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Bremsstrahlung and zero-energy Rindler photons
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The brernsstrahlung eAect is analyzed in the frame coaccelerating with the charge. In particular, it

is shown that the usual rate of photon emission with a given transverse momentum computed in the

inertial frame can be interpreted as the combined rate of emission (absorption) of zero-energy Rindler

photons into (from) the thermal bath as calculated in the particle rest frame.

PACS number(s): 04.40.+c, 03.70.+k, 04.60.+n, 12.20.Ds

The issues related to the excitation of accelerated quan-
tum detectors have been the subject of much interest in
recent years. As is well known, a detector with a constant
proper acceleration a acts as if it were in a thermal bath
with a temperature a/2tr (the Fulling-Davies-Unruh
effect [l]) in the units where ktt =c = |tt = I, which will be
used throughout this paper. The close connection between
this effect and Hawking radiation by black holes [2] is an
example of how the description of physics from the point
of view of accelerated observers can lead to insight into
phenomena occurring in curved spacetimes. A compre-
hensive study of this effect including an analysis from the
inertial point of view has been given by Unruh and Wald
[3]. More recently, specific calculations of emission rates
corresponding to the Fulling-Davies-Unruh eff'ect from
the inertial point of view have been given by Kolbenstvedt
[4], who also considered in this frame the scalar brems-
strahlung.

On the other hand, the question of whether or not an
observer comoving with an accelerated charge sees radia-
tion has been the subject of some controversy. Recently,
this issue has been clarified by Boulware [5], in the classi-
cal context, who showed that all the radiation goes into a
region of spacetime inaccessible to the coaccelerating ob-
server.

The aim of this paper is to show by explicit computa-
tions that the usual QED bremsstrahlung from a charged
source with a constant proper acceleration can be repro-
duced in the coaccelerated frame if one takes into account
the thermal bath mentioned above. We compare the
emission rate of photons computed in the inertial frame
and the rate of absorption (emission) of photons from
(into) the thermal bath in which the charge is immersed
as seen in the coaccelerated frame. (A similar computa-
tion in de Sitter spacetime can be found in Ref. [6].) Both
rates are computed for photons with a fixed value of trans-
verse momentum, i.e., the component of the momentum
perpendicular to the acceleration of the charge.

It must be emphasized that since we will be working in

the lowest order of perturbation theory, the event of emis-
sion of a photon in the inertial frame will correspond to ei-
ther the emission or the absorption of a Rindler photon in
the accelerated frame. This is the result of the fact that
observers in both frames must agree on whether or not
there is a change in the state of the quantum field.

Let us consider a point source with charge q, and con-

stant proper acceleration a along the z direction. In the
corresponding Rindler wedge, the line element has the
form (see, e.g. , [7])

ds 2 e 2a((dr 2 d(2) dx 2
dy

2

where the Rindler coordinates are related to the usual
Minkowski coordinates by

ca( ea(
t = sinhar, z = coshar .

a a

The world line of our accelerated charged source is

given by g =x =y =0 in this coordinate system. Hence,
the components of the corresponding current are

j'=qb(&)b(x)b(y), j~=j"=j'=0.
The static source represented by current (3) can only ex-
cite zero-energy Rindler modes, and usually the corre-
sponding rate would be zero. However, since the density
of zero-energy Rindler photons in the Fulling-Davies-
Unruh thermal bath is infinite, we must regularize the re-
sulting undefined expression. For this purpose we consid-

er (3) as the E 0 limit of the current j ' =v 2q cosEr
xb'(g)b(x)b(y), j~=j"=j~=0, which corresponds to an

oscillating charge. The factor J2 ensures that the time
average, associated with the square of this oscillating
charge, coincides with the one obtained with our original
current (3). In order to guarantee current conservation,
we will consider an oscillating dipole arrangement given

by the current

(3)

j'= J2q(b(g) —e '~8(g —L)lb(x)b(y)cosEr,

j~ =J2qEe '~8(g)8(L —g)b(x)8(y) sinEr,

(4)

(s)

V„V"9,=0. (6)

with the other components being zero. In the end of the
calculations, we will take the limit where one of the

charges is moved to infinity, i.e., L +~, in addition to
the limit E 0. Here, j' corresponds to the oscillating
charges, and j~ to the current flow between them. We
shall find that the second charge at g =L and the current
flow between the two charges do not contribute to the final

result. In order to quantize the Maxwell field, we use the

Lagrangian X = —4 —g [ —,
' F„„F""+(2a) '(V"A„) ],

which leads in the Feynman gauge (a=i) to the field

equation
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The physical modes are those which satisfy the Lorenz condition V„A"=0 in addition to (6), and are not pure gauge.

Since the Rindler metric (1) possesses tl„(I„,(I» as Killing fields, it is sufficient to look for solutions of Eq. (6) of the
form

(x") fp
' ' ' " (()exp[i(k x+k»y cur)],

JL

where A, specifies the polarization degrees of freedom. The quantum field A„ is expanded in the usual way:

t +oo p+oo ++co 4

(7)

(8)

We define the generalized Klein-Gordon inner product
between any two modes A(;), A(j) as

(A(;),A(j)) = dZ„W" [A(;),A(j)] . (9)

Here, Z is a Cauchy surface for the Rindler wedge, e.g. ,
the hypersurface with a constant ~, and

W"[A() A( )]=— (A (g )y)rt j') A (j)y)r[1) ), (ip)

(k =K~ja e (14)

where K„(z) is the Bessel function of imaginary argument
[ll], and k~=(k„z+k»z)'jz. Note that the pure gauge

with )r[i]=(IX/8„A„(g&„„. The field equations guarantee
that the current W" and the inner product (9) are con-
served (see, e.g. , Ref. [8]). Note that (i) and (j) stand for
(X,ro, k„,k»). As pointed out in [9], the canonical commu-
tation relations among fields and momenta lead to

[a(;),a (,) ] = (M ') (;)(j),

where N(;)(j)—= (A(;),A(j)), with the other commutators
being zero. Now, the two physical modes can be given by
letting

f„'" ' -C '"' '' (p, p, k»(I),
—k„y) (12)

and

f(ll, atkxky) ~, C, (lltukxky), (g, ~
, .

~ p p) (i 3)

in (7) (see Ref. [10]),where C(') are normalization con-
stants, which will be determined later. [The components
labeled by the index p above are ordered as in (I).] The
function p is given by

b 8((o (o )b(k k )b(k» k») (16)

[see Eq. (I 1)]. Since the current given by (4) and (5)
clearly will not excite the physical mode I [see Eq. (12),
and Eq. (18) below] we just need to evaluate the normal-
ization constant C ' ' ' " in (13). Using (7), (13), and

(lf, m, k, y) ~

(14) in (16) for it, =k' =ll we obtain

~C(«, ~,k„ky)( [sinh()re/a)] 'j'

2x'k Ja
(i7)

Now, the interaction between the charged particle and
the Maxwell field is described by the Lagrangian

A,

X;„i=4—gj"A„.
Therefore, the amplitude for the absorption of a Rindler
photon by the accelerated charge is

&("k,k ) =g(0((g d'x4 gj"(x)A—„(x))III,(o,k„,k»)g,

(i9)
where the subscript R indicates Rindler states. Using (4),
(5), and (8) in (19), and performing the corresponding in-
tegrations, we obtain

I

and nonphysical modes can be chosen to be orthogonal to
these solutions with respect to the inner product (9).
Therefore, in order to obtain the usual creation-
annihilation commutation relations

[ak„k„,,a tk k ] b 8(ro —ro')b(k„—k,')b(k» —k»)

(IS)

for A, , A,
'

corresponding to the physical modes (i.e., I and
I I), we impose the normalization condition

(A
(X ~kyky ,) „, (X',m', ky'ky') ),

+(co,k„,k„)
lg l/2 ~ uL &L E 4~/l~)e" dz

, j2 b(E —(o)[sinh()rE/a)]' K';k j,(k~/a) e' K,"Fj,(k j e' /—a) —
„k j K;Fj,(z) ~,

yi(2a) 'j'

(20)

~here the prime corresponds to derivatives with respect to the argument of the function. Next, taking the limit L +
in (20), we evaluate the probability of absorption per unit time, for a fixed transverse momentum (k„,k„) [i.e.,
dW' '(co, k„,k») = (A' '( dko/T], for small E as

dW""'(o), k„,k») =
z z (K/'Fj, (k~/a)) +O(E ) ~b(E

—ro)de, (2i)
4x a

where we have identified T =b(0)/2)r. Now, recall that the charged source is immersed in a thermal bath characterized
by the temperature a/2)r. So, the total absorption rate of photons with given (k„,k») is
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P('p't, )
= dW"' '(a), k„,k») (22)

Taking the limit E 0 after performing the integration
in (22) yields

2

Pt), '), )dk„dk» =
3 [K)(k~/a)~ dk„dk».

8x a
(23)

where the two terms inside the parentheses are related to
induced and spontaneous emission, respectively. Since
dW' (to, k„,k») dW' '(a), k„,k») by unitarity, one can
integrate (24) using (21). We note that only the induced
emission contributes in the limit E 0, and therefore we
obtain

P(k k») Pfk k») (25)

in this limit. The reason why Pt't, t,, ) and Pt't, 't, ) do not
vanish as E 0, in spite of the overall factor E in (21), is
the presence of an infinite number of zero-energy Rindler
photons in the thermal bath.

Finally, as mentioned in the beginning, we must add the
absorption rate and the emission rate of Rindler photons
[see (23) and (25)] to obtain the total response rate:

2

P&t", t, )k„dk» =
3 (K)(k~/a)~ dk, dk». (26)

4x a

Similarly, the total emission rate with a given (k„,k») is
»

p + oo
1

P(t, t, ) =J dW' (to, k„,k») t +1, (24)

& '" "' -st&k, x I ) „d'xj"(x)A„(x) I0&t)t, (27)

where the subscript M indicates Minkowski states, and j"
is the current given in (3), which takes the form

j '-qazb(g) 8(x)b(y),

j' qath(g) b(x) b(y), j" j» =0
(28)

in the inertial coordinates. The states (k, A, & are normal-
ized according to the conventions of Ref. [12].

One can express the total rate of emission of photons
in Minkowski spacetime with transverse momentum
(k„k»), but with arbitrary k„divided by total proper
time Tas

p+oo
dk, la'""l,'/T,

X ~)
(29)

where dk, =dk, /[2(2)r) ko], ko=(k, +k&) 't . Substi-
tuting (27) in (29), we obtain

This result should be compared directly with the calcula-
tion in the inertial frame, since the transverse momentum
(k„,k») is invariant under the boost connecting the ac-
celerated and the inertial frames.

The amplitude of emission by an accelerated charged
point source of a photon with momentum k, and (physi-
cal) polarization A, in the Minkowski vacuum is

1
fo

P(t,
'

t, )
= —— dk, „d x d xj'"(x)j„(x')exp[)to(t —t') —ik (x —x')], (30)

2

P(t", t, )dk„dk», ~K)(ki/a)) dk„dk»,4x'a
(31)

which coincides with (26).
The agreement between the results (26) and (31) indi-

cates that the ordinary QED bremsstrahlung can be inter-
preted by an observer coaccelerated with the charge as the
emission (absorption) of zero-energy Rindler photons into
(from) the Rindler thermal bath corresponding to the
Minkowski vacuum.

The issue of the detectability of these zero-energy
Rindler photons by Rindler observers is not trivial since
they carry nonzero momentum, and will be carefully ana-

where j" is given in (28), and we have used the standard
expansion of the operator A„(x) (see Ref. [12]). Finally
we evaluate (30), turning off the interaction at t
by letting r(t) r(t)+is and r(t') r(t') —ie, where
r (t) is the proper time of the charged source, and e is an
infinitesimal positive real number. The result thus ob-
tained is

lyzed in a detailed version of this work. However, the fact
that the number of zero-energy Rindler photons in the
thermal bath diverges and the equality of the emission and
absorption rates are indications that a Rindler observer
will not be able to distinguish the emitted photons from
the ones already present in the thermal bath. This view is
in agreement with the classical electrodynamics analysis
by Boulware [5]. Finally, we think that this result can be
generalized for arbitrary spaces with a Killing horizon.
This and related questions are currently under investiga-
tion.
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