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A simple and direct approach is used to examine the constraints imposed by asymptotic freedom
and analyticity on the large-order behavior of perturbation theory for the current-current correlation
function and its imaginary part which gives the R ratio in high-energy e+-e annihilation.
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The time-ordered product of two electromagnetic cur-
rent operators de6nes a correlation function whose
Fourier transform is given by

K""(9)= (d'*) e *'* (Ol&(i"(*)2 (o))IO) (1)

Current conservation implies the structure

K""{g)= (g" q' —g"q ) K(—g'). (2)

The scalar function K(t) is analytic in the entire t =
—q2 plane save for a cut along the positive real axis.
The discontinuity across this cut is related to the high-

energy limit of the total e+-e hadronic cross section if
one neglects the Zo-exchange contribution. In terms of
the 8 ratio, defined as the ratio of the total cross sections
for e+-e ~ hadrons to e+-e —+ muon pairs, we have

R(s) = 12m. ImK(s+i0+) .

Our work concerns the large-~t~ behavior of K(t) in

an asymptotically free theory such as QCD. For conve-
nience in presenting the results, we will explicitly discuss
a theory in which the perturbative expansion of the P
function,

with real coefficients (ci„c) computable in renormal-
ized perturbation theory. (The origin of the first two
nonanalytic pieces will be reviewed below. ) Similarly, the
imaginary part of K(s) has an expansion,

ImK(s+i0+) - ) a„g(s)",

C{z)=—co+ ) c z /(m —1)!,
fn=1

(7)

whose coefficients (a„)determine the perturbative ex-
pansion of the 8 ratio.

In this paper, we examine the relation between the ab-
sorptive coefficients (a„)and the dispersive coefficients

(c ), and the resulting implications on their possible
large-order behavior. The renormalization group and an-
alyticity are the only ingredients in our analysis. We
6nd that the absorptive coefficients may be easily ex-
pressed in terms of a sum over the dispersive coefficients
or, conversely, that the (c ) may be expressed in terms
of the (a„).The explicit relations are presented below
in Eqs. (27), (28), and (38). If one defines the Borel
transforms of the perturbative series (5) and (6) as

~'d, g'(~') —= P(g')

= —bog —bi g
4 6

A(z) —= ) a„z"/(n —1)!,
n=1

(8)

K(t) C(p )+c ig (—t) +co lng (—t)

+) c g(—t) (5)

has a vanishing second term, bj ——0. By making a suit-
able redefinition of the coupling, all higher terms in the
expansion of the P function may be chosen to vanish,
and this we shall do. Assuming that bi ——0 simpli6es the
analysis, but does not alter the general character of the
results. The general case of a P function whose first two
terms are nonvanishing will be presented elsewhere [1].

In the deep Euclidean region, t —+ —oo, K(t) has an
asymptotic expansion in powers of the running coupling
g'(-t),

then we 6nd that the relation between the two sets of
coefficients is summarized in the remarkably simple result

C(z) = A(z)/sin(7rbo z) . (9)

Recently West has also considered the implications of
the renormalization group combined with analyticity for
the large-order behavior of perturbation theory [2]. He
argues that from these ingredients alone one may deduce
a unique large-order behavior for the coefficients (a„)of
the A ratio. We find, however, that these assumptions
are only sufficient to yield the relation between the ab-
sorptive and dispersive coefficients. As discussed below,

Eq. (9) has implications for the domain of convergence of
C(z) and hence on the large-order behavior of the disper-
sive coefficients. However, it places no nontrivial restric-

45 R398 1992 The American Physical Society



ASYMPTOTIC BEHAVIOR OF PERTURBATION THEORY FOR. . . R399

tions on A(z). Consequently, the renormalization group
and analyticity alone do not determine the large-order
behavior of the absorptive coefficients, contrary to the
claim of [2].

The large-order behavior of the coefficients (a„)or
(c ) is directly related to the nature and location of the
singularities in the corresponding Borel transforms A(z)
or C(z) nearest to the origin. For example, if

a„~b" F(n+p)/F(l+p)

as n ~ oo, then A(z) will be analytic in the domain
]bz] ( 1 and have the singularity

A(z) ~(bz) (1 —bz) 1 "

as bz ~ 1. Conversely, if A(z) has a singularity of this
form, and no other singularities for ]bz] & 1, then the
coefficients (a„)will have the large-order behavior (10).

The existence of zeros in the sin(z bpz) denominator in
the relation between the Borel transforms (9) implies that
C(z) will have singularities at all nonzero integer values
of bp z unless A(z) has compensating zeros. Hence, one
of the following possibilities for the large-order behavior
must occur.

(1) If A(z) has a radius of convergence greater than
1/bp [so that the absorptive coefficients (a„)grow slower
than (bp —e)"n! for some e ) 0], then C(z) will have
simple poles at z = +1/bp Hen.ce, if the residues Ay —=

A(kl/bp) are not both zero, the dispersive coefficients
will have large-order behavior which is determined by
these residues,

c —[A+ bf —A (—bp) ] (m —1)! (12)

as fll ~ 00.
(2) If A(z) has a radius of convergence equal to 1/bp,

so will C(z). The dispersive coefficients will grow faster
than the absorptive coefficients by a single power of m.
For example, if the absorptive coefficients behave for
large n as

a„A+bp F(n+pp) + A (—bp)" F(n+p ) (13)

for some constants A~ and p~, then the Borel trans-
form A(z) will have singularities A(z) A~ (+bpz) (1 +
bpz) ~+ F(1+py), as bpz ~ +1. Dividing by sin(n bpz)
gives the Borel transform C(z) the singularities C(z)
A~(bpz/vr) (1 p bpz) ~ ~+ F(1+p~) and thus the disper-
sive coefficients will grow like

These constraints on the possible large-order behavior
are independent of the specific dynamics of the asymp-
totically free theory and follow solely from the existence
of renormalized perturbation theory (with a one-term
P function). Explicit studies of perturbation theory in
/CD show the following [3].

(i) The ultraviolet behavior of individual m-loop di-
agrams can generate contributions behaving as c
(—bp/k) m!, for k = 1, 2, . . . , leading to singularities
in the Borel transform C(z) at the points z = k/—bp

on the negative real axis. Near the first singularity [4],
C(z) (bp z+1) +~, where p is related to the anoma-
lous dimension of local operators of dimension 6. These
contributions are referred to as ultraviolet renormalona.

(ii) The infrared behavior of m-loop diagrams can gen-
erate contributions behaving as ~+1 (bp/A:) m!, for
k = 2, 3, . . . , corresponding to singularities in C(z) at the
points z = k/bp on the positive real axis. The absence of
a singularity at bp z = 1 is related to the lack of any phys-
ical gauge-invariant local operator of dimension 2. Near
the first singularity [5], C(z) (bp z—2) 1 2~'/~0. These
contributions are referred to as infrared renormatons.

(iii) Instantons generate singularities in the Borel
transform on the positive real axis (starting at z = 4n ) to
the right of the leading infrared renormalon singularity.

(iv) No other sources of singularities in the Borel trans-
form are known.

The ultraviolet renormalon behavior just described is
entirely consistent with the allowed behavior in Eq. (14).
However, our results show that the absence of an inErared
renormalon singularity at bo z = 1 is only possible if the
Borel tr~~eform of the absorptive coefficients has a zero
at bo z = 1. This constraint does not appear to have been
previously noted. Whether or not a singularity in C(z) at
bo z = 1 is actually present does not seem to be clearly
established; no convincing argument demonstrating its
absence is known to the authors. We turn now to the
details of our work.

For the leading large momentum behavior, one may
neglect all mass parameters as they lead to corrections
in K(t) suppressed by powers of t, and hence vanishing
faster than any power of g (—t) as t -+ oo. A mass-
independent renormalization scheme with renormaliza-
tion point p, will be assumed. Therefore the dimension-
less function K(t) depends on pz and the renormalized
coupling g (p ) in the form

A+
Q b, F(m+a++1)

& (~++1)
A

(—bp) F(m+q +1)x(p +1) (14)

Because the electromagnetic currents are conserved they

as m —+ oo.
(3) If A(z) has a radius of convergence less than 1/bp,

so will C(z). In this case, the dispersive coefficients will
have the same large-order behavior as the absorptive co-
efficients, with both growing faster than (bp+e)" n! as
A~ 00.

This question is related to the possibility of nonperturbative
corrections of order 1/q in the coeKcient functions of the op-
erator product expansion [6]. Unlike 1/q4 contributions (vrhich
are connected to the infrared renormslon st bez = 2) such 1/q
terms cannot be removed by a redefinition of the local operators
appearing in the exp~~~ion.
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, + P(g'), I
K(t/~', g') = D(g'),

(16)

where the function D(g ) has a perturbative expansion

D(g ) = do+ dig + d2g + (17)

The renormalization group equation may be used to
transfer the momentum dependence into a running cou-
pling g2( —t) defined by

u ' d

p( 2)
= ln( t/& )

This defines a coupling g (—t) which is independent of
the renormalization point p but which obeys Eq. (4) with

p replaced by —t. With this definition in hand, the
general solution of the renormalization group equation
(16) may be written as

s'( —t)
K(t/I ' g'(s')) = K(—1,g'(-t))-

s.(„~) p(gz)
'

(19)

The presence of the additional term involving D(g ),
coming from the subtraction needed to renormalize the
product of currents, alters the perturbative expansion of
K(t) in powers of g2( —t). To see this, note that

D(g ) dp 1 1

(„) P(g') f o g'(p') g'( —t.)

(dx dpbx'i g (—t)
i

ln
&&o bp ) g'(~')

+ 0 ~ ~

) (20)

where the ellipsis stands for a power series in g (—t) mi-

nus the saxne series in g2(p ). All the terms involving
g~(p2) may be absorbed in a single p -dependent param-
eter C(p~). The series in g~( —t) combines with the per-
turbative expansion of K(—1,g~(—t)) to yield a modified
expansion in powers of g (—t). Hence K(t) has a large-t
asymptotic expansion of the previously stated form

K(t) - C(p )+c ig (—t) '+cp lng (—t)

+) c g(—t) (21)

The presence of the 1/g (—t) and lng (—t) terms in

acquire no anomalous dimension. However, the prod-
uct of two current operators is singular and one subtrac-
tion proportional to the unit operator is required for the
proper definition of the time-ordered product in Eq. (1).
Consequently, K(t) satisfies an inhomogeneous renormal-
ization group equation,

2 dv'd, K(tie', g')

Eq. (21) may, at first glance, appear odd. However,
Eq. (18) implies that

1/g (—t) = bo ln( —t/p ) +1/g (p ) + O(g ), (22)

+) c (P)g (—t)
m=O

then derive, and solve, the renormalization-group equa-
tion for the P dependence of the coefficients (c (P)).

(3) Given the asymptotic form of Im K(s) displayed in
Eq. (6), compute the large-t asymptotic behavior of the
once-subtracted dispersion relation:

t ds Im K(s + i0+)
7r S 8 —t

We will use the first approach as this is by far the most
convenient for the special case of a one-terxn P function.
The latter two approaches are employed in [1], as the
first approach cannot be easily applied with a general P
function. One may worry that analytically continuing
the asymptotic expansion for the Euclidean correlation
function (21) will not yield a valid expansion along other
rays in the complex t plane. However, using the last
approach sketched above this may be shown not to be a
problem. 2

Analytically continuing the expansion (21) back to the
positive real axis gives

2Strictly speaking, this requires that K(t) be polyuomially
bounded in the complex t plane, or equivalently that 1m K(s)
have the smooth asymptotic expansion of Eq. (6) without, for

example, oscillatory behavior like sin gs/A~ persisting to ar-

bitrarily large 8. Such behavior is certainly unexpected and is
absent in perturbation theory; however, we know of no rigorous
proof excluding this pathology. We will assume that (6) holds,
in which case, one may prove that the expansion (21) is valid

throughout the cut t plane [1].

where the O(g ) remainder vanishes in the special case
of a one-term P function. Hence, the 1/g2( —t) term is
precisely what is required to generate the ln(q2/p2) be-
havior of the kee-field correlation function. Similarly, the
ln g~( —t) term refiects the presence of ln[ln( —t)] terms in
the large momentum behavior of K(t).

Several difFerent approaches may be used to deduce
the relation between the dispersive coefficient (c ) and
the absorptive coefficients (a„).Among thexn are the
following.

(1) Analytically continue the expansion (21) from t
real and negative to t = 8+iG+, with s real and positive,
reexpress gz(se '

) in terms of g~(s), snd reexpand the
result in powers of g (s).

(2) Expand K along an arbitrary ray in the complex t
plane,

K(te'~) - C(p ) + c i g (—t) ' + cp lng (—t)
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K(s+ i0+) - C(p ) + c i g2(se '
)

'
+cp lng (se *

)

+) c g(se ') (23)

implies that

z( —im) g (s)
1 —i7rbp g2(s)

(24)

For a one-term P function, Eq. (22) with y~ = t = s
Reexpanding lng2(se '

) and g~(se ' )~ in powers of
g2(s) yields

-1
K(s+ i0+) C(p ) + c ig (s) + cplng (s) —c i (imbp) + cp) —(ixbp)"g (s)nn=1

+ ) c„g (s)" ) )
)' (Arbp) g (s)

Taking the imaginary part and collecting terms now gives
the desired relation between the absorptive coefficients,

expansion coefficients of the rescaled Borel transforms (7)
and (8):

IinK(s+ i0+) ) a„g(s)",
n=o

and the dispersive coefficients, namely,

(26)

axld

A(z/mbp) = ) a„z" (32)

and

). (2n —1)!
(2k+1)!(2n —2k —2) I

X ( ) (7l bp) c2(n —k) —i (27)

(2n)!
(2k+ 1)I (2n —2t"—1)!

)k ( b )»+i

(28)

For n = 0, Eq. (27) is replaced by ap = —7I'bp c
To simplify these results, it is convenient to introduce

rescaled coefficients for n & 0,

(35)

where

C(z/xbp) = ) c„z". (33)
n=O

Inserting Eq. (31) into the definition of A(z) and inter-
changing the two sums shows that the relation between
the two sets of expansion coefficients is exactly equivalent
to the simple result

A(z) = sin(7rbp z) C(z), (34)

as stated earlier.
To solve for the dispersive coefficients one need only

reexpand C(z) = A(z)/sin(mbp z) in powers of z. This is
easily done using the expansion

=) M»z»-',
sin Z k=0

(xbp) "
(n —1)! (29) (36)

(nbp) "
&n =

(n—1)! (3o)

Both the results (27) and (28) (with the latter includ-
ing the cp contribution) are encompassed in the single
relation

[ra/2!
( )

i

n+i = ) (2)+1)) W —2l
L=O

where [x] denotes the integer part of x. This relation may
be easily inverted to express the dispersive coefficients
in terms of the absorptive coefficients. To do this, Srst
note that the coefficients (c„)and (a„)are simply the

and B„arethe Bernoulli numbers. Identifying the coef-
ficient of z" yields

tn/2]

&n = M~~ n-2a+1,
k=O

(37)

or
[n/2]

x (orbp) a —2@+i . (38)
Combined with the special case c i —— (vrbp) ap, 'tllls-

result shows that all terms in the asymptotic expansion
of the Euclidean correlation function (21) except for the
overall additive (and renormalization-point-dependent)
constant, are uniquely determined by the knowledge of
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the asymptotic expansion of the spectral density (or the
R ratio).
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