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Trapped surfaces in expanding open universes
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Assume we have an open k=0 Friedmann-Lemaitre universe with spherically symmetric inhomo-

geneities on a spacelike slice that do not change (initially) the rate of expansion of the volume of the

slice. We give a set of necessary and sufficient criteria for the formation of trapped surfaces due to

those inhomogeneities on the initial surface. A bound for the size of a perturbed trapped region is

found, which depends on the cosmological energy density.
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To a certain degree of accuracy the large-scale features
of the Universe can be described by a homogeneous and

isotropic model, the Friedmann solution. On the other
hand, on smaller scales the Universe is neither homogene-
ous nor isotropic and it is widely believed that some inho-

mogeneities have led or still lead to the formation of very

compact objects such as white dwarfs, neutron stars, or
even black holes (either during the collapse of a star or
even more spectacularly in the very early Universe [1]).
The purpose of this Rapid Communication is to find out
under which circumstances those inhomogeneities can

lead to the formation of black holes.
According to their mathematical definition black holes

are global objects, whose identification requires knowl-

edge of the whole structure of spacetime. Thus, the natu-

ral and direct attack on the problem of the existence of
black holes would be the investigation of the long-time
evolution (the global Cauchy problem) of a gravitational

system. In this way one could identify initial data that
lead to the formation of black holes. That strategy was

applied by Christodoulou [2] in his analysis of self-

gravitating massless scalar fields, but, at the present stage,
it is difficult to implement in sufficiently general situa-

tions. We adopt a different approach and will study the

geometry of initial data of the Einstein equations coupled
with a matter field, to diagnose the presence of trapped
surfaces. These surfaces are two-surfaces with the prop-

erty that narrow beams of light orthogonal to it at any

point decrease in area, at least initially, when propagating
outwards. (Note that this definition corresponds to the

outer trapped surface of Hawking and Ellis [3].) Thus
the intensity of light increases, when moving outwards;
that property is of sufficient interest to motivate the study

of trapped surfaces, but there are also indications —via

the singularity theorems [3] and cosmic censorship

[4,5]—that trapped surfaces imply the existence of black
holes.

We denote the (positive-definite) three-dimensional
metric of the hypersurface Z by g,b. The trace (trK) of
the second fundamental form K,b is equal to the (positive)
rate of change of the 3D volume, (d/dt) (d V) =g' K,bd V.

The initial data [g,b, K,b,p (energy density) and Jb
(matter current)] cannot be given freely but must satisfy
the Hamiltonian and momentum constraints

R [g] —K,bK'"+ (K;) =16trp,

D, Kg DbK» = ——8trJb . (2)

In (1) ( R([g)) is the scalar curvature of Z and we put
c=1,G=1.

A trapped surface is defined as a compact two-di-
mensional (smooth) spacelike surface S having the prop-
erty that the expansion 0 of outgoing future-directed null

geodesics which are orthogonal to S is everywhere nega-
tive.

0 is related to the initial data g,b, K,b of the Einstein
equations by

O=D, n' —K,bn'n +g,bK', (3)

where D, is the three-dimensional covariant (metric)
derivative and n, is the outward normal unit vector to S.

As has already been mentioned we want to consider a
perturbed cosmological Friedmann-Lemattre model (with
k =0) with a spherically symmetric perturbation.

We relate the background quantities (denoted by a
caret) and perturbed ones as follows:

g b =y (r)g t, gob =a(t)b,b,

K,b =(da/dt)8»b/2 =p(t)gab,

K,b P (r)K»b+ ~K»b gabP+ ~K»b.

(4)

(5)

(6)

No linearization is involved; we are just describing a
general solution in terms of its (finite) deviation from a
homogeneous-isotropic background. The line element
reads, in isotropic coordinates, ds =a& (dr +r dO ).
All indices of quantities without carets are raised and
lowered with the metric g,b. In (4), a(t) is a scalar func-

tion determined by the Friedmann equation and in (5)
p(t) is a scalar function (the Hubble function) describing
the rate of change of the three-metric.

Because of the spherical symmetry the general form of
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Kgb is

K,y
=a (r)n, np +b (r)g,b . (7)

We demand in all that follows that although the extrin-
sic curvature may be perturbed the value of its trace is not
changed, K, =g' K,b =g' K,b., from that we can conclude
that g' BK,b =0, that is,

IWgb (nonb ggb/3)K(r) (s)

Intuitively, the motivation for (8) is that we do not wish
to produce caustics among timelike curves orthogonal to
Z, but we have to admit that this condition is important
also from the technical point of view. Later on we have to
use the maximum principle, and without (8) we would not
be able to do it.

We denote the perturbation of p by Bp and of the
current Jb by BJb.

p=p+8'p, Jb =BJb.

It is natural to consider two cases, corresponding to two
ways of perturbing the homogeneous geometry. In the
first case no current is produced, bJb =0. That implies
that 8'K,b =0, as will be shown below. Thus the perturba-
tions are time symmetric in the sense that the momentum
is unchanged. In the second case the current is perturbed,
BJb &0.

Now let us assume that BJb =0. We claim this to imply
that bK,b=0. Inserting (8) into Eq. (12) yields dK/
dr+3[[2(dp/dr)p+ I]/r]K 0. The general solution is
K=KOP r . Therefore, because p is regular, the only
regular solution is K =0, as claimed above.

The condition that a sphere S is trapped now reads

D,n' K' n—,nb+ g' K,b D,n'+ 2P (0. (i7)

Taking (17) into account we write, instead of (16)
(remember that BK,b =0),

(a/2)rog 8 (a/2)rog (D,n'+2P)

In (9) the background current vanishes.
With the metrics (4), n' and D,n' read

n' = (y '/v a,o,o, ),

t rp= —bM+2 Jar (dP/dr) dr

+Jarop +rop pa. (is)

D,n'=(Jar P ) ' (r p )d
dr

The constraints (1) and (2) become

R —8'K BKgb = 16K',
D, bKg = —snbJb .

(io)

(i2)

From an inequality proven in [7] we know that if, in the
Lichnerowicz equation (14), Bp ~ 0, then

(i9)
rp

2 y2dr =L/Ja,

where L is the proper radius of S, L =fo'Qg„„dr.
The last term in (18) is related to the area of the sphere

Sby
To get (11)and (12) one should take into account the for-
mulas (4)-(6) and (8) and the fact that the cosmological
background satisfies (K;) —K,qK'"=6P =16'. The
metric g,b is flat; hence, the scalar curvature of the con-
formally related metric g,b reads

'»R[g] = sq 'I p-- (i 3)

Inserting this into the Eq. (11)we obtain

hP = —2nbp —bK,bbK'b/8 . (i4)

If the perturbation bp is non-negative, the right-hand side
of (14) is nonpositive, and from the maximum principle
the function p is decreasing. Integration of (14) over a
ball V of a radius ro yields

BK'BK
4 p' /had x = —2n bp+ d V.

16m
(is)

In (15) d x denotes the volume element of the back-
ground metric and dV=& d x. Integrating (15) by
parts, remembering that perturbations are spherically
symmetric, rearranging in a way analogous to what was
done in [61, and using Eq. (10), we obtain the identity

(a/2)rog D,n'= —bM — (bK' bK,b/16m)dV

rp
+2 Jar (dP/dr) dr+ Garo&

(16)
where BM =f&bpd V is the mass of the inhomogeneity.

S =4narop (2o)

Thus, using (19), (20), and the relation between p and P
[see the formula below Eq. (12)] we conclude from (18)
that the expansion 8 is estimated from above as

bM )L+Sjp/6n, (22)

then S is trapped.
A necessary condition easily follows if one uses the fol-

lowing inequality proven in [6] (valid for any smooth
function):

Prp
L/2~ 2' r (dp/dr) dr+ Jarog . (23)

Proceeding in exactly the same way as for the sufficient
condition one finds, from the identity (18) and (23), the
following.

Theorem 2. (A necessary condition. ) Assume that per-
turbed initial data satisfy conditions (ii) and (iii) of

(a/2)rog 8~ —bM+L+Sv p/6n.

Thus we have proven the following.
Theorem I. (A sufficient condition. ) Assume that

spherical perturbations of homogeneous cosmological
(k 0) Cauchy data satisfy the conditions that (i) Bp is
non-negative, (ii) K; const, i.e., the rate of expansion of
the volume is not perturbed, and (iii) bJb =0.

If at a sphere S its radius L and the mass of the inhomo-
geneity satisfy
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theorem 1. If

bM & L/2+S Jt /6n, (24)

yd, yd'x ~ 2trbM . (25)

The left-hand side of (25) is shown in [7] to be smaller
than 2tr(R p+ L ), assuming that the right-hand side of
(14) is nonpositive. That is guaranteed if Bp is non-
negative. Thus, the following is true.

Theorem 3. Under the above conditions, the mass of
the inhomogeneity bM=fi bpdV inside a sphere S can-
not exceed the sum of its proper radius L and the areal ra-
dius Rp'.

8'M = BpdV~ L+Ro.4 p
(26)

I

then 5 is not trapped.
Now we make a few remarks.
(1) Note that here we do not require, in contrast with

theorem 1, that Bp ~ 0. This is because in the proof of the
inequality (23) it is not required that the energy density is
positive [61.

(2) Another form of the necessary condition for S to be
trapped is bM & Rp+S(p/6z)'t, where Rp is the areal
radius, Rp =v S/4tr. The proof is analogous to that of [6].

(3) The sufficient condition is saturated by perturba-
tions of the form of a massive spherical shell (see an expli-
cit solution in [7]) while examples saturating the neces-
sary condition can be found in the first reference of [6].

Thus the estimates in both theorerns are sharp. From
Eq. (14) we conclude that

Hence, we have proved a result that supports Einstein's
view that "matter cannot be concentrated arbitrarily" [8].

From the necessary condition and from (26) we con-
clude that if

L/2+Su p/6tr & Rp+L, (27)

then 5 cannot be trapped, because BM cannot exceed the
expression on the right-hand side of (27). Subtracting
L/2, and dividing both sides of (27) by S, we arrive at
(note that S =4nR&)

v p/6tr~ 1/4ttRp+L/8ttRp . (28)

Thus, we arrive at the following theorem.
Theorem 4. (Absence of large trapped surfaces. ) As-

sume the conditions of theorem l. If the background en-
ergy density p satisfies (28) at a sphere S of proper radius
L and areal radius Rp, then S cannot be trapped.

Let us remark that large p means that the rate of ex-
pansion of the Universe is large [see the relation below
(12)]. Therefore a part of theorem 3 is intuitively
obvious —the quicker the geometry is expanding, the more
difficult it should be to have negative expansion, i.e., to en-
force initially parallel photons to create caustics. It comes
as a surprise, however, that there is a bound from above
for the size of largest trapped spheres while there is no
lower bound; in a sense, it is easier to create small trapped
surfaces than large ones.

In the remaining part of this Rapid Communication we
will discuss spherically symmetric perturbations that
change momenta, but still preserve the trace of the second
fundamental form. In that case the expansion 0 [see Eq.
(3)l is given by the expression

8 =D,n' K' n—,nt,
—b'K' n, nt, +g' K,t, =D,n'+ 2P —8K' n, nt,

'

=(p +2rpdp/dr+roti pea Jartti K/3)[(Ja—/2)rptti ] (29)

In addition to the Hamiltonian constraint, we have to deal also with the momentum constraints (12). Multiplying Eq.
(12) by the normal n, integrating it over V, using the spherical symmetry, and subtracting the resulting identity from
Eq. (16),one finds, after routine manipulations analogous to those of [6],

fp
bM — bJsn"dV= —(arpt/i /2)(D, n'+2P —2K/3)+rpP Pa+ Ja [ —,

'
P

—[iti+6rgdg/dr —JaK& rl /6

+4r(dg/dr)[P+2r did/dr+ JaPriti —JarK& /3] 4Jar P (disci/d—r)Pjdr. (30)

The third term in the integral is negative if trapped surfaces are absent inside S and the perturbations bp are non-
negative. Indeed, then di/i/dr is nonpositive, while the sign of the second set of square brackets is equal to that of Q and is
positive; hence their product is negative.

Thus, under the above assumptions (including the absence of trapped surfaces inside S), we estimate the left-hand side
of (30) in the following way:

7 Pr0 +r0
bM — bJt, n~dV ~ — Jap dr — 4ar p (dhoti/drp)dr+rpp pa

r

d 4 p
t rp

=7L/6 —a i' r P dr+Pa 2rg4dr+rpP Pa =7L/6+2Pa rP dr. (31)
dr Jo 4 0

~e use the fact that Rp ~ L to estimate the second term in (31). Namely,

I'p r r(L& t I
2arf (P dr) =2' rites dL ~ 2 LdL=L2.
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Hence, finally we obtain, from (31),

BM —„BJbndV ~ 7L/6+PL =7L/6+L J —,
' trp.

(32)

In the last inequality we have used the relation between p
and p expressed below the formula (12).

Thus, we may conclude the following.
Theorem 5. (A sufficient condition. ) Assume that

spherically symmetric perturbations satisfy the conditions
(i) bp ~ 0 and (ii) K; =const. If at a sphere S

bM — bJbn dV~ 7L/6+L J—, trp, (33)

then there exists a trapped surface inside S.
Theorem 5 implies that the influx of matter into S

makes it easier to form trapped surfaces, while the large
outflux from S can make the formation of trapped sur-
faces impossible, even if the energy 8'M of a perturbation
is very large.

Let us summarize the whole discussion. Theorem 5

gives a sufficient condition for the formation of trapped
surfaces by moving perturbations, when the initial
momentum of the gravitational field is changed. Theo-
rems 1 and 2 give a sufficient and a necessary condition,
respectively, for the formation of trapped surfaces in the
case when only the energy density is perturbed, while ini-
tial momenta are unchanged. Theorem 3 says that in a
sphere of a fixed radius only a finite amount of perturbed
energy can be packed. Theorem 4 is the consequence of
Theorems 2 and 3; it states that if the rate of expansion of
the Universe is very large, then there is an upper limit for
the size of trapped surfaces. These results are also valid
for nonspherical perturbations, assuming that deviations
from spherical symmetry are small. A precise meaning of
"smallness" can be given by using techniques of, e.g. , [9].
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