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Evanescent black holes
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A renormalizable theory of quantum gravity coupled to a dilaton and conformal matter in two
spacetime dimensions is analyzed. The theory is shown to be exactly solvable classically. Included
among the exact classical solutions are configurations describing the formation of a black hole by col-
lapsing matter. The problem of Hawking radiation and back reaction of the metric is analyzed to
leading order in a I/N expansion, where N is the number of matter fields. The results suggest that the
collapsing matter radiates away all of its energy before an event horizon has a chance to form, and
black holes thereby disappear from the quantum-mechanical spectrum. It is argued that the matter
asymptotically approaches a zero-energy "bound state" which can carry global quantum numbers and
that a unitary S matrix including such states should exist.

PACS number(s): 04.60.+n, 11.17.+y, 97.60.Lf

5 d'x 4—g [e e[R+4(&P) '+4k, '] ——' (&f) ]
2x ~

(I)
where g, III, and f are the metric, dilaton, and matter
fields, respectively, and X, is a cosmological constant.
This action arises as the effective action describing the ra-
dial modes of extremal dilatonic black holes in four or
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Following his ground-breaking work [I] on black-hole
evaporation, Hawking [2] argued that the process of for-
mation and subsequent evaporation of a black hole is not
governed by the usual laws of quantum mechanics: Rath-
er, pure states evolve into mixed states [3]. This conjec-
ture is hard to check in detail because of the many degrees
of freedom and inherent complexity of the process in four
spacetime dimensions. It would be useful to have a toy
model in which greater analytic control is possible.

In this paper we investigate such a model. It is a con-
sistent, renormalizable theory of quantum gravity in two
spacetime dimensions coupled to conformal matter. It
contains black-hole solutions as well as Hawking radia-
tion, and is exactly soluble at the classical level. As we
shall see, the theory is just complicated enough to enable
one to ask the interesting questions concerning black-hole
evaporation, yet simple enough to obtain some answers.

We begin with the action in two spacetime dimensions:

higher dimensions [4-6]; it is also closely related to the
spacetime action for c l noncritical strings. Ho~ever,
these connections need not concern us here; the theory
defined by the action (l) is of interest in its own right as a
renormalizable theory of two-dimensional (2D) "dilaton
gravity" coupled to matter.

The quantization of related theories of 2D gravity has
been considered in [7]. Gravitational collapse in related
theories has been studied in [8]. The black-hole solution
of (1) in the absence of matter has appeared previously
[9] as a low-energy approximation to an exact solution of
string theory.

The classical theory described by (l) is most easily ana-
lyzed in the conformal gauge:

g+ — 2 & g ——=g++ (2)

'In the context of superstrings f does not have the usual dila-
ton coupling because it arises from a Ramond-Ramond field.

where x — (x +'x'). The metric equations of motion
then reduce to

T++ e e(48+p8yy —28+II)+ —,
' 8+f8+f 0,

T -e '4(48 p8 y 2-8'4)+-,'8 f—8 f=o, (3)

T =e '~( 28+84' 48+ttt8 y 7.'e—")=0. —
The dilaton and matter equations are

48+8 y-+48, q8 q+28 8 p+X e v=0, (4)

8+8—f 0.
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The general solution of the dilaton, matter, and T+-
equations (which do not involve f) may be expressed in

terms of two free fields

w=w~(x+)+w (x ), u=u+(x+)+u (x )
as

Singularity

e 2~=u —h+h, e ~=e (u —h+h ),
~here

h+(x —) =k e —.

The matter equation, of course, implies

f=f+(x+)+f (x ) . -

(7)

(9)
The remaining constraint equations T++ =T ——=0 may
then be solved for u in terms off~ and w ~. The general
solution is

M 1, w —wu+ = —— e — e -8+f8+f,
2X 24 (io)

—.
' 8+f8+f=ab(x + —xp+ ) .

One then finds in the gauge w =0 that

e "=e "=—a(x+ —xp+)e(x+ —xp+) —X'x+x

(12)

(13)
For x+ (xo+, this is simply the linear dilaton vacuum,

I

where M is an integration constant.
We now consider solutions with f=0, which implies

that one can set u =M/X. The conformal gauge leaves the
conformal subgroup of diffeomorphisms unfixed. This
gauge freedom can be fixed (on shell) by setting w=0.
The general f=0 solution is then

x xM (ii)

up to constant translations of x. It is readily seen [6] that
for M ~0 this corresponds to the r —t plane of the higher-
dimensional black holes of [4,5] near the extremal limit,
or to the two-dimensional black-hole solution of [91, with
M the black-hole mass. It is not immediately apparent
that the parameter M corresponds to the. black-hole mass.
This can be verified by a calculation of the Arnowitt-
Deser-Misner (ADM) mass for this configuration as de-
scribed in [9] or by a calculation of the Bondi mass as is
done later in this paper. For M=O one can introduce
coordinates in which the metric is fat and the dilaton field

tt is linear in the spatial coordinate. This "linear dilaton"
vacuum has appeared in previous studies of lower-
dimensional string theories and also corresponds to ex-
tremal higher-dimensional black holes.

From the above we may expect that any matter pertur-
bation of the linear dilaton vacuum will result in the for-
mation of a black hole. To see that this is indeed the case
consider the example of an f shock wave traveling in the
x direction with magnitude a described by the stress
tensor

FIG. I. An incoming f wave in classical dilaton gravity pro-
duces a black-hole metric (shaded region) with a horizon and
singularity.

e"'=ax+, e ' = —Xx —a/X. (i 4)

This preserves the conformal gauge (2) and gives for the
new metric

while for x+ & xo+ it is identical to a black hole of mass
axp+X after shifting x by a/X . The two solutions are
joined along the f wave. The Penrose diagram for this
spacetime is depicted in Fig. 1.

The fact that any f wave, no matter how weak, pro-
duces a black hole, of course, implies that weak-field per-
turbation theory breaks down. The reason for this is sim-
ple. From (I ) it is evident that the weak-field expansion
parameter is proportional to e~. Equation (13) shows that
this parameter becomes arbitrarily large close to SL—or to
the singularity and that the weak-field expansion diverges
in this region.

This has a higher-dimensional interpretation as follows
[5]. When (I) is taken as an effective-field theory for
higher-dimensional dilatonic black holes, the 2D linear di-
laton vacuum corresponds to the infinite throat in the ex-
tremal black-hole solutions. The center of the black hole
is at x+x =0. An arbitrarily small infalling matter
wave then produces a nonextremal black hole with an
event horizon and a singularity.

So far the discussion has been purely classical. As a
first step towards including quantum effects, we now com-
pute the Hawking radiation in the fixed background
geometry (11). This can be computed exactly for the col-
lapsing f wave because of the elegant relation [10] be-
tween Ha~king radiation and the trace anomaly for 20
conformal matter coupled to gravity.

The calculation and its physical interpretation is
clearest in coordinates ~here the metric is asymptotically
constant on JR—.%e thus set+

[I+(a/X)e' ] ' if o+(cr()+,—2g e2P
[I+(a/Z)exp[a(o —o++op+)]} ' if o+) op+,

(is)
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with A.xp+ =exp(X, crp+). By the standard one-loop anoma-

ly argument, the trace TI+ of the stress tensor is propor-
tional to the curvature scalar which is, in these coordi-
nates, just the Laplacian of p. The result is

&TI+-) = —
—,', 8+8-p.

One can then integrate the equations of conservation of TI
to infer the following one-loop contributions to T++ and
Tf

(TI++& = —
—,', [8+p8+p —8j'.p+t+(cr+)],

(TI -)= —
—,', [8 p8 p -8' p+—t (-o )].

The functions of integration t ~ must be fixed by bound-

ary conditions. For the collapsing f wave, T should van-
ish identically in the linear dilaton region, and there
should be no incoming radiation along Sg except for the
classical f wave at op+. Using the formula for p, this im-

plies

e '~-- i/24 (2i)

independent of ao+ or a. As we have stated, e~ is the loop
expansion parameter for dilaton gravity. Since this pa-
rameter is not small at the turn-around point, our one-
loop calculation of the Hawking flux breaks down before
the fwave fully backscatters.

The situation can be remedied by proliferating the
number of matter fields. This introduces a new small ex-
pansion parameter into the theory: 1/N, where N is the
(large) number of matter fields [11]. For N matter fields
the Hawking flux is N times as great and one finds that
the f wave has completely backscattered by (crp+, op+

+(In24/N)/A, ). For large N, the value of the dilaton at
this point is

Unfortunately this picture cannot yet be taken seriously
because the turn-around point at which all the energy has
backscattered has coordinates (crp+, crp++(In24)/k). The
value of the dilaton at this point is from (13) for small

t+ =O, t —= ——'k [I —(1+ac /k) ].
e "=N/24, (22)

exp( —Xcrp+ )
24

(2o)

2lt is assumed that the functional measure for the matter fields
is defined with the metric g. One could imagine using instead
the (flat) metric e ~g, in which case there would be no Hawk-

ing radiation.

The stress tensor is now completely determined, and one
can read off its values on Stt by taking the limit o+

(T~++)-o, (T~+ )-o,
A,

2
'

1(TI )-
4g (1+ae" /k) '

The limiting value of T is the flu—x of f-particle energy
across Str. In the far past of Sir (o —~) this «»
vanishes exponentially while, as the horizon is ap-
proached, it approaches the constant value A. /48. This is
nothing but Hawking radiation. The surprising result that
the Hawking radiation rate is asymptotically independent
of mass has been found in other studies of two-dimen-
sional gravity.

The total energy lost by the collapsing f wave at some
value of retarded time cr can be estimated by integrating
the outgoing flux along Stt up to cr . If the total radiated
flux is computed by integrating along all of Sti, an infinite
answer is obtained, because the outgoing flux approaches
a steady state at late retarded times. This is obviously
nonsense —the black hole cannot lose more mass than it
possesses. This nonsensical answer is, of course, a result
of the fact that we have neglected the back reaction of the
radiation on the collapsing fwave. As a first step toward
analyzing the back reaction, it is useful to estimate, to
leading order in the mass, the retarded time at which the
integrated energy of the Hawking radiation on Sit equals
the initial mass axp+A, of the incoming f wave. This is
given by

which indeed corresponds to weak coupling. This suggests
that, for large N, the essential physics of Hawking radia-
tion back reaction takes place in a weak-coupling regime
and should be amenable to a semiclassical treatment. In
what follows, we will present some proposals for the devel-
opment of such a fully consistent treatment of the scatter-
ing problem, along with some informed conjectures about
the form of the solution.

In a systematic expansion in 1/N, one must include the
one-loop matter-induced contribution to the gravitational
effective action at the same order as the classical action
(1). This incorporates both Hawking radiation and back
reaction. Because of the way the dilaton varies with posi-
tion, there is a region in spacetime where the O(N) one-
loop matter-induced gravitational action is of the same or-
der as the strictly classical part and the loop coupling con-
stant is nonetheless small. As described above, it is pre-
cisely in this region where the essential back-reaction
physics will occur and a semiclassical treatment of the
proper action should give meaningful answers. To leading
order in 1/N, and in the conformal gauge, the quantum
effective action to be solved is

S~=— d o e ~( —28~8 p+48+&8 p
—X e ~)

Z 4

l N——&8,f8f+ 8 p8 p.
2 (-i '

12

(23)
The last term is the Liouville term induced by the N
matter fields and the conformal gauge constraints [the
T ~ ~ equations of (3)] are modified by its presence in a
way which will shortly be made explicit. We have also
tuned the coe%cient of the possible Liouville cosmological
constant (to be distinguished from the classical "dilaton-
ic" cosmological constant A. ) to zero. In a slight abuse of
terminology, we nevertheless refer to the dynamics
governed by the last term in (23) as Liouville gravity.
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Solving the quantum theory to leading order in 1/N is
equivalent to solving the classical theory described by S~.

Unlike So, it does not appear possible to solve SN exact-
ly, though it may be possible to solve the equations numer-
ically. At present the best we can do is make the follow-
ing educated guess about the evolution of an incoming f
wave. Consider a quantization of the system defined on
null surfaces Z(cr ) of constant o . The light-cone
Hamiltonian P —evolves the system in the direction of in-

creasing o . The changes P+ are not separately con-
served because translation invariance is spontaneously
broken. The combination H =P++P —generates an un-
broken symmetry and is conserved for spacelike surfaces.
In fact, there are in general two conserved quantities,
given by boundary terms at the two spatial infinities. For
the null surfaces Z, the ei envalue M(o ) of H is given

by a boundary term on Sn (assuming the boundary term
on Jl vanishes) and is called the Bondi mass. The Bondi
mass is not conserved because radiation energy can leak
out onto J"R.

Now consider an initial state at rr = —~ describing
an incoming f~

wave as in (12), with the other N —1 f 's

set to zero. In addition, it is useful to let this wave be
characterized by the nonanomalous, left-moving global
conserved charge Q~i, =fdo+8+f~. Near o
e ~ is very large and the extra Liouville term may there-
fore be neglected in the description of the incoming state
on Z( —~), which is essentially described by (13). As
o increases away from S~, M(o ) will decrease.
From the point of view of the quantum eA'ective action
Sz, this is not due to Hawking radiation, but is simply a
consequence of the extra Liouville term. As cr +~,
it is plausible that M(o ) decreases to zero. However,
the state on Z(o ) cannot revert to the linear dilaton vac-
uum on y I+ because it carries the conserved charge Q ~L.

FIG. 2. An incoming fwave in quantum dilaton gravity even-

tually propagates into the region dominated by Liouville gravity,
for which the curvature is constrained to vanish and all excita-
tions have zero energy.

The picture can thus be summarized as follows. A state
with a nonzero charge Q ~1 and Bondi energy is incoming
from Sp. As it evolves it loses its energy, but retains its
charge. Asymptotically it approaches a zero-energy state
with charge Q~I. on SL . This is illustrated in Fig. 2.

This picture can be corroborated by direct analysis of
the Bondi energy associated with data on a null surface Z
corresponding to a charged fwave Such dat.a must satis-
fy the null constraint equations

O=T =e ~(48 y8 p —282')+ —,
' 8 f8if [8 p8 p——8 p+t ( +)],N

12

O=T+ —=e ~(28+8 —p 48+&—8 p
—

X, e—~) — 8+8 —p.
12

(24)

The extra function t+ appearing in T++ is in agreement
with (17) and is a consequence of the anomalous transfor-
mation law for T++. t+ is coordinate dependent and
must be fixed by boundary conditions, as in (18). The
linear dilaton configuration remains as the vacuum solu-
tion of the full leading N theory:

p=O, f; =0, p=
& it. (o+ —o ). (25)

3tn a systematic quantum treatment of this action one will find,

at subleading order in 1/N, that the N in (23) is shifted by the

ghost and gravity measures in order to maintain a net central

charge c =26.

The Bondi energy may then be defined for configurations
which approach (25) on ZR (i.e., the configuration must
not only be asymptotically flat, but presented in an asymp-
totically Minkowskian coordinate system). It is given by
the surface term which must be added to the integral of

I

T+y+T+ — over Z to obtain the generator of time
translations. This canonical procedure yields

M(o ) = 2e (A,bp+8+8$ —8 —8P)

+ (8 bp-8+~p),N
12

(26)

where Bp and bp are the asymptotically vanishing devia-
tions of p and p from (25), and the right-hand side is to be
evaluated on 1g. The first "dilaton" term was obtained
in Ref. [9]. The term proportional to N, arising from
matter quantum eAects, actually vanishes due to the
boundary conditions (25). A modified formula is required
in coordinate systems [such as in (11)]for which the fields

do not asymptotically approach (25).
Let us first consider the energy, evaluated on a surface

Z, of a small amplitude f ~
wave packet localized in the di-

laton region where e ~ is very large, i.e., at very large
cr+ —cr . Then the Liouville terms proportional to N
may be neglected in solving the constraints. M will be
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given as before by the integrated value of & B+fi B+fi
times the x+ coordinate of the center of the wave packet.

Now, however, consider the case where the f i wave
packet is localized on Z in the "Liouville region" where
e ~ is very small. The dilaton gravity term is then very
small, and the action governing p and f reduces to Liou-
ville gravity coupled to conformal matter:

12
(B+pB+p Bj'—p+.t+(o+)),

0 =T+ —= B+ B-p.
12

(28)

The T~ —constraint implies that the spacetime is in fact
flat. The Bondi energy of (26) reduces to its Liouville
piece.

M (o ) = (B-bp —B+bp) .
N
12

(29)

Since there is no invariant one can associate with a flat
metric one would expect this expression to vanish. The
fact that it does can be seen from direct evaluation of
(29): If p approaches zero on Str as required by the
boundary conditions (25), the derivatives of p and, conse-
quently, M must also vanish. Thus all asymptotically flat
states of Liouville gravity plus matter have zero energy.

We now have a plausible global picture of the scattering
process. The linear dilaton vacuum is divided into two re-
gions characterized by e ~ large or small compared to
N/12. This dividing line is timelike. For e ~))N/12,
the dynamics are essentially that of classical dilaton gravi-
ty coupled to matter. For e ~(&N/[2, one has Liouville
gravity coupled to matter. An incoming fi wave packet
on SR begins in the dilaton gravity region where it has
nonzero Bondi energy. However, it eventually crosses into
the Liouville region, where all excitations have zero ener-
gy. By energy conservation, all of the initial energy of the
wave packet must have radiated away to SR. There is no
indication of an event horizon or singularity: In the re-

The dynamics of p are roughly governed by the free field

e ~. However, it is not clear what range should be taken

for p.

1
~

2 N 1
Stv(large II) =— d o B+pB-p ——g B+ft B f;-r 4 12 2 l-i

(27)
with constraints

/V

0=T++= z Z B+f;B+fi

gion where the singularity occurs in the classical solution,
the quantum dynamics are governed by Liouville gravity
(with no cosmological constant) in which the curvature is
required to vanish. One expects, therefore, a unitary S
matrix evolving from 2 to 2+. One would hope to ex-
tract information about this 5 matrix from a semiclassical
treatment of the large-N action (23).

While we find this picture compelling, we emphasize
that at present it must be regarded as speculative. We
have not shown that an incoming f wave does not, in fact,
produce a singularity, or even that the large-N equations
of motion give a well-defined evolution. One might try to
substantiate our speculations by doing weak-field pertur-
bation theory in the amplitude of the f wave. However,
preliminary calculations indicate that weak-field pertur-
bation theory breaks down near the boundary of the dila-
ton and Liouville regions: The second-order perturbation
is divergent. Thus in order to settle the question a nonper-
turbative analysis of the large-N theory (23) is probably
needed.

In conclusion, we have analyzed the process of black-
hole formation and evaporation, including back reaction,
in the I/N expansion of a two-dimensional model. A set
of equations describing the process were found, but have
not been solved so far. A qualitative analysis suggests
that in this model would-be black holes in fact evaporate
before an event horizon or singularity has a chance to
form. Thus there is no indication that pure states evolve
into mixed states. The implications of our results for
four-dimensional black holes remain to be explored.
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In two dimensions, unlike in higher dimensions, we know of no

local notion of an apparent horizon. Global event horizons exist
as usual when the spacetime is singular or otherwise incomplete.

Of course, a singularity at large N does not imply a singulari-

ty of the full quantum theory since the I/N expansion breaks
down as soon as fields grow to order N.
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