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Abelianization of non-Abelian lattice gauge theories
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(2+1)-dimensional pure SU(2) lattice gauge theory on a square lattice is shown to be exactly
equivalent to an Abelian gauge theory on a Kagome lattice. The new dynamical variables create or
annihilate a unit of an additive, color-invariant electric flux. They provide a complete (and not over-

complete) basis for physical states in the form of nonoriented "allowed" closed loops of unit flux. This
also establishes 't Hooft's conjecture that a gauge theory of the Abelian subgroup is relevant for the
confinement mechanism.

PACS number(s): I I.15.Ha

Quantum chromodynamics is formulated by using a
multitude of massless color gauge bosons which are not in
the spectrum of particles (in the confinement phase). This
is analogous to working with the nonlinear cr model
(which uses the Goldstone bosons) to describe the unbro-
ken phase of a ferrornagnet. Much of the difficulty in-
volved in understanding and calculating hadron dynamics
could result from describing the theory in a wrong
language. Lattice gauge theory in the strong-coupling ex-
pansion [1] has the correct ingredients to describe the
confinement phase. Here the basic object is the color-
electric Aux line. Unfortunately this picture has not been
developed beyond the strong-coupling expansion, and even
there one is soon lost in the quagmire of non-Abelian alge-
bra. Also there have been conjectures that SU(N) gauge
theory formulated [2] in loop space (which is related to
the flux-line description) may be exactly solvable, at least
in the N limit, but at present this has only remained
as a fond hope. With regard to the confinement mecha-
nism, 't Hooft [3] has conjectured that the monopoles of
the U(1) ' subgroup of SU(N) gauge theory may be
relevant. But this sounds as if the various colors are not
treated equally. Moreover, the formulation is not precise
enough to establish the conjecture either analytically or
by numerical calculations.

In this paper we make progress in these directions. We
give a reformulation of (2+ l)-dimensional, pure SU(2)
lattice gauge theory which works with color-invariant lo-
cal degrees of freedom and, therefore, is better suited to
describe and handle the confinement phase. We rewrite
the theory on a square lattice as an Abelian gauge theory
on a "Kagome" lattice, thereby doing away with the non-
Abelian algebra. This involves new dynamical variables
that create or annihilate a unit of an additive color-
electric Aux without reference to the color content. Using
them we are able to obtain a complete basis for gauge-
invariant states in the loop space without the redundancies
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and the constraints that the collection of all Wilson loops
have [4]. This also establishes the precise sense in which a
U(l) gauge theory is relevant for the confinement mecha-
nism in SU(2) gauge theory.

These results are based on an earlier paper [5] by one of
us where it was shown that it is possible to obtain an expli-
cit labeling, in terms of gauge-invariant local fields, of the
physical subspace of the Hilbert space of lattice gauge
theory. For the (2+1)-dimensional, pure SU(2) case [6],
the basis for physical states consists of all triangulations
with sides which are half integers and with a coordination
number 6. Each triangle satisfies the triangle inequalities.
ln Ref. [6], these triangles are locally embedded in a
metric space in order to solve the triangle inequality and
get the dual theory. Here we solve the constraints in a
diA'erent way. One could say that we now have an alge-
braic solution of the constraints in contrast with the
geometric solution of Ref. [6].

Given any triangle with half-integer sides j l, j2, and j3
corresponding to the addition of angular moments, the
combinations

N( ~ 0, I =1,2, 3, (2)

uniquely generate all such triangles. We will associate
these integers with the sides of an inscribed triangle as in

Fig. 1. Of course, the inscribed triangle does not satisfy
the triangle inequality constraints in general, and is for
figurative purposes only.

This permits us an alternative way of characterizing all
triangulations. The j's have been associated [6] with the
links of a triangular lattice obtained by drawing one set of
diagonals on the lattice dual to the original lattice. For
the convenience of representation, we deform this lattice
into a regular triangular lattice (Fig. 1). Furthermore, we
inscribe equilateral triangles in each triangle of this dual
lattice. These inscribed triangles form a Kagome lattice.

l =J2+J3 J ls N2 J3+J 1 J2s 3 J l+J2 J3

(1)
are always integers and non-negative. In fact, three arbi-
trary independent non-negative integers,
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FIG. 1. The dual lattice with one set of diagonals drawn is
sho~n by the dashed lines. Axes l and 2 have been distorted to
make an angle of 60', giving a regular triangular lattice. The
triangles inscribed into the triangles of this dual lattice form a
Kagome lattice, represented by the solid lines. j; and NI are as-
sociated with the links of the triangular lattice and the Kagome
lattice, respectively. The triangles of the Kagome lattice can be
given the unique signatures plus and minus as shown. The con-
servation of NI's at the vertices of these triangles is also repre-
sented. An example of an "allowed" closed loop is shown by the
heavy lines.

We associate the integers NI with the links of this Ka-
gome lattice. For any inscribed triangle, the sum of Nl on
any two sides gives the j on the link of the triangular lat-
tice on which they impinge. Since each such dual link is
common to two inscribed triangles, we get a constraint
(Fig. 1) such as

N )+N2 =N4+N5 ',

i.e., the sum of the weights on two sides of any triangle of
the Kagome lattice should equal the sum on the two sides
of the other triangle meeting at the common vertex. By
assigning arbitrary non-negative integers to the links of
the Kagome lattice, subject to such a constraint at every
vertex, all triangulations are uniquely generated. This,
therefore, is an alternative for specifying a basis for the
physical states.

We now describe the dynamics in this basis. The effect
of a plaquette operator is to independently change by
4-

& the j's associated with the six lines of the triangular
lattice incident on the vertex dual to the plaquette. This
corresponds to a change by 4- 1 of certain N's on a "star"
of the Kagome lattice centered on this dual vertex. We
will denote those links on which N increases (by 1) by a
solid line and those on which N decreases by a jagged line.
Then the plaquette operator corresponds to the diagrams
of Fig. 2, and otker diagrams obtained from them by ro-
tating by multiples of 60' and/or by interchanging the
solid and the jagged lines, in case the result is a distinct di-
agram.

The amplitudes for these various processes may be com-
puted using the matrix element in the j basis [Eq. (13) of
Ref. [6]] and will not be presented here. (The phase fac-
tor given there needs a correction. ) Quite remarkably,

FIG. 2. An operator corresponding to a plaguette term in the
Hamiltonian is represented by these diagrams and others ob-
tained by rotating by multiples of 60' and/or the interchange of
heavy and jagged lines in case the result is distinct. The links on

which NI increases (decreases) are represented by heavy

(jagged} lines.

these amplitudes have a sixfold symmetry corresponding
to the rotations of the star by multiples of 60' [in our rep-
resentation where the 2 axis (Fig. 1) is inclined to the 1

axis at 60'l. This is in spite of the fact that the 3 links (on
which the sum of the color spins on the I and 2 links are
represented) are altogether on a different footing. The
other term in the Hamiltonian, gE (n, i), which is diago-
nal in the [Nl] basis, does not respect this symmetry be-
cause i =1,2 only.

In order to express the Hamiltonian in this basis, we as-
sociate a harmonic-oscillator creation operator a and an
annihilation operator a with each link of the Kagome lat-
tice. The weight Nr on the link is interpreted as the eigen-
value of the corresponding number operator. The conser-
vation law at every vertex is interpreted as the Gauss-law
constraint associated with a U(1) local gauge invariance
defined as follows. The triangles of the Kagome lattice
can be consistently assigned signatures plus or minus ac-
cording to whether they are pointing up or down, respec-
tively (Fig. I). This signature is inherited by the sides of
these triangles. We assign a ~ I local charge to both ends
of a link according to whether the signature of the link is
plus or minus, respectively. This way we get a U(1) gauge
theory on the Kagome lattice differing from the usual
U(1) gauge theory in the following ways. On each link
the variable is an oscillator instead of a planar rotator, the
U(1) charge depends on the signature of the link, and the
possible (gauge-invariant) interactions appear with very
specific amplitudes.

As in the usual U(1) lattice gauge theory [7], we can
solve the additive constraints at the vertices by using
closed loops. Consider a closed loop of the Kagome lattice
which everywhere either goes straight or takes only 60
turns (Fig. 1). N =1 for the links of this loop is consistent
with the constraints. We shall call such a loop an "al-
lowed" loop. As NI takes only non-negative values, the
loops are not assigned any orientation. An arbitrary col-
lection of such allowed loops generate all the allowed
configurations (with suitable boundary conditions). The
total number of transits along a link gives N for the link.
In case loops intersect or (partially or completely) over-
lap, different ways of forming closed loops are not dis-
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tinguished. All this is in contrast with the usual U(1) lat-
tice gauge theory. This way we get a complete basis for
physical states in the loop space without the redundancies
and the constraints that the set of all Wilson loops have
[4].

An allowed loop increases j on the links of the dual lat-
tice it intersects by 2. Therefore it increases the total
color flux on the links of a closed loop of the original lat-
tice (which closely follows the allowed loop except
perhaps at the "corners") by —,

' . In contrast, the usual
Wilson loop operator has a complicated action, changing
the total color flux on its links by both + 2 and —

—,
' . In

this sense, our allowed loops are more basic entities.
We now give a cursory discussion of the implications.

A careful analysis will be developed elsewhere. In spite of
the differences with the usual U(l) lattice gauge theory,
most of the concepts and techniques used there [8] can be
carried over. The commuting operators u aN '/ and
u* =N '/ a are the analogues of the usual U(1) link
variable U=exp( —i8) and the complex conjugate U*

exp(i8), respectively. Also the number operator N is
the analogue of the electric field E. In the phase where
the compactness of the link variable, or equivalently the
discreteness of the conjugate variable, is irrelevant, there
are massless vector bosons. This can be seen by ignoring
the fact that the spectrum of 8 is compact and of N is
discrete, and considering quadratic fluctuations about
their expectation values. The calculation is now involved
because, in place of the UUUU term of the Hamiltonian,
we now have a set of terms involving products of up to
twelve u variables with coefficients depending on the con-
jugate variable N. Even though there is just one kind of

link variable u, there can be three massless excitations of
the SU(2) gauge theory because of the Kagome lattice in-
volved and the specific interactions. The eA'ects of corn-
pactness of 0 can be interpreted in terms of the monopole
degrees of freedom. Confinement would be a consequence
of a condensate of these monopoles.

In the usual U(1) lattice gauge theory, the Gauss law
can be solved [9] using potentials for the electric field in
contrast with the usual potentials for the magnetic field.
The Hamiltonian expressed in these potentials is local and
gives the dual formulation of the theory. These steps can
be repeated for our case. Even though the flux lines do
not have an orientation and are on the Kagome lattice, it
is possible to solve the Gauss law using certain potentials.
This will be demonstrated elsewhere.

The techniques and ideas introduced in this paper can
be extended to higher dimensions [10] and to other groups
[11].

We conclude by summarizing the highlights of this pa-
per. We have mapped non-Abelian lattice gauge theory
exactly into an Abelian gauge theory on a Kagome lattice.
As the physics of Abelian lattice gauge theories is well un-
derstood [8], we now have a powerful tool for analyzing
non-Abelian gauge theories. The conjecture of 't Hooft
[3] that the topological excitations of the Abelian sub-
group of SU(N) determine the confinement mechanism of
SU(N) gauge theory is thereby placed on a firm footing.
We also have a description of non-Abelian gauge theories
in terms of color-invariant local degrees of freedom. All
of this means that now there is the prospect of unambigu-
ously locating the physics underlying hadron dynamics by
both numerical and analytical techniques.
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