X+(S,P3/z) —A,+ transition, leads to

=-'&2~
3

(C12)
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f dQ& X+(8,P3qq)lbt, b&db3, b3, (cr3Xo, ) rlA,+ & =i

fdQ(X+(8, P,~, )~b,„b,db„b„(o,—o, ).r~A,+ ) = v'2m. ,

fdQ( X+(8, P3/2)~b, „b,db 3b3, (o, Xcr3).r~A,+) = i— v'2~,
(C13)

f d II( X+ ( 8, P3~~ ) ~ b, „b, db „b„(cr, —o, ).r
~ A,+ ) = — v'2m .

After some manipulation we get

(X+(8,P3~2)~0 ~A,+) = —i—'v 2n(X)+2X), ),
where

X~= f r dr(u„v, —v„u, )(v„u, +w„v, ),
X»= f r dr(u„v, —v„u, )(w, v„+v u„) .

(C14)

(C15)

( X+(10,P, &2 )
~
0

~ A,+ ) = i2v 2(4n ) (C16)

X ( ——,'X( —Xz+ —,'X), +X2, ),

The remaining X+(—,
'

) —A,+ matrix elements are found

to be

(X+(8,P)~2)q ~0 ~A,
+ ) =i2v'2(4m )

X ( —',Xi+—,'Xi, +Xz, ),

I

baryon matrix elements in terms of the SU(6) —,
' baryon

eigenstates.

APPENDIX D: STRONG MESON-BARYON
COUPLING CONSTANTS

The baryon-pseudoscalar meson BBP coupling con-
stants can be related to the axial-vector form factors via
the Goldberger-Treiman (GT) relation, which are then
evaluated using the MIT bag model. However, we adopt
in this paper the method of Ref. [48] in which the BBP
couplings are evaluated more accurately by employing
the null result of Coleman and Glashow for the tadpole-
type symmetry breaking and applying the generalized GT
relation to take into account SU(4)-symmetry breaking.
The results relevant for our purposes are [48]

g + —0 =4.9, g&+AD + = 11.8, g&+ 0&+ =25.6,
(X+(10,P q )~0 ~A,+) =i ,'v 4n(X, -—X„) .

For completeness, we also summarize the PV matrix
elements which are relevant to the present paper:

gg+ g+ 0 gy+ yo +

go+A+ ' gr'A+ +
C C C C

(D 1)

(X,(8,P, ~~), ~0 ~A ) =i2v'3(4m)( ,'X', X—z), —

(X,(8,P, q2)b ~0 ~A ) =i2v'3(4n )( ——'X' )

(X', (10,P, )~0 ~A )='2V3(4 )( —,'X', +X'),

& X,'(8,P„,) ~O" ~A') =t v'4~(XI ),

(X,'(10,P„,) ~0"~A') =i v'g~( —X', ),

(C17)

where the sign of the coupling constants is fixed by the
isospin coupling convention given in Ref. [47]. For the
BBV coupling constants, we will only consider the vector
interaction of the vector meson with baryons and neglect
the tensor one given by Eq. (2.6). Following Ref. [10],the
vector BBV coupling constants under SU(3) or SU(4)
symmetry read

1
gz+ ~+0= .—gee(2P —1),x Pre ~.2 rc

for X, ( —,
'

) —A transitions, where X,
'

and X are ob-
tained from X; and X; by the replacement s+ c,d~u,

1 1
gx+po + ~ gpp r gx+-OX. A+ ~—gX rrr

(D2)

(X,(8,P, q2), ~0 ~X ) =i2(4')( —,'X', +3Xp),

(X,(8,P, q2)~ ~0 ~X ) =i2(4m. )( ——', X', ),
(X,(10,P, q2)~0 ~XO) =i2(4m)( —,'X', —3X2), (C18)

& X', (8,P3„)IO"
I

X'& =i-'v'2~(X', ),
& X,'(IO, P„,) ~Opv ~X') =i 8v'Z~( —X; ),

for X, ( —,
'

)
—X transitions, and

(X+(—' )Io ~X+)= —(X,( —,
' )~0 ~X ) . (C19)

Applying Eq. (A7) enables us to write down the PV

gz+x+ 0 gz+zo + gp p r

1
go+A+ 0 gxOA+ + g gpp

C C C C

where the parameter P measures the mixing of the F and-
D-type couplings. If p=O is assumed, the BBVcoupling
constant will be of pure F type. It has been advocated
that p=O is a good approximation because the p meson
generates isospin [11]. However, Kalinovsky et al. [10]
argued that the Okuho-Zweig-Iizuka (OZI) rule in the
scheme of ideal mixing of the vector mesons co —P is
satisfied by p= —,'. In this paper we shall use both p=O
and P= —,

' for numerical calculation.
To evaluate the s-wave amplitudes we also need to

know the B*BP and B*BVcoupling constants (B*:—,
'
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resonance). We shall use the generalized GT relation to
estimate the 8*BPinteraction [49]

fPl g IB
A

gB BP gB gB
fp

(D3)

where fp is the decay constant of the pseudoscalar meson
P, and g + is the axial-vector coupling constant evalu-

ated at q =0. It has been shown that the generalized GT
relation, when applied to the A*2+m+ interaction, is in
good agreement with experiment [50]. Note that

p gB Bp while gBB
= —

gB B . In the static limit,

we find

g", =f r dr(uv uu—)fdQ(B" lb b IB)

+f r dr(uu —Luu) fdQ(8'Ib b (o,r, )IB ) .

(D4)

As for the couplings B*BV, we note that the reduction
formula

( Ap'(q)IB ) =i f d xe'~ "(U+'m )( Alp„'(x)IB)e*",

(D5)

where e„ is the polarization vector of the p meson, to-
gether with the p-meson equation of motion

+m~ }& ~lpgx)IB ) =f~& Al ,'q(x}y„&'q—(x}IB) (D6)

leads to [51]

( Ap„'(q)IB ) =if f d xe' "

X(~I ,'q( x)y„A, 'q-(x I}B)e"". (D7)

When A =8 =N, f at q =0 is nothing but the strong
NNp coupling constant g» . When A =N, B=N, then

g + is related to gzz via Eq. (D7). For simplicity, we
N Np

will limit ourselves to the static limit, i.e., q„—+0, where
only the spatial part of V„contributes to f . We obtain

where

Y = r2dr w„u„—v„v„

dr LO „U U„

Y2= r dr Q„Q + 3U„V

Y~, = f r dr(u, u„+ —,'u, u„) .

(D9)

fdn(r+(8, P„,).lb'b, lr') = (4~),

f d&&&'( 8, P)g~) bl b„'b lr') = — —(4~), (D10)

yp 1

and

f d Q( X+(8,P, ~2), I b„bd cr, X ) = —(4~),4

dQ X+ SP112 b bubdez X = — 4m', D11

fdo(r'(8, P„,)Ibtb;; r,')= ' ~4~.

It follows from Eqs. (A7), (D3), (D4), and (Ds) that

5(4n ) x+( s)

( s)xm 3+6 f

As an illustration, let us consider the coupling con-
stants g +I2 0 + and g +.. . 0 +, where X+( 8) is the

X ( 8jX 77. r [ 8)r p
'

shorthand notation for X+(70,—,', 8&&2). From Eqs. (A8}
and (A10) we get the nonvanishing matrix elements

g, +=g + Yz fdQ(B'Ib„bdo, IB)
x (s)x & &p

v'4~ Y (D12)

ga an* =gaaX"

+Y, f dQ(8*lb„bdr, 8)
(Ds)

where

+ —(4m}Y~
13

9 6

+ Y„f «&8*lb, b,~, I»
Y, = f r dr(u„u„—u„v„),

Y„=f r dr(u, u„—u, u„) .
(D13)
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